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ON CONTACT CR-SUBMANIFOLD OF A KENMOTSU
MANIFOLD WITH KILLING TENSOR FIELD

SAMEER1 AND PRADEEP KUMAR PANDEY2

Abstract. The object of this paper is to study the Contact CR-submanifold of a
Kenmotsu manifold with the help of a killing tensor field and deduce some results.

1. Introduction

K. Kenmotsu [5] introduced the notion of Kenmotsu manifold and later several
authors studied this manifold [2, 14, 15]. M. Kobayashi and N. Papaghuic [10, 11]
investigated the geometry of semi-invariant submanifolds of a Kenmotsu manifold.
The geometry of Contact CR-submanifolds, invariant and anti-invariant submanifolds
of an almost contact metric structure are studied by A. Bejancu [1].

Gupta et al. [13] studied the intrinsic characterization of a slant submanifold of a
Kenmotsu manifold in case of induced metric and obtained some examples of the slant
submanifold of a Kenmotsu manifold. Avik De [2] studied and obtained few examples
of a 3-dimensional Kenmotsu manifold with parallel Ricci tensor and obtained killing
condition for a vector field in Kenmotsu manifold.

Moreover, the Contact CR-submanifolds of Kenmotsu manifolds are studied by
some other authors [8, 9]. The notion of a killing tensor field was introduced by
Professor D. E. Blair [4]. In [12], we have investigated and characterized a slant
submanifold of a Kenmotsu manifold using killing tensor fields. In this paper, we
have studied Contact CR-submanifold of a Kenmotsu manifold using the notion of a
killing tensor field and obtained some results.
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2. Preliminaries

A (2m + 1)-dimensional manifold M is said to admit an almost contact metric
structure if there exist a (1, 1)-tensor field φ, a vector field ξ, a 1-form η and a
Riemannian metric g such that

(2.1) φξ = 0, φ2U = −U + η (U) ξ, η (ξ) = 1, η (φU) = 0,

(2.2) g (φU, φV ) = g (U, V ) − η (U) η (V ) , g (U, ξ) = η(U),

where U and V are vector fields on M [3, 7].
Moreover, if

(2.3)
(
∇Uφ

)
V = −g (U, φV ) ξ − η (V ) φU, ∇Uξ = U − η (U) ξ,

where ∇ be a Levi-Civita connection on M , then the structure (M, φ, ξ, η, g) is said
to be a Kenmotsu manifold [5].

Suppose M is an isometrically immersed submanifold in M and ∇, ∇ be the
Riemannian connections on M , M , respectively. Then the Gauss and Weingarten
formulae are given by

(2.4) ∇UV = ∇UV + h(U, V )

and

(2.5) ∇UW = −AW U + ∇⊥
UW,

for any vector fields U, V ∈ Γ(TM) and W ∈ Γ(T ⊥M), where ∇⊥ be the normal
connection on T ⊥M , A and h be the shape operator and second fundamental form of
M in M .

Both h and A are related as

(2.6) g(AW U, V ) = g(h(U, V ), W ).

In Kenmotsu manifold, M is isometrically immersed submanifold. For any vector field
U tangent to M , we put

(2.7) φU = pU + fU,

where pU and fU denote the tangent and normal component of φU , respectively.
The covariant derivative of p, f are given by

(∇Up)V =∇UpV − p∇UV,

(∇Uf)V =∇⊥
UfV − f∇UV.

Similarly, for any vector field W normal to M , we have

(2.8) φW = bW + cW,

where bW and cW are the tangent and normal component of φW .
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The covariant derivative of b, c are given by
(∇Ub)W =∇UbW − b∇⊥

UW,

(∇Uc)W =∇⊥
UcW − c∇⊥

UW.

Let p be the endomorphism defined by (2.7), then we have
(2.9) g (pU, V ) + g (U, pV ) = 0.

Definition 2.1 ([9]). Let M be a submanifold of a Kenmotsu manifold M . Then M
is said to be a contact CR-submanifold of M if there exists a differentiable distribution
D : x → Dx ⊆ Tx(M) on M satisfying the following conditions:

(i) TM = D ⊕ D⊥, ξ ∈ D;
(ii) D is invariant with respect to φ, that is, φDx ⊂ Tx(M);
(iii) the orthogonal complementary distribution D⊥ : x → D⊥

x ⊆ Tx(M) satisfies
φD⊥

x ⊆ T ⊥
x (M) for each x ∈ M .

A contact CR-submanifold is said to be proper if neither Dx = {0} nor D⊥
x = {0}. If

Dx = {0}, then M is anti-invariant submanifold and if D⊥
x = {0}, then M becomes

invariant submanifold.

Now, let M is a contact CR-submanifold of a Kenmotsu manifold M . For any
U, V ∈ Γ(TM), by (2.3), (2.7), (2.8) together with the Gauss and Weingarten formulae
[9], we have

(2.10)
(
∇Uφ

)
V = ∇UφV − φ∇UV

or
−g (U, φV ) − η (V ) φU = ∇UpV + ∇UfV − φ∇UV − φh(U, V ).

By comparing the tangent and normal component of the above equation, we have
(2.11) (∇Up)V = AfV U + bh (U, V ) + g (pU, V ) ξ − η (V ) pU

and
(2.12) (∇Uf) V = ch (U, V ) − h (U, pV ) − η (V ) fU.

If ξ be the structure vector field tangent to submanifold M , then by (2.3) and (2.6),
we have
(2.13) AW ξ = h (U, ξ) = 0,

for all U ∈ Γ(TM) and W ∈ Γ(T ⊥M). Thus, (2.11) reduces to
(2.14) (∇Up)V = g (pU, V ) ξ − η (V ) pU,

for any U, V ∈ Γ (D) . This shows that, the induced structure p is a Kenmotsu
structure on M [9].

Let M is a contact CR-submanifold of a Kenmotsu manifold M , then equation
(2.11) reduces to
(2.15) (∇Up)V = bh (U, V ) + g (pU, V ) ξ − η (V ) pU,
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for any U, V ∈ Γ(D) [8].
If the second fundamental form h is zero, then submanifold M is totally geodesic.

A submanifold M is totally umbilical if

h (U, V ) = g (U, V ) H,

where H is the mean curvature vector. In addition, if H = 0, then the submanifold
M is minimal.

A tensor field φ is called killing [4], if it satisfies the following condition

(2.16)
(
∇Uφ

)
V +

(
∇V φ

)
U = 0.

3. Contact CR-Submanifold of a Kenmotsu Manifold M with Killing
Tensor Field

In this section, we discuss some results on contact CR-submanifold of a Kenmotsu
manifold with killing tensor field.

Theorem 3.1. Let M be a contact CR-submanifold of a Kenmotsu manifold M with
killing tensor field φ, then

(3.1) (∇UpV + ∇V pU) +
(
∇UfV + ∇V fU

)
= p(∇UV + ∇V U) + f(∇UV + ∇V U).

Proof. From the equation (2.10), we have

(∇Uφ)V = ∇UφV − φ∇UV.

By swapping U and V , above equation becomes(
∇V φ

)
U = ∇V φU − φ∇V U.

On clubbing above equations, we get(
∇Uφ

)
V +

(
∇V φ

)
U = ∇UφV − φ∇UV + ∇V φU − φ∇V U.

Using (2.16), we get

(3.2) 0 = ∇UφV − φ∇UV + ∇V φU − φ∇V U.

Using (2.7), above equation yields

(∇UpV + ∇V pU) + (∇UfV + ∇V fU) = p(∇UV + ∇V U) + f(∇UV + ∇V U). □

Theorem 3.2. Suppose M denotes a contact CR-submanifold with killing tensor field
φ of a Kenmotsu manifold M , then

(3.3) η (V ) pU + η (U) pV = 0

and

(3.4) η (V ) fU + η (U) fV = 0.
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Proof. From equation (2.3), we have(
∇Uφ

)
V = g (φU, V ) ξ − η (V ) φU.

By swapping U and V , above equation becomes(
∇V φ

)
U = −g (φU, V ) ξ − η (U) φV.

Clubbing above two equations, we get(
∇Uφ

)
V +

(
∇V φ

)
U = −η (V ) φU − η (U) φV.

By using (2.16), we get
(3.5) − η (V ) φU − η (U) φV = 0.

By using (2.7) in above equation, then comparing the tangential and normal compo-
nents, we get the result. □

Theorem 3.3. Let M be a contact CR-submanifold of a Kenmotsu manifold M with
killing tensor field φ, then the induced structure p satisfies
(3.6) (∇Up)V + (∇V p)U = 0.

Proof. From (2.14), we have
(∇Up)V = −g (U, pV ) ξ − η (V ) pU.

By swapping U and V in above equation, we get
(∇V p)U = g (U, pV ) ξ − η (U) pV.

On clubbing above two equations, we have
(∇Up)V + (∇V p)U = −η (V ) pU − η (U) pV.

By using (3.3) in above equation, we get the result. □

Theorem 3.4. Let M be a contact CR-submanifold of a Kenmotsu manifold M
with killing tensor field φ. If second fundamental form h is parallel then contact
CR-submanifold M is a totally geodesic.

Proof. By swapping U and V in (2.15), we have
(3.7) (∇V p)U = bh (U, V ) − g (V, pU) ξ − η (U) pV.

Combining (2.15) and (3.7), we have
(∇Up)V + (∇V p)U = 2bh (U, V ) − η (V ) pU − η (U) pV.

Now, using (3.3) and (3.6), yields h (U, V ) = 0 for any U, V ∈ Γ(TM). □

Lemma 3.1. Let M be a contact CR-submanifold of a Kenmotsu manifold M with
killing tensor field φ, then
(3.8) AfV U + AfUV + 2bh (U, V ) = 0.
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Proof. By swapping U and V in (2.11), we have

(3.9) (∇V p)U = AfUV + bh (U, V ) + g (pV, U) ξ − η (U) pV.

On clubbing (2.11) and (3.9), we get

(∇Up)V + (∇V p)U =AfV U + AfUV + 2bh (U, V ) + g (pU, V ) ξ

+ g (pV, U) ξ − η (U) pV − η (V ) pU.

By using (2.9), it follows that

(∇Up)V + (∇V p)U = AfV U + AfUV + 2bh (U, V ) − η (U) pV − η (V ) pU.

Since p satisfies (3.3) and (3.6), we get the desired result. □

Proposition 3.1. Suppose M be a contact CR-submanifold of a Kenmotsu manifold
M with killing tensor field φ. Then M is anti-invariant submanifold in M if the
endomorphism p is parallel.

Proof. By interchanging U and V in (2.15), we get

(∇V p) U = bh (U, V ) + g (pV, U) ξ − η (U) pV,

for any U, V ∈ Γ(D).
Clubbing above equation with (2.15), we get

(∇Up) V + (∇V p) U = 2bh (U, V ) + g (pU, V ) ξ + g (pV, U) ξ − η (V ) pU − η (U) pV.

By using (2.9) and (3.6), above equation yields

2bh (U, V ) − η (V ) pU − η (U) pV = 0.

Setting V = ξ and taking into account (2.1) and (2.13), we get pU = 0, which
establishes our assertion. □

Proposition 3.2. Let M be a contact CR-submanifold of a Kenmotsu manifold M .
Then M is invariant (submanifold) in M if the endomorphism f is parallel.

Proof. By swapping U and V in (2.12), we get

(3.10) (∇V f) U = ch (U, V ) − h (V, pU) − η (U) fV,

for any U, V ∈ Γ(TM).
Clubbing (2.12) and (3.10), we get

(∇Uf) V + (∇V f) U = 2ch (U, V ) − h (U, pV ) − h (V, pU) − η (V ) fU − η (U) fV.

If f is parallel, then above equation becomes

2ch (U, V ) − h (U, pV ) − h (V, pU) − η (V ) fU − η (U) fV = 0.

Setting V = ξ and taking into account (2.1) and (2.13), it follows that fU = 0. □
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Lemma 3.2. Let M be a contact CR-submanifold of a Kenmotsu manifold M with
killing tensor field φ, then

(3.11) (∇Uf) V + (∇V f) U = 0
if and only if

(3.12) 2ch (U, V ) = h (U, pV ) + h (V, pU) .

Proof. Taking into consideration (2.12) and (3.10), we get
(∇Uf) V + (∇V f) U = 2ch (U, V ) − h (U, pV ) − h (V, pU) − η (V ) fU − η (U) fV.

By using (3.4), above equation yields
(∇Uf) V + (∇V f) U = 2ch (U, V ) − h (U, pV ) − h (V, pU) .

Hence, the result. □

4. Examples

In this section, we give a few examples of Kenmotsu manifolds with killing φ.

Example 4.1. Let us consider the three dimensional manifold M = {(x, y, z) ∈ R3, z ̸=
0}, where (x, y, z) are the standard coordinates in R3. Suppose metric g on M is
given by

g = η ⊗ η + e2z(dx ⊗ dx + dy ⊗ dy).
Now, we choose

e1 = e−z ∂

∂x
, e2 = e−z ∂

∂y
, e3 = ∂

∂z
= ξ.

The above vector fields are linearly independent at the each point of M such that
g(ei, ej) = 0 for i ̸= j and g(ei, ej) = 1 for i = j, for 1 ≤ i, j ≤ 3. The 1-form η is
given by η(U) = g(U, e3) for chosen U on M . Let φ be a tensor field of type (1, 1),
defined by φ(e1) = 0, φ(e2) = 0, φ(e3) = 0. Now, using the linearity property of φ
and g, we get

φ2U = −U + η(U)ξ, η(e3) = 1, g(φU, φV ) = g(U, V ) − η(U)η(V ),
for chosen vector fields U and V on M .

A simple computation yields,
∇e1e1 = − e3, ∇e1e2 = 0, ∇e1e3 = e1,

∇e2e1 =0, ∇e2e2 = −e3, ∇e2e3 = e2,

∇e3e1 =e1, ∇e3e2 = e2, ∇e3e3 = 0.

By using the above relations, it follows that the manifold satisfies the equation
∇Uξ = U − η (U) ξ for ξ = e3. Hence, the manifold is a Kenmotsu manifold. From
the above relations, we obtain the following equations
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(4.1)



(∇e1φ)e1 + (∇e1φ)e1 = 0, (∇e1φ)e2 + (∇e2φ)e1 = 0,

(∇e1φ)e3 + (∇e3φ)e1 = 0, (∇e2φ)e1 + (∇e1φ)e2 = 0,

(∇e2φ)e2 + (∇e2φ)e2 = 0, (∇e2φ)e3 + (∇e3φ)e2 = 0,

(∇e3φ)e1 + (∇e1φ)e3 = 0, (∇e3φ)e2 + (∇e2φ)e3 = 0,

(∇e3φ)e3 + (∇e3φ)e3 = 0.

From the equations (4.1), it follows that φ is the killing tensor field. Hence, the
manifold M is a Kenmotsu manifold with the killing tensor field φ. Moreover, we
have

(4.2)



∇e1φe1 − φ∇e1e1 + ∇e1φe1 − φ∇e1e1 = 0,

∇e1φe2 − φ∇e1e2 + ∇e2φe1 − φ∇e2e1 = 0,

∇e1φe3 − φ∇e1e3 + ∇e3φe1 − φ∇e3e1 = 0,

∇e2φe1 − φ∇e2e1 + ∇e1φe2 − φ∇e1e2 = 0,

∇e2φe2 − φ∇e2e2 + ∇e2φe2 − φ∇e2e2 = 0,

∇e2φe3 − φ∇e2e3 + ∇e3φe2 − φ∇e3e2 = 0,

∇e3φe1 − φ∇e3e1 + ∇e1φe3 − φ∇e1e3 = 0,

∇e3φe2 − φ∇e3e2 + ∇e2φe3 − φ∇e2e3 = 0,

∇e3φe3 − φ∇e3e3 + ∇e3φe3 − φ∇e3e3 = 0,

and

(4.3)



η(e1)φ(e1) + η(e1)φ(e1) = 0, η(e2)φ(e1) + η(e1)φ(e2) = 0,

η(e3)φ(e1) + η(e1)φ(e3) = 0, η(e1)φ(e2) + η(e2)φ(e1) = 0,

η(e2)φ(e2) + η(e2)φ(e2) = 0, η(e3)φ(e2) + η(e2)φ(e3) = 0,

η(e1)φ(e3) + η(e3)φ(e1) = 0, η(e2)φ(e3) + η(e3)φ(e2) = 0,

η(e3)φ(e3) + η(e3)φ(e3) = 0.

The equations (4.1) and (4.2) satisfy the equation (3.2) and the equations (4.1) and
(4.3) satisfy the equation (3.5).

Analogous to [14], we have the following example of five-dimensional Kenmotsu
manifold with the killing tensor field.

Example 4.2. Let us consider the five dimensional manifold M = {(x1, x2, x3, x4, v) ∈
R5, v ≠ 0}, where (x1, x2, x3, x4, v) are the standard coordinates in R5. Suppose metric
g on M is given by

g = η ⊗ η + e2v
4∑

i=1
dxi ⊗ dxi.

Now, we choose

e1 = e−v ∂

∂x1
, e2 = e−v ∂

∂x2
, e3 = e−v ∂

∂x3
, e4 = e−v ∂

∂x4
, e5 = ∂

∂v
= ξ.
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The above vector fields are linearly independent at the each point of M such that
g(ei, ej) = 0 for i ̸= j and g(ei, ej) = 1 for i = j, where i, j = 1, 2, 3, 4, 5. The 1-form
η is given by η(U) = g(U, e5) for chosen U on M . Let φ be a tensor field of type (1, 1),
defined by φ(e1) = 0, φ(e2) = 0, φ(e3) = 0, φ(e4) = 0, φ(e5) = 0.

Now, using the linearity property of φ and g, we have

φ2U = −U + η(U)ξ, η(e5) = 1, g(φU, φV ) = g(U, V ) − η(U)η(V ),

for chosen vector fields U and V on M .
A simple computation yields

∇e1e1 = − e5, ∇e1e2 = 0, ∇e1e3 = 0, ∇e1e4 = 0, ∇e1e5 = e1,

∇e2e1 =0, ∇e2e2 = −e5, ∇e2e3 = 0, ∇e2e4 = 0, ∇e2e5 = e2,

∇e3e1 =0, ∇e3e2 = 0, ∇e3e3 = −e5, ∇e3e4 = 0, ∇e3e5 = e3,

∇e4e1 =0, ∇e4e2 = 0, ∇e4e3 = 0, ∇e4e4 = −e5, ∇e4e5 = e4,

∇e5e1 =e1, ∇e5e2 = e2, ∇e5e3 = e3, ∇e5e4 = e4, ∇e5e5 = 0.

By using the above relations, it follows that the manifold satisfies the equation
∇Uξ = U − η (U) ξ for ξ = e5. Moreover, on the similar pattern of Example 4.1,
it follows that φ is a killing tensor field. Hence M is a five-dimensional Kenmotsu
manifold with the killing tensor field. Also, analogous to Example 4.1, it can be seen
that the equations (3.2) and (3.5) are satisfied.
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