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NECESSARY AND SUFFICIENT CONDITIONS FOR
OSCILLATIONS TO A SECOND-ORDER NEUTRAL

DIFFERENTIAL EQUATIONS WITH IMPULSES

ARUN KUMAR TRIPATHY1 AND SHYAM SUNDAR SANTRA2∗

Abstract. In this work, we obtain necessary and sufficient conditions for oscillation
of solutions of second-order neutral impulsive differential system

(
r(t)

(
z′(t)

)γ
)′

+
∑m

i=1 qi(t)xαi(σi(t)) = 0, t ≥ t0, t ̸= λk,

∆
(

r(λk)
(
z′(λk)

)γ
)

+
∑m

i=1 hi(λk)xαi(σi(λk)) = 0, k = 1, 2, 3, . . . ,

where z(t) = x(t) + p(t)x(τ(t)). Under the assumption
∫ ∞

0
(
r(η)

)−1/γ
dη = ∞, we

consider two cases when γ > αi and γ < αi. Our main tool is Lebesgue’s Dominated
Convergence theorem. Examples are given to illustrate our main results and we
state an open problem.

1. Introduction

In this article we consider the neutral impulsive differential system
(

r(t)
(
z′(t)

)γ
)′

+ ∑m
i=1 qi(t)xαi(σi(t)) = 0, t ≥ t0, t ̸= λk,

∆
(

r(λk)
(
z′(λk)

)γ
)

+ ∑m
i=1 hi(λk)xαi(σi(λk)) = 0, k = 1, 2, 3, . . . ,

(1.1)

where
z(t) = x(t) + p(t)x(τ(t)), ∆x(a) = lim

s→a+
x(s) − lim

s→a−
x(s),

the functions p, qi, hi, r, σi, τ are continuous that satisfy the conditions stated below
and assume that the sequence {λk} satisfies 0 < λ1 < λ2 < · · · λk < · · · as k → ∞
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and γ and αi are the quotient of two odd positive integers and λk’s are fixed moment
of impulsive effects..

(A1) σi ∈ C([0, ∞),R+), τ ∈ C2([0, ∞),R+), σi(t) < t, τ(t) < t, limt→∞ σi(t) = ∞,
limt→∞ τ(t) = ∞.

(A2) r ∈ C1([0, ∞),R+), qi, hi ∈ C([0, ∞),R+), 0 < r(t), 0 ≤ qi(t), 0 ≤ hi(t) for all
t ≥ 0 and i = 1, 2, . . . , m, ∑

qi(t) is not identically zero in any interval [b, ∞).
(A3)

∫ ∞
0 r−1/γ(s) ds = ∞ and let Π(t) =

∫ t
0 r−1/γ(η) dη.

(A4) −1 < −p0 ≤ p(t) ≤ 0 for t ≥ t0.
(A5) There exists a differentiable function σ0(t) such that 0 < σ0(t) = min{σi(t) :

t ≥ t∗} and σ′
0(t) ≥ α for t ≥ t∗, α > 0, i = 1, 2, . . . , m.

The main feature of this article is having conditions that are both necessary and
sufficient for the oscillation of all solutions to (1.1). Sufficient conditions for the
oscillation and nonoscillation of all solutions to the first and second order neutral
impulsive differential systems are provided in [12–15, 18–22]. The necessary and
sufficient conditions for oscillation of all solutions to the first order neutral impulsive
differential systems are discussed in [20,21]. In this work, our main aim is to present
the necessary and sufficient conditions for oscillation of all solutions of (1.1).

In 2011, Dimitrova and Donev [13–15] have considered the first order impulsive
differential system of the form

(
x(t) + p(t)x(τ(t))

)′
+ q(t)x(σ(t)) = 0, t ̸= λk, k ∈ N,

∆
(
x(λk) + p(λk)x(τ(λk))

)
+ q(λk)x(σ(λk)) = 0, k ∈ N,

(1.2)

and established several sufficient conditions for oscillation of the solutions of (1.2).
In 2014, Tripathy [19] have established sufficient conditions for oscillation of all

solutions of
(
x(t) + p(t)x(t − τ)

)′
+ q(t)f

(
x(t − σ)

)
= 0, t ̸= λk, k ∈ N,

∆
(
x(λk) + p(λk)x(τ(λk − τ))

)
+ q(λk)f

(
x(σ(λk − σ))

)
= 0, k ∈ N.

(1.3)

In 2015, Tripathy and Santra [20] obtained the necessary and sufficient conditions
for oscillatory and asymptotic behavior of solutions of

(
x(t) + p(t)x(t − τ)

)′
+ q(t)f

(
x(t − σ)

)
= g(t), t ̸= λk, k ∈ N,

∆
(
x(λk) + p(λk)x(λk − τ)

)
+ q(λk)f

(
x(λk − σ)

)
= h(λk), k ∈ N.

In 2016, Tripathy, Santra and Pinelas [21] obtained necessary and sufficient condi-
tions of (1.3). In the subsequent year, Tripathy and Santra [22] established sufficient
conditions for oscillation and existence of positive solutions of

(
r(t)

(
x(t) + p(t)x(t − τ)

)′)′
+ q(t)f

(
x(t − σ)

)
= 0, t ̸= λk, k ∈ N,

∆
(
r(λk)

(
x(λk) + p(λk)x(λk − τ)

)′)
+ q(λk)f

(
x(λk − σ)

)
= 0, k ∈ N.



SECOND-ORDER NEUTRAL DIFFERENTIAL EQUATIONS WITH IMPULSES 83

In 2018, Santra [18] established sufficient conditions for oscillations of solutions of
(
r(t)

(
x(t) + p(t)x(τ(t))

)′)′
+ q(t)f

(
x(σ(t))

)
= 0, t ̸= λk, k ∈ N,

∆
(
r(λk)

(
x(λk) + p(λk)x(τ(λk))

)′)
+ q(λk)f

(
x(σ(λk))

)
= 0, k ∈ N.

By a solution x we mean a function differentiable on [t0, ∞) such that z(t) and z′(t)
are differentiable for t ̸= tk, and z(t) is left continuous at λk and has right limit at λk,
and x satisfies (1.1). We restrict our attention to solutions for which supt≥b |x(t)| > 0
for every b ≥ 0. A solution is called oscillatory it has arbitrarily large zeros; otherwise
is non-oscillatory.

To define a particular solution, we need an initial function ϕ(t) which is twice
differentiable for t in the interval

min
{

inf{τ(t) : t0 ≤ t}, inf{σi(t) : t0 ≤ t, i = 1, 2, . . . , m}
}

≤ t.

Then a solution is obtained using the method of steps: When replacing x(τ(t)) by
ϕ(τ(t)), and x(σi(t)) by ϕ(σi(t)) in (1.1), we obtain a second-order differential equation.
We solve this equation taking into account discrete equation of (1.1), say on an interval
[t0, t1]. Then repeat the process starting at t = t1.

2. Necessary and Sufficient Conditions

Lemma 2.1. Assume that (A1)-(A4) hold for t ≥ t0. If x is an eventually positive
solution of (1.1), then z satisfies any one of the following two cases:

(i) z(t) < 0, z′(t) > 0,
(
r(z′)γ

)′
(t) ≤ 0;

(ii) z(t) > 0, z′(t) > 0,
(
r(z′)γ

)′
(t) ≤ 0,

for all sufficiently large t.

Proof. Let x be an eventually positive solution. Then by (A1) there exists a t∗ such
that x(t) > 0, x(τ(t)) > 0 and x(σi(t)) > 0 for all t ≥ t∗ and i = 1, 2, . . . , m. From
(1.1) it follows that(

r(t)
(
z′(t)

)γ
)′

= −
m∑

i=1
qi(t)xαi(σi(t)) ≤ 0, for t ̸= λk,

∆
(

r(λk)
(
z′(λk)

)γ
)

= −
m∑

i=1
hi(λk)xαi(σi(λk)) ≤ 0, for k = 1, 2, . . .

(2.1)

Therefore, r(t)
(
z′(t)

)γ
is non-increasing for t ≥ t∗, including jumps of discontinuity.

Next we show the r(t)
(
z′(t)

)γ
is positive. By contradiction assume that r(t)

(
z′(t)

)γ
≤

0 at a certain time t ≥ t∗. Using that ∑
qi is not identically zero on any interval

[b, ∞), and by (2.1), there exists t2 ≥ t∗ such that

r(t)
(
z′(t)

)γ
≤ r(t2)

(
z′(t2)

)γ
< 0, for all t ≥ t2.
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Recall that γ is the quotient of two positive odd integers. Then

z′(t) ≤
(

r(t2)
r(t)

)1/γ

z′(t2), for t ≥ t2.

Since r(λk)
(
z′(λk)

)γ
≤ r(t2)

(
z′(t2)

)γ
< 0 for all λk ≥ t2. Integrating from t2 to t, we

have

z(t) ≤ z(t2) +
∑

t2≤λk<∞
z′(λk) +

(
r(t2)

)1/γ
z′(t2)

(
Π(t) − Π(t2)

)
≤ z(t2) +

(
r(t2)

)1/γ
z′(t2)

(
Π(t) − Π(t2)

)
→ −∞,

as t → ∞ due to (A3). Now, we consider the following two possibilities.
If x is unbounded, then there exists a sequence {ηk} → ∞ such that x(ηk) =

sup{x(η) : η ≤ ηk}. By τ(ηk) ≤ ηk, we have x(τ(ηk)) ≤ x(ηk) and hence

z(ηk) = x(ηk) + p(ηk)x(τ(ηk)) ≥ (1 + p(ηk))x(ηk) ≥ (1 − p0))x(ηk) ≥ 0,

which contradicts limk→∞ z(t) = −∞. Recall that {λk} are the sequence of points for
t ≥ λk, then by similar argument we can show that z(λk) ≥ 0 to get a contradiction
to limk→∞ z(t) = −∞. Therefore, r(t)

(
z′(t)

)γ
> 0 for all t ≥ t∗.

If x is bounded, then z is also bounded, which is a contradiction to limk→∞ z(t) =
−∞.

From r(t)
(
z′(t)

)γ
> 0 and r(t) > 0, it follows that z′(t) > 0. Then there is t1 ≥ t∗

such that z satisfies only one of two cases (i) and (ii). This completes the proof. □

Lemma 2.2. Assume that (A1)-(A4) hold. If x is an eventually positive solution of
(1.1), then any one of following two cases exists:

(1) if z satisfies (i), limt→∞ x(t) = 0;
(2) if z satisfies (ii), there exist t1 ≥ t0 and δ > 0 such that

0 <z(t) ≤ δΠ(t),(2.2) (
Π(t) − Π(t1)

)[ ∫ ∞

t

m∑
i=1

qi(ζ)xαi(σi(ζ)) dζ +
∑

λk≥t

m∑
i=1

hi(λk)xαi(σi(λk))
]1/γ

(2.3)

≤z(t) ≤ x(t),

for all t ≥ t1.

Proof. Let x be an eventually positive solution. Then by (A1) there exists a t∗ such
that x(t) > 0, x(τ(t)) > 0 and x(σi(t)) > 0 for all t ≥ t∗ and i = 1, 2, . . . , m. Then
Lemma 2.1 holds and we have following two possible cases.
Case 1. Let z satisfies (i) for all t ≥ t1. Note that limt→∞ z(t) exists and by (A1),
lim supt→∞ x(t) = lim supt→∞ x(τ(t)). Then 0 > z(t) ≥ x(t) − p0x(τ(t)) implies

0 ≥ lim
t→∞

z(t) ≥ lim
t→∞

[
x(t) − p0x(τ(t))

]
≥ (1 − p0) lim sup

t→∞
x(t).



SECOND-ORDER NEUTRAL DIFFERENTIAL EQUATIONS WITH IMPULSES 85

Since (1 − p0) > 0, it follows that lim supt→∞ x(t) = 0, hence limt→∞ x(t) = 0 for
t ̸= λk, k ∈ N. We may note that {x(λk − 0)}k∈N and {x(λk + 0)}k∈N are sequences
of real numbers and because of continuity of x

lim
k→∞

x(λk − 0) = 0 = lim
k→∞

x(λk + 0)

due to lim inft→∞ x(t) = 0 = lim supt→∞ x(t). Hence, limt→∞ x(t) = 0 for all t and λk,
k ∈ N.
Case 2. Let z satisfies (ii) for all t ≥ t1. Note that x(t) ≥ z(t) and z is positive and
increasing so x cannot converge to zero. From r(t)

(
z′(t)

)γ
being non-increasing, there

exists a constant δ > 0 and t ≥ t1 such that
(
r(t)

)1/γ
z′(t) ≤ δ and hence z(t) ≤ δΠ(t)

for t ≥ t1.
Since r(t)

(
z′(t)

)γ
is positive and non-increasing, limt→∞ r(t)

(
z′(t)

)γ
exists and is

non-negative. Integrating (1.1) from t to a, we have

r(a)
(
z′(a)

)γ
− r(t)

(
z′(t)

)γ
= −

∫ a

t

m∑
i=1

qi(η)xαi(σi(η)) dη +
∑

t≤λk<a

∆
(
r(λk)z′(λk)

)γ
.

Computing the limit as a → ∞

r(t)
(
z′(t)

)γ
≥

∫ ∞

t

m∑
i=1

qi(η)xαi(σi(η)) dη +
∑

λk≥t

m∑
i=1

hi(λk)xαi(σi(λk)).(2.4)

Then

z′(t) ≥
[ 1
r(t)

[ ∫ ∞

t

m∑
i=1

qi(η)xαi(σi(η)) dη +
∑

t≤λk

m∑
i=1

hi(λk)xαi(σi(λk))
]]1/γ

.

Since z(t1) > 0, integrating the above inequality yields

z(t) ≥
∫ t

t1

[ 1
r(η)

[ ∫ ∞

η

m∑
i=1

qi(ζ)xαi(σi(ζ)) dζ +
∑

η≤λk

m∑
i=1

hi(λk)xαi(σi(λk))
]]1/γ

dη.

Since the integrand is positive, we can increase the lower limit of integration from η
to t, and then use the definition of Π(t), to obtain

z(t) ≥
(
Π(t) − Π(t1)

)[ ∫ ∞

t

m∑
i=1

qi(ζ)xαi(σi(ζ)) dζ +
∑

t≤λk

m∑
i=1

hi(λk)xαi(σi(λk))
]1/γ

,

which yields (2.3). □

2.1. The Case αi < γ. In this subsection, we assume that there exists a constant β1,
the quotient of two positive odd integers such that 0 < αi < β1 < γ.

Theorem 2.1. Under assumptions (A1)-(A4), each solution of (1.1) is either oscil-
latory or converge to zero if and only if∫ ∞

0

m∑
i=1

qi(η)Παi(σi(η)) dη +
∞∑

k=1

m∑
i=1

hi(λk)Παi(σi(λk)) = ∞.(2.5)
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Proof. We prove the sufficiency by contradiction. Initially, we assume that a solution
x is eventually positive which does not converge to zero. So, Lemma 2.1 holds
and z satisfies any one of two cases (i) and (ii). In Lemma 2.2, Case 1 leads to
limt→∞ x(t) = 0 which is a contradiction.

For Case 2, we can find a t1 > 0 such that

x(t) ≥ z(t) ≥
(
Π(t) − Π(t1)

)
w1/γ(t) ≥ 0, for t ≥ t1,

where

w(t) =
∫ ∞

t

m∑
i=1

qi(ζ)xαi(σi(ζ)) dζ +
∑

λk≥t

m∑
i=1

hi(λk)xαi(σi(λk)) ≥ 0.

As limt→∞ Π(t) = ∞, there exists t2 ≥ t1, such that Π(t) − Π(t1) ≥ 1
2Π(t) for t ≥ t2

and hence

z(t) ≥ 1
2Π(t)w1/γ(t).(2.6)

Note that w is left continuous at λk,

w′(t) = −
m∑

i=1
qi(t)xαi(σi(t)), for t ̸= λk,

∆w(λk) = −
m∑

i=1
hi(λk)xαi(σi(λk)) ≤ 0.

Thus w is non-negative and non-increasing for t ≥ t2. Using (2.2), αi − β1 < 0 and
(2.6), we have

xαi(t) ≥ zαi−β1(t)zβ1(t) ≥ (δΠ(t))αi−β1zβ1(t)

≥
(
δΠ(t)

)αi−β1
(Π(t)w1/γ(t)

2

)β1

= δαi−β1

2β1
Παi(t)wβ1/γ(t), for t ≥ t2.

Since w is non-increasing, β1
γ

> 0, and σi(η) < η, it follows that

xαi(σi(η)) ≥ δαi−β1

2β1
Παi(σi(η))wβ1/γ(σi(η)) ≥ δαi−β1

2β1
Παi(σi(η))wβ1/γ(η).(2.7)

Now, we have(
w1−β1/γ(t)

)′
=

(
1 − β1

γ

)
w−β1/γ(t)

(
−

m∑
i=1

qi(t)xαi(σi(t))
)

, for t ̸= λk.(2.8)

To estimate the discontinuities of w1−β1/γ we use a Taylor polynomial of order 1 for
the function h(x) = x1−β1/γ, with 0 < β1 < γ about x = a

b1−β1/γ − a1−β1/γ ≤
(

1 − β1

γ

)
a−β1/γ(b − a).
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Then ∆w1−β1/γ(λk) ≤
(
1 − β1

γ

)
w−β1/γ(λk)∆w(λk). Integrating (2.8) from t2 to t, we

have

w1−β1/γ(t2) ≥
(

1 − β1

γ

) −
∫ t

t2
w−β1/γ(η)w′(η) dη −

∑
t2≤λk<t

w−β1/γ(λk)∆w(λk)


=
(

1 − β1

γ

) ∫ t

t2
w−β1/γ(η)

( m∑
i=1

qi(η)xαi(σi(η))
)

dη

+
∑

t2≤λk<t

w−β1/γ(λk)
m∑

i=1
hi(λk)xαi(σi(λk))


≥

1 − β1
γ

2β1δ(β1−αi)

 ∫ t

t2

m∑
i=1

qi(η)Παi(σi(η))) dη +
∑

t2≤λk<t

m∑
i=1

hi(λk)Παi(σi(λk)))
,

(2.9)

which contradicts (2.5) as t → ∞ and completes the proof of sufficiency for eventually
positive solutions.

For an eventually negative solution x, we introduce the variables y = −x so that
we can apply the above process for the solution y.

Next we show the necessity part by a contrapositive argument. Let (2.5) do not
hold. Then it is possible to find t1 > 0 such that∫ ∞

η

m∑
i=1

qi(ζ)Παi(σi(ζ)) dζ +
∑

λk≥η

m∑
i=1

hi(λk)Παi(σi(λk)) ≤ ϵ

δαi
,(2.10)

for all η ≥ t1 and δ, ϵ > 0 satisfying the relation

(2ϵ)1/γ = (1 − p0)δ,(2.11)

so that 0 < ϵ1/γ ≤ (1 − p0)δ/21/γ < δ. Define the set of continuous functions

M = {x ∈ C([0, ∞)) : ϵ1/γ
(
Π(t) − Π(t1)

)
≤ x(t) ≤ δ

(
Π(t) − Π(t1)

)
, t ≥ t1},

and define an operator Φ on M by

(Φx)(t) =



0, if t ≤ t1,

−p(t)x(τ(t)) +
∫ t

t1

[ 1
r(η)

[
ϵ +

∫ ∞

η

m∑
i=1

qi(ζ)xαi(σi(ζ)) dζ

+
∑

λk≥η

m∑
i=1

hi(λk)xαi(σi(λk))
]]1/γ

dη, if t > t1.

We need to show that if x is a fixed point of Φ, i.e., Φx = x, then x is a solution of
(1.1).
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First we estimate (Φx)(t) from below. For x ∈ M , we have 0 ≤ ϵ1/γ
(
Π(t)−Π(t1)

)
≤

x(t) and by (A2) and (A3) we have

(Φx)(t) ≥ 0 +
∫ t

t1

[ 1
r(η) [ϵ + 0 + 0]

]1/γ

dη = ϵ1/γ
(
Π(t) − Π(t1)

)
.

Now we estimate (Φx)(t) from above. For x in M , by definition of the set M we
have xαi(σi(η)) ≤ (δΠ(σi(η)))αi . Therefore, by (2.10),

(Φx)(t) ≤p0δ(Π(t) − Π(t1)) +
∫ t

t1

[ 1
r(η)

[
ϵ + δαi

∫ ∞

η

m∑
i=1

qi(ζ)Παi(σi(ζ)) dζ

+ δαi
∑

λk≥η

m∑
i=1

hi(λk)Παi(σi(λk))
]]1/γ

dη

≤p0δ
(
Π(t) − Π(t1)

)
+ (2ϵ)1/γ

(
Π(t) − Π(t1)

)
= δ

(
Π(t) − Π(t1)

)
.

Therefore, Φ maps M to M .
To find a fixed point for Φ in M , let us define a sequence of functions in M by the

recurrence relation
u0(t) =0, for t = 0,

u1(t) =(Φu0)(t) =

0, if t < t1,

ϵ1/γ
(
Π(t) − Π(t1)

)
, if t ≥ t1,

un+1(t) =(Φun)(t), for n ≥ 1, t ≥ t1.

Note that for each fixed t, we have u1(t) ≥ u0(t). Using mathematical induction, we
can show that un+1(t) ≥ un(t). Therefore, the sequence {un} converges pointwise to
a function u. Using the Lebesgue Dominated Convergence Theorem, we can show
that u is a fixed point of Φ in M . This shows under assumption (2.10), there a
non-oscillatory solution that does not converge to zero. □

Corollary 2.1. Under the assumptions of Theorem 2.1, every unbounded solution of
(1.1) is oscillatory if and only if (2.5) holds.

Proof. The proof of the corollary is an immediate consequence of Theorem 2.1. □

2.2. The Case αi > γ. In this subsection, we assume that there exists a constant β2,
the quotient of two positive odd integers such that γ < β2 < αi.

Theorem 2.2. Under assumptions (A1)-(A5) and r(t) is non-decreasing, every solu-
tion of (1.1) is either oscillatory or converges to zero if and only if∫ ∞

0

[ 1
r(η)

[ ∫ ∞

η

m∑
i=1

qi(ζ) dζ +
∞∑

k=1

m∑
i=1

hi(λk)
]]1/γ

dη = ∞.(2.12)

Proof. We prove the sufficiency by contradiction. Initially, we assume that x is an
eventually positive solution not converging to zero. So, Lemma 2.1 holds and z satisfies
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any one of two cases (i) and (ii). In Lemma 2.2, Case 1 leads to limt→∞ x(t) = 0,
which is a contradiction.

For Case 2, z(t) > 0 is non-decreasing for t ≥ t1 and

xαi(t) ≥ zαi(t) ≥ zαi−β2(t)zβ2(t) ≥ zαi−β2(t1)zβ2(t)

implies that

xαi(σi(t)) ≥ zαi−β2(t1)zβ2(σi(t)), for t ≥ t2 > t1.(2.13)

Using (2.4), (2.13) and σi(t) ≥ σ0(t), we have

r(t)
(
z′(t)

)γ
≥ zαi−β2(t1)

 ∫ ∞

t

m∑
i=1

qi(η) dη +
∑

λk≥t

m∑
i=1

hi(λk)
zβ2(σ0(t)),(2.14)

for t ≥ t2. Being r(t)
(
z′(t)

)γ
non-increasing and σ0(t) ≤ t, we have

r(σ0(t))
(
z′(σ0(t))

)γ
≥ r(t)

(
z′(t)

)γ
.

Using the last inequality in (2.14) and then dividing by zβ2/γ(σ0(t)) > 0, we get

z′(σ0((t))
zβ2/γ(σ0(t))

≥

zαi−β2(t1)
r(σ0(t))

 ∫ ∞

t

m∑
i=1

qi(η) dη +
∑

λk≥t

m∑
i=1

hi(λk)
1/γ

,

for t ≥ t2. Multiplying the left-hand side by σ′
0(t)/α ≥ 1 and integrating from t2 to t,

we find

1
α

∫ t

t2

z′(σ0(η))σ′
0(η)

zβ2/γ(σ0(η)) dη ≥z(αi−β2)/γ(t1)
∫ t

t2

 1
r(σ0(η))

 ∫ ∞

η

m∑
i=1

qi(ζ) dζ

+
∑

η≤λk

m∑
i=1

hi(λk)
1/γ

dη, for t ≥ t2.

(2.15)

Since γ < β2, r(σ0(η)) ≤ r(η) and

1
α(1 − β2/γ)

[
z1−β2/γ(σ0(η))

]t

η=t2

≤ 1
α(β2/γ − 1)z1−β2/γ(σ0(t2)),

then (2.15) becomes

∫ t

t2

 1
r(η)

 ∫ ∞

η

m∑
i=1

qi(ζ) dζ +
∑

η≤λk

m∑
i=1

hi(λk)
1/γ

dη < ∞,

which is a contradiction to (2.12). This contradiction implies that the solution x cannot
be eventually positive. The case with an eventually negative solution is proved.
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To prove the necessity part, we assume that (2.12) does not hold. For given
ϵ =

(
2/(1 − p0)

)−αi/γ
> 0, we can find a t1 > 0 such that

∫ ∞

t1

 1
r(η)

 ∫ ∞

η

m∑
i=1

qi(ζ) dζ +
∑

λk≥s

m∑
i=1

hi(λk)
1/γ

dη < ϵ.(2.16)

Consider
M =

{
x ∈ C([0, ∞)) : 1 ≤ x(t) ≤ 2

1 − p0
for t ≥ t1

}
.

Define the operator

(Φx)(t) =



0, if t < t1,

1 − p(t)x(τ(t))

+
∫ t

t1

[ 1
r(η)

[ ∫ ∞

η

m∑
i=1

qi(ζ)xαi(σi(ζ)) dζ

+
∑

λk≥η

m∑
i=1

hi(λk)xαi(σi(λk))
]]1/γ

dη, if t ≥ t1.

Indeed, Φx = x implies that x is a solution of (1.1).
First we estimate (Φx)(t) from below. Let x ∈ M . Then 1 ≤ x implies that

(Φx)(t) ≥ 1, on [t1, ∞). Estimating (Φx)(t) from above. Let x ∈ M . Then x ≤
2/(1 − p0) and thus

(Φx)(t) ≤1 − p(t) 2
1 − p0

+
∫ t

t1

 1
r(η)

 ∫ ∞

η

m∑
i=1

qi(ζ)
( 2

1 − p0

)αi

dζ

+
∑

λk≥η

m∑
i=1

hi(λk)
( 2

1 − p0

)αi

1/γ

dη.

Since σ0(η) ≤ η and r(·) is non-decreasing, we can replace r(η) by r(σ0(η)) and the
above inequality is still valid. By (2.16) and the definition of ϵ, we have

(Φx)(t) ≤ 1 + 2p0

1 − p0
+

(
2/(1 − p0)

)αi/γ
ϵ = 1 + 2p0

1 − p0
+ 1 = 2

1 − p0
.

Therefore, Φ maps M to M .
To find a fixed point for Φ in M , we define a sequence of functions by the recurrence

relation
u0(t) =0, for t = 0,

u1(t) =(Φu0)(t) = 1, for t ≥ t1,

un+1(t) =(Φun)(t), for n ≥ 1, t ≥ t1.

Note that for each fixed t, we have u1(t) ≥ u0(t). Using that f is non-decreasing
and mathematical induction, we can prove that un+1(t) ≥ un(t). Therefore, {un}
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converges pointwise to a function u in M . Then u is a fixed point of Φ and a positive
solution to (1.1) that does not converge to zero. □

Corollary 2.2. Under the assumptions of Theorem 2.2, every unbounded solution of
(1.1) is oscillatory if and only if (2.12) hold.

Example 2.1. Consider the neutral differential equation


(

e−t
((

x(t) − e−tx(τ(t))
)′)11/3

)′
+ 1

t+1(x(t − 2))1/3 + 1
t+2(x(t − 1))5/3 = 0,(

e−k
((

x(k) − e−kx(τ(k))
)′)11/3

)′
+ 1

t+4(x(k − 2))1/3 + 1
t+5(x(k − 1))5/3 = 0.

(2.17)

Here γ = 11/3, r(t) = e−t, −1 < p(t) = −e−t ≤ 0, σ1(t) = t − 2, σ2(t) = t − 1, λk = k

for k ∈ N, Π(t) =
∫ t

0 e11s/3 ds = 3
11

(
e11t/3 − 1

)
, α1 = 1/3 and α2 = 5/3. For β1 = 7/3,

we have 0 < max{α1, α2} < β1 < γ, and uαi−β1 = u−2 and uα2−β1 = u−2/3 which both
are decreasing functions. To check (2.5) we have

∫ ∞

0

m∑
i=1

qi(η)Παi(σi(η)) dη +
∞∑

k=1

m∑
i=1

hi(λk)Παi(σi(λk))

≥
∫ ∞

0

m∑
i=1

qi(s)Παi(σi(η))) dη

≥
∫ ∞

0
q1(η)Παi(σ1(η))) dη

=
∫ ∞

0

1
η + 1

( 3
11

(
e5(η−2)/3 − 1

))1/3
dη = ∞,

since the integral approaches +∞ as η → +∞. So, all the conditions of Theorem 2.1
hold, and therefore, each solution of (2.17) is oscillatory or converges to zero.

Example 2.2. Consider the neutral differential equation


(((

x(t) − e−tx(τ(t))
)′)1/3

)′
+ t(x(t − 2))7/3 + (t + 1)(x(t − 1))11/3 = 0,(((

x(2k) − e−2k
x(τ(2k))

)′)1/3
)′

+ t
2(x(2k − 2))7/3 + t

3(x(2k − 1))11/3 = 0.

(2.18)

Here γ = 1/3, r(t) = 1, σ1(t) = t − 2, σ2(t) = t − 1, α1 = 7/3 and α2 = 11/3. For
β2 = 5/3, we have min{α1, α2} > β2 > γ and uα1−β2 = u2/3 and uα2−β2 = u2, which
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both are increasing functions. To check (2.12) we have∫ ∞

t1

[ 1
r(η)

[ ∫ ∞

η

m∑
i=1

qi(ζ) dζ +
∑

λk≥η

m∑
i=1

hi(λk)
]]1/γ

dη

≥
∫ ∞

t0

[ 1
r(η)

[ ∫ ∞

η

m∑
i=1

qi(ζ) dζ
]]1/γ

dη

≥
∫ ∞

t0

[ 1
r(η)

[ ∫ ∞

η
q1(ζ) dζ

]]1/γ

dη ≥
∫ ∞

2

[ ∫ ∞

η
ζ dζ

]3
dη = ∞.

So, all the conditions of of Theorem 2.2 hold. Thus, all solution of (2.18) is oscillatory
or converges to zero.

Remark 2.1. Based on this work and [13–15,18–22] an open problem that arises is to
establish necessary and sufficient conditions for the oscillation of the solutions of the
second-order nonlinear neutral differential equation (1.1) for p > 0 and −∞ < p ≤ −1.
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