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q-LAPLACE TRANSFORM ON QUANTUM INTEGRAL

NECMETTIN ALP1 AND MEHMET ZEKI SARIKAYA2

Abstract. In this paper, we present q-Laplace transform by q-integral definition on
quantum analogue. We present some properties and obtain formulaes of q-Laplace
transform with its aplications.

1. Introduction

Quantum calculus is the modern name for the investigation of calculus without
limits. The quantum calculus or q-calculus began with FH Jackson in the early
twentieth century, but this kind of calculus had already been worked out by Euler and
Jacobi. Recently it arose interest due to high demand of mathematics that models
quantum computing. q-calculus appeared as a connection between mathematics and
physics. It has a lot of applications in different mathematical areas such as number
theory, combinatorics, orthogonal polynomials, basic hyper-geometric functions and
other sciences quantum theory, mechanics and the theory of relativity.

There are many of the fundamental aspects of quantum calculus. It has been
shown that quantum calculus is a subfield of the more general mathematical field of
time scales calculus. Time scales provide a unified framework for studying dynamic
equations on both discrete and continuous domains.

In 2017, Alp and Sarikaya [1] gave a new defination of q-integral which is showed
q-integral.

The aim of this paper present Laplace transform on q-integral. In second section we
give notations and preliminaries for q-analogue. In third section we give definition of
Laplace transform on q-integral and obtain some auxiliary results. In fourth section
we calculate q-Laplace transforms of functions and some properties of q-Laplace
transform.
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Now remember following Laplace transform on classical analysis.
For t > 0 Laplace transform of f(t) is defined as

(1.1) L {f(t)} = F (s) =
∞∫

0

e−stf(t)dt = lim
A→∞

A∫
0

e−stf(t)dt.

We say that transform converges if the limit exists, and diverges if not.

2. Notations and Preliminaries

In this section, first we give definition and notations of q-analogue with q-derivates
then definition and properties of q-integral. For 0 < q < 1 here and further we use
the following notations [3, 4]:

(2.1) [n]q = 1 − qn

1 − q
= 1 + q + q2 + · · · + qn−1,

(x − a)n
q =

n−1∏
i=0

(
x − qia

)
= (x − a) (x − qa)

(
x − q2a

)
· · ·

(
x − qn−1a

)
, n ∈ Z+,

(2.2)

(a : q)0 =1,

(1 − a)n
q = (a : q)n =

n

Π
i=0

(
1 − qia

)
,

(1 − a)∞
q = (a : q)∞ =

∞
Π

i=0

(
1 − qia

)
,

(2.3)

(1 − a)n
q =

(1 − a)∞
q

(1 − qna)∞
q

= (a : q)∞
(qna : q)∞

, n ∈ C.

(2.4)

Notice that, under our assumptions on q, the infinite product (2.3) is convergent.
Moreover, the definitions (2.2) and (2.4) are consistent.

Definition 2.1. In [2], for f has Dn
q f (a) , Jackson introduced the following q-

counterpart of Taylor series:

(2.5) f (x) =
∞∑

n=0

(1 − q)n

(q; q)n

Dn
q f (a) (x − a)n

q =
∞∑

n=0

Dn
q f (a) (x − a)n

q

[n]q!
,

Dq is the q-difference operator.

Here Ex
q and ex

q are two q-analogues of the exponential functions and their q-Taylor
series ([4]):

Ex
q =

∞∑
n=0

q
n(n−1)

2
xn

[n]q!
= (1 + (1 − q) x)∞

q = ((q − 1) x : q)∞ ,(2.6)
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ex
q =

∞∑
n=0

xn

[n]q!
= 1

(1 − (1 − q) x)∞
q

= 1
((1 − q) x : q)∞

.(2.7)

Lemma 2.1 ([4]). The q-exponential functions satisfy the following properties:
ex

q E−x
q =Ex

q e−x
q = 1, Ex

q = ex
1/q.

For E−x
q = 1

ex
q

we have

lim
x→∞

E−x
q = lim

x→∞

1
ex

q

= 0.

Let J := [a, b] ⊂ R, J◦ := (a, b) be interval and 0 < q < 1 be a constant. Definiton of
q-derivative of a function f : J → R at a point x ∈ J on [a, b] as follows.

Definition 2.2 ([5]). Assume f : J → R is a continuous function and let x ∈ J .
Then the expression

aDqf (x) =f (x) − f (qx + (1 − q) a)
(1 − q) (x − a) , x ̸= a,(2.8)

aDqf (a) = lim
x→a

aDqf (x) ,

is called the q-derivative on J of function f at x.

We say that f is q-differentiable on J provided aDqf (x) exists for all x ∈ J . Note
that if a = 0 in (2.8), then aDqf = Dqf , where Dq is the well-known q-derivative of
the function f (x) defined by

aDqf (x) = f (x) − f (qx)
(1 − q) x

.

For more details, see [4].

Lemma 2.2 ([5]). Let α ∈ R, then we have

(2.9) aDq (x − a)α = [α]q (x − a)α−1 .

The following definitions and theorems with respect to q-integral were referred in
[1, page 148].

Definition 2.3. Let f : J → R is continuous function. For 0 < q < 1

(2.10)
b∫

a

f (s) adqs = (1 − q) (b − a)
2q

[
(1 + q)

∞∑
n=0

qnf (qnb + (1 − qn) a) − f (b)
]

,

which second sense quantum integral definition that call q-integral for x ∈ J.

Moreover, if c ∈ (a, x) then the definite q-integral on J is defined by
x∫

c

f (s) adqs(2.11)
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=
x∫

a

f (s) adqs −
c∫

a

f (s) adqs

=(1 − q) (x − a)
2q

[
(1 + q)

∞∑
n=0

qnf (qnx + (1 − qn) a) − f (x)
]

− (1 − q) (c − a)
2q

[
(1 + q)

∞∑
n=0

qnf (qnc + (1 − qn) a) − f (c)
]

.

Theorem 2.1 ([1]). Let f : J → R be a continuous function. Then we have the
following properties of q-integral

i)

aDq

x∫
a

f (s) adqs = f (x) + f (qx + (1 − q) a)
2 ;

ii)
1∫

0

f (sb + (1 − s) a) 0dqs = 1
b − a

b∫
a

f (t) adqt;

iii)
x∫

c

aDqf (s) adqs

=qf (x) + f (qx + (1 − q) a) − qf (c) − f (qc + (1 − q) a)
2q

, for c ∈ (a, x) ;

iv)
x∫

a

[f (s) + g (s)] adqs =
x∫

a

f (s) adqs +
x∫

a

g (s) adqs;

v)
x∫

a

(αf) (s) adqs = α

x∫
a

f (s) adqs, α ∈ R;

vi) partial integration property:
x∫

c

f (s) aDqg (s) adqs(2.12)

= qf (s) g (s) + f (qs + (1 − q) a) g (qs + (1 − q) a)
2q

∣∣∣∣∣
x

c

−
x∫

c

g (qs + (1 − q) a) aDqf (s) adqs;
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vii)
x∫

a

(s − a)α
adqs = 1

[α + 1]q

(1 + qα

2

)
(x − a)α+1 .

3. Auxiliary Results

For using in further theorems lets give an example on q-derivative.

Example 3.1. For s > 0, t ∈ R, we have
DqE

−st
q = − sE−qst

q ,(3.1)
DqE

−qst
q = − qsE−q2st

q .

Proof. By using q-derivative and (2.6), we obtain that:

DqE
−st
q =Dq

1 +
∞∑

n=1

(−1)n q
n(n−1)

2

[n]q!
(st)n


=

∞∑
n=1

(−1)n q
n(n−1)

2 sn

[n]q!
Dqt

n

=
∞∑

n=1

(−1)n q
n(n−1)

2 sn

[n − 1]q!
tn−1

=
∞∑

n=0

(−1)n+1 q
n(n+1)

2 sn+1

[n]q!
tn

= − s
∞∑

n=0

(−1)n q
n(n−1)

2

[n]q!
(qst)n

= − sE−qst
q

and in the same way we have
DqE

−qst
q = −qsE−q2st

q

and the proof is completed. □

Now we present q-Laplace transform on q-integral below.

Definition 3.1. Let s > 0 and f : [0, ∞) → R be a function. Then the q-Laplace
transform is defined by

(3.2) Lq {f(t)} = F (s) =
∞∫

0

f (t) E−qst
q dqt.

Assume f, g are two functions and α, β ∈ C by using (3.2) linearity property of
q-Laplace transform is written as follow:

Lq {αf(t) + βg(t)} = αLq {f(t)} + βLq {g(t)} .
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4. q-Laplace Transform of Functions

In this section, we proved q-Laplace transform of functions and n degrees of quantum
derivative function. Let’s first calculate the q-Laplace transformation of the constant
function as below.

Theorem 4.1. The q-Laplace transform of function f(t) = 1 is

Lq {1} = F (s) = 1 + q

2q
· 1

s
.

Proof. From definition of q-Laplace transform, it follows that

F (s) = Lq {1} = lim
α→∞

α∫
0

E−qst
q dqt =

∞∫
0

E−qst
q dqt.

Then calculate above integral by using the q-integral, we have
α∫

0

E−qst
q dqt

=
α∫

0

∞∑
n=0

(−1)n q
n(n−1)

2

[n]q!
(qst)n dqt

=
∞∑

n=0

(−1)n q
n(n−1)

2 (qs)n

[n]q!

α∫
0

tndqt

=
∞∑

n=0

(−1)n q
n(n−1)

2 (qs)n

[n]q!
· 1 + qn

2 [n + 1]q
αn+1

=
∞∑

n=0

(−1)n q
n(n−1)

2 (qs)n

2 [n + 1]q!
αn+1 +

∞∑
n=0

(−1)n q
n(n−1)

2 (qs)n qn

2 [n + 1]q!
αn+1

= − 1
2s

∞∑
n=0

(−1)n+1 q
n(n+1)

2

[n + 1]q!
(sα)n+1 − 1

2qs

∞∑
n=0

(−1)n+1 q
n(n+1)

2

[n + 1]q!
(qsα)n+1

= − 1
2s

∞∑
n=1

(−1)n q
n(n−1)

2

[n]q!
(sα)n − 1

2qs

∞∑
n=1

(−1)n q
n(n−1)

2

[n]q!
(qsα)n

= − 1
2s

∞∑
n=0

(−1)n q
n(n−1)

2

[n]q!
(sα)n + 1

2s
− 1

2qs

∞∑
n=0

(−1)n q
n(n−1)

2

[n]q!
(qsα)n + 1

2qs

= − 1
2s

E−sα
q + 1

2s
− 1

2qs
E−qsα

q + 1
2qs

and by taking the limit the proof is obtained as follows

Lq {1} = F (s) = lim
α→∞

(
− 1

2s
E−sα

q + 1
2s

− 1
2qs

E−qsα
q + 1

2qs

)
= 1 + q

2q
· 1

s
,
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where
lim

α→∞
E−qsα

q = lim
α→∞

E−sα
q = 0. □

Theorem 4.2. For n ∈ R with n > −1, the q-Laplace transform of function f(t) = tn

is

(4.1) Lq {tn} =
[n]q
s

Lq

{
tn−1

}
.

Proof. From definition of q-Laplace transform, it follows that

Lq {tn} = F (s) = lim
α→∞

α∫
0

tnE−qst
q dqt =

∞∫
0

tnE−qst
q dqt.

Then, calculate above integral by using (2.12) and (3.1) with the q-integral, we have
α∫

0

tnE−qst
q dqt = − 1

s

α∫
0

tnDqE
−st
q dqt

= − 1
s

 qtnE−st
q + (qt)n E−qst

q

2q

∣∣∣∣∣
α

0
− [n]q

α∫
0

tn−1E−qst
q dqt


=

[n]q
s

α∫
0

tn−1E−qst
q dqt −

qαnE−sα
q + (qα)n E−qsα

q

2qs

=
[n]q
s

α∫
0

tn−1E−qst
q dqt −

qαnE−sα
q + (qα)n E−qsα

q

2qs

and by taking the limit

Lq {tn} =F (s) = lim
α→∞

α∫
0

tnEq(−qst)dqt

= lim
α→∞

 [n]q
s

α∫
0

tn−1E−qst
q dqt −

qαnE−sα
q + (qα)n E−qsα

q

2qs


=

[n]q
s

∞∫
0

tn−1E−qst
q dqt =

[n]q
s

Lq

{
tn−1

}
and the proof is completed. □

Theorem 4.3. Let n ∈ N, then the q-Laplace transform of function f(t) = tn is

Lq {tn} = 1 + q

2q
·

[n]q!
sn+1 .

Proof. By using (4.1), it follows that

Lq {tn} =
[n]q
s

Lq

{
tn−1

}
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=
[n]q
s

·
[n − 1]q

s
Lq

{
tn−2

}
...

=
[n]q
s

·
[n − 1]q

s
· · · Lq {1}

=
[n]q
s

·
[n − 1]q

s
· · · 1 + q

2q
· 1

s

=1 + q

2q
·

[n]q!
sn+1 .

□

Theorem 4.4. The q-Laplace transform of function f(t) = eat
q is

Lq

{
eat

q

}
= 1 + q

2q
· 1

s − a
, s > a.

Proof. From definition of q-Laplace transform, it follows that

Lq

{
eat

q

}
= lim

α→∞

α∫
0

eat
q E−qst

q dqt = lim
α→∞

∞∑
n=0

an

[n]q!

α∫
0

tnE−qst
q dqt

=
∞∑

n=0

an

[n]q!
lim

α→∞

α∫
0

tnE−qst
q dqt =

∞∑
n=0

an

[n]q!
Lq {tn}

=
∞∑

n=0

an

[n]q!
· 1 + q

2q
·

[n]q!
sn+1 = 1 + q

2qs

∞∑
n=0

(
a

s

)n

= 1 + q

2q
· 1

s − a
,

and the proof is completed. □

Theorem 4.5. The q-Laplace transform of function f(t) = Eat
q is

Lq

{
Eat

q

}
= 1 + q

2qs

∞∑
n=0

q
n(n−1)

2

(
a

s

)n

, s > 0.

Proof. From definition of q-Laplace transform, it follows that

Lq

{
Eat

q

}
=

∞∫
0

Eat
q E−qst

q dqt

=
∞∑

n=0
q

n(n−1)
2

an

[n]q!

∞∫
0

tnE−qst
q dqt

=
∞∑

n=0
q

n(n−1)
2

an

[n]q!
· 1 + q

2q
·

[n]q!
sn+1

=1 + q

2qs

∞∑
n=0

q
n(n−1)

2

(
a

s

)n

. □
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Theorem 4.6. The q-Laplace transform of q-cosine, q-sine, q-Cosine, q-Sine func-
tions are that

Lq {cosq at} =1 + q

2q
· s

s2 + a2 ,

Lq {sinq at} =1 + q

2q
· a

s2 + a2 ,

Lq {Cosq at} =1 + q

2qs

∞∑
n=0

(−1)n qn(2n−1)
(

a

s

)2n

,

Lq {Sinq at} =1 + q

2qs

∞∑
n=0

(−1)n qn(2n+1)
(

a

s

)2n+1
.

Proof. Consider the following definition of q-cosine, q-sine, q-Cosine and q-Sine func-
tions:

cosq at =
eiat

q + e−iat
q

2 and sinq at =
eiat

q − e−iat
q

2i
,

Cosq at =
Eiat

q + E−iat
q

2 and Sinq at =
Eiat

q − E−iat
q

2i
.

Then, by using linearity of q-Laplace transform,

Lq {cosq at} =Lq

{
eiat

q + e−iat
q

2

}
= 1

2
(
Lq

{
eiat

q

}
+ Lq

{
e−iat

q

})
=1

2

(
1 + q

2q
· 1

s − ia
+ 1 + q

2q
· 1

s + ia

)

=1 + q

2q
· s

s2 + a2

and in the same way we have

Lq {sinq at} = 1 + q

2q
· a

s2 + a2 .

Now, we obtain q-Laplace transform of q-Cosine and q-Sine functions

Lq {Cosq at} =Lq

{
Eiat

q + E−iat
q

2

}

=1
2
(
Lq

{
Eiat

q

}
+ Lq

{
E−iat

q

})
=1 + q

4qs

( ∞∑
n=0

q
n(n−1)

2

(
ia

s

)n

+
∞∑

n=0
q

n(n−1)
2

(−ia

s

)n
)

=1 + q

4qs

∞∑
n=0

[1 + (−1)n] q
n(n−1)

2

(
ia

s

)n

=1 + q

2qs

∞∑
n=0

(−1)n qn(2n−1)
(

a

s

)2n
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and

Lq {Sinq at} =Lq

{
Eiat

q − E−iat
q

2i

}

= 1
2i

(
Lq

{
Eiat

q

}
− Lq

{
E−iat

q

})
=1 + q

4qsi

( ∞∑
n=0

q
n(n−1)

2

(
ia

s

)n

−
∞∑

n=0
q

n(n−1)
2

(−ia

s

)n
)

=1 + q

4qsi

∞∑
n=0

[1 − (−1)n] q
n(n−1)

2

(
ia

s

)n

=1 + q

2qsi

∞∑
n=0

qn(2n+1)
(

ia

s

)2n+1

=1 + q

2qs

∞∑
n=0

(−1)n qn(2n+1)
(

a

s

)2n+1
.

So, the proof is completed. □

Theorem 4.7. The q-Laplace transform of hyperbolic q-cosine, hyperbolic q-sine
functions are

Lq {coshq at} = 1 + q

2q
· s

s2 − a2 ,

Lq {sinhq at} = 1 + q

2q
· a

s2 − a2 .

Proof. Hyperbolic q-cosine, hyperbolic q-sine are defined by

coshq at =
eat

q + e−at
q

2 and sinhq at =
eat

q − e−at
q

2 .

Then, by using linearity of q-Laplace transform,

Lq {coshq at} = Lq

{
eat

q + e−at
q

2

}
= 1

2
(
Lq

{
eat

q

}
+ Lq

{
e−at

q

})
= 1

2

(
1 + q

2q
· 1

s − a
+ 1 + q

2q
· 1

s + a

)

= 1 + q

2q
· s

s2 − a2

and in the same way we have

Lq {sinhq at} = 1 + q

2q
· a

s2 − a2 . □

If f(t) is piecewise continuous on the interval (0, ∞) and of exponential order c,
then Lq {f(t)} exists for s > c. Therefore, we obtain the following theorem.
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Theorem 4.8. If f, Dqf, D2
qf, . . . , Dn−1

q f are continuous and Dn
q f is piecewise con-

tinuous on (0, ∞) and are of exponential order then we have

Lq

{
Dn

q f(t)
}

= snLq {f(t)} − (1 + q)
2q

n−1∑
i=0

sn−1−iDi
qf (0) .

Proof. A function f is said to be of exponential order c if there exist c, K > 0 and
T > 0 such that

|f(t)| ≤ Kect, for all t < T.

Therefore, we have

(4.2) lim
t→∞

E−qst
q f (t) = 0.

Then, by using (4.2) we write

Lq {Dqf(t)} =
∞∫

0

E−qst
q Dqf (t) dqt

=
qE−qst

q f (t) + E−q2st
q f (qt)

2q

∣∣∣∣∣∣
∞

0

−
∞∫

0

f (qt) DqE
−qst
q dqt

= − (1 + q)
2q

f (0) + qs

∞∫
0

f (qt) E−q2st
q dqt

= − (1 + q)
2q

f (0) + s

∞∫
0

f (u) E−qsu
q dqu

=sLq {f(t)} − (1 + q)
2q

f (0) .

If we replace f(t) by Dqf(t) we have

Lq

{
D2

qf(t)
}

=
∞∫

0

E−qst
q D2

qf (t) dqt

=
qE−qst

q Dqf (t) + E−q2st
q Dqf (qt)

2q

∣∣∣∣∣∣
∞

0

−
∞∫

0

Dqf (qt) DqE
−qst
q dqt

= − (1 + q)
2q

Dqf (0) + qs

∞∫
0

f (qt) E−q2st
q dqt

= − (1 + q)
2q

Dqf (0) + s

∞∫
0

Dqf (t) E−qst
q dqt

=sLq {Dqf(t)} − (1 + q)
2q

Dqf (0)
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=s

[
sLq {f(t)} − (1 + q)

2q
f (0)

]
− (1 + q)

2q
Dqf (0)

=s2Lq {f(t)} − (1 + q)
2q

(Dqf (0) + sf (0)) .

If we continue with this process, we get

Lq

{
Dn

q f(t)
}

= snLq {f(t)} − (1 + q)
2q

n−1∑
i=0

sn−1−iDi
qf (0) ,

and the proof is completed. □
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