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CERTAIN SUBCLASSES OF MEROMORPHIC FUNCTIONS WITH
POSITIVE COEFFICIENTS ASSOCIATED WITH LINEAR
OPERATOR

OSAMAH N. KASSAR! AND ABDUL RAHMAN S. JUMA!

ABSTRACT. In this paper, we introduce and study certain subclass of meromorphic
univalent functions by using a linear operator by means of a Hadamard product
involving some suitably normalized meromorphically g-Hypergeometric functions,
in the punctured open unit disk. Some properties like, coefficients inequalities,
growth and distortion theorems, closure theorems, Extreme Points and Radii of
meromorphic starlikeness and meromorphic convexity are obtained.

1. INTRODUCTION

Let ¥ denote the class of meromorphic functions in the punctured open unit disk
D*={z:2€C,0<|z] <1} =D — {0} of the form

1 oo
(1.1) f(z)==4+> a.,2", a,>0,
Z n=1

we denote by Xg(7), k() and X5(v), 0 < < 1, the subclasses of ¥ that are mero-
morphic univalent, meromorphically convex functions of order v and meromorphically
starlike functions of order ~, respectively.

A function f € Yi(v) if and only if —Re (1 + ZJ{,,;S)) > v, z € D. Similarly, a

function f € ¥%(y) if and only if — Re (Z]{;S)) > 7, z € D, where f given by (1.1).
There are many other classes of meromorphically univalent functions that has been

extensively studied (see [2,3,7,9] and [11]).
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functions, starlike functions, hypergeometric function.

2010 Mathematics Subject Classification. Primary: 30C80. Secondary: 30C45.

DOIT 10.46793/KgJMat2301.143K

Received: February 24, 2020.

Accepted: July 23, 2020.

143



144 O. N. KASSAR AND A. R. JUMA

For functions f(z) = 1 4 322, a,2" and g(z) = 1 4 302, b,2", we define the
Hadamard product or convolution of f and g by

1 oo
(f * g) = ; + Z anbnzn-
n=1

Cho et al. [6] and Ghanim and Darus [8] studied the following function

SR A :
1.2 = - _ "oA>0,u>0.
12) o) =13 () A one
For complex parameters ay,...,a; and by,...,b,, b; € C, and b; # 0,—1,..., and

j=1,2,...,m, the g-hypergeometric function ;V,,(z) is defined by
Z\Ij (ala-' al;bla"'abm;(Lz)

. (a1, q (al,q)n
-3 o o D )

where (”) :n(n—l)/Z,q#Oandl>m+1, I,m € Ng = NU{0}, z € D. The ¢

(1.3)

2
-shifted factorial is defined for a,q € C as a product of n factors by

. Ja-a-ag)---1—-ag"t), neN,
(14) (a; Q)n - { 1, n = O,
and in terms of basic analogue of the gamma function

(1.5) (¢%q), = L(a j}ng —a"

It is of interest to note that lim,—,_; ((¢%;q),, /(1 —¢)") = (a), = a(a+1)---(a+n—1)
is the familiar Pochhammer symbol and

n > 0.

= (b1),, - (bp), n!
Now for z € D, 0 < |¢| < 1 and | = m + 1 the basic hypergeometric function defined
n (1.3) takes the form

lqjm(ala"'7al;b1)"'7bm;22) = ZM ©

o0

(ab Q) te (al7 Q)
1.6 W (ar,...,a;01, ... by q, 2) == & L__2",
L0 (0 )= 2 @ Oy o),
which converges absolutely in the open unit disk D (see[1]).
Corresponding to the function |V, (ay,...,a;b1,...,bn;q, z) recently for meromor-
phic functions f € ¥ consisting functions of the form (1.1), Al-dweby and Darus [1]
introduce ¢ -analogue of Liu-Srivastava operator as below

(1.7)
1

le(aly--'7al;b17"'7bm;Q7z)*f(z>:;l\Ijm(ab'"aal;bla"'abm;cbz)*f(z)
1

(aza Q)n+1 n
4+ E anz
z q Q)n—i-l H'L 1 (blv Q)n+1
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where Hz:l (ak7q>n+1 = (a’luq)n—‘,-l (a’27q)n+1 ”'(asaq>n+17 z € D* = {Z S (C 10 <
|z] < 1} and

1
le(ah’"aa’l;bla"‘7bm;Q7Z) = ;l\:[/m(a'h"'7al;b17"'abm;Q’z)
_ 1 + i Hézl (aia Q>n+1 L
=1 (qa Q)nJrl H;n;l (bw q)nJrl

z

Corresponding to the functions ; Y, (a1,...,a;5b1,...,bm;¢,2), and ¢ ,(2) given in
(1.2) and using the Hadamard product for f(z) € 3, we will present a generalization
to the linear operator on > as follows

G (a1, a2, ... a5 by by, bpiq) : X — 8

and
92 (a17a27"'al;b17b27"'bm;Q> f(Z)
:f( )*lT (ala'- al;bla“'abm;qu)*Q)\,u(z)

i _1 (@i @)y ( A )H lan] 2.

(g, q)n+1 [T (b @)y \n+1+A

(1.8)

For convenience, we shall henceforth denote

(1.9) ) (a1, az, ... a; b1, ba, .. b q) f(2) = G (a1, b, q) £(2).

Notice that, the linear operator (1.8) in above was introduced and studied by Challab
et al. [5]. For convenience, we let

(1.10) AN = i1 (06 Dy ( A )u.
" (g, Q)n+1 [T, (bs, Q>n+1 n+1l+A

Definition 1.1. For 0 <y <1,k > 0and 0 < n < 3, we let 3(v, k,7) be the subclass
of ¥g(,) consisting of functions of the form (1.1) and satisfying the analytic criterion

(1.11)

(95 (a, b, @) f(2))" + 02%(S) (a1, b, 0) f(2))"
e <(1 =S (a1, b, q) f(2) +12(5) (a1, bm, @) £(2)) ! 7)
2(95 (a1, bm, @) f(2))" +02%(S) (a1, b, q) f(2))"
(1 =G5 (a1, bm, q) f(2) +12(5} (a1, bm, @) f(2))

where G, (ay, b, q) f(2) is given by (1.8).

>k +1

Y

Remark 1.1. For suitable choice of parameters involved in the Definition 1.1, the
class reduces to various new subclasses in the following examples, we illustrate two
important subclasses.



146 O. N. KASSAR AND A. R. JUMA

Ezample 1.1. For n = 0, we let X(v,k,0) = X(v, k) denote a subclass of (v, k,n)
consisting functions of the form (1.1) satisfying the condition that

2(9p (@, b, q) £(2))' 2(95 (@, b, q) £(2))'
e 53 (01,5 ) F(2) ra) 28 53 (01,5, ) F(2)
where G (ar, b, q) f(2) is given by (1.8).

Ezxample 1.2. For n =0, k =0 we let X(v,0,0) = X(v) denote a subclass of ¥(v, k,n)
consisting functions of the form (1.1) satisfying the condition that

2(S2 (a1, b @) £(2))'
‘Re< S (a1, b @) (2) ”) =0

where G (a1, b, q) f(2) is given by (1.8).

+1

9

For more details about class in the [10, Definition 1.1].

2. SET OF LEMMAS

We now give the preliminary lemmas that we shall employ in the proof of the main
results.

Lemma 2.1 ([4]). If v is a real number and w = —u — v is a complex number, then
jw+ A=) —lw—=(1+7)]=0% Re(w) = 7.
Lemma 2.2 ([4]). If w = u+iv is a complex number and v, k are real numbers, then

—Re(w) > |w+ 1|k +v < —Re (w (1 + kew) + k:ew) >, —nm<60<m.

3. MAIN RESuULTS

Theorem 3.1. Let f € X be given by (1.1). Then f € X(v, k,n) if and only if

[e.9]

(3.1) YL+ (n =)k + 1) + (& +7)]A" Jan| < (1= 7)(1 = 2n),

n=1

where AM is given by (1.10).

Proof. Let f € 3(v,k,n). Then by definition and using Lemma 2.2, we get
(3.2)
e G (a1, b 0) £(2)) + 025 a1 b ) £(2)"
(L =n)G; (a1, bm, q) f(2) +n2(S5)) (a1, b, q) f(2))

where m < 0 < «. For easiness, we let
Az) =~ [ (92 (a1 b @) £(2)) + 12* (S (a1, by ) f<z>)”] (1+ ke')
— ke (1= )8} (@b @) £2) + 12 (9) (b ) £(2) |

(1 - k:ei9> + k:ei9> > 7,
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and
B(2) = (1= )9} (a1, b 0) £(2) + 07 () (a1, b ) £(2))
Hence, the equation (3.2) is equivalent to —Re (

e )) > v and from Lemma 2.1, we

only want to prove that

A(z) + (1 = 7)B(2)] = |A(z) — (1 +7)B(2)] 2 0.

Therefore,
[A(2) + (1 = 7)B(2)|
>(1=2n)(2 - )é, - Z:l[(n —1+7) +k(n+ D1 +n(n —1))ApHa.]|2]"
and

|A(2) = (1 +7)B(2)|

(1= 20) 1+ D0l + 1+ 7) b+ DI+ — D)Aa

‘ | n=1
Thus,

|A(z) + (1 =)B ( )| = 1A(z) = (1 +7)B(2)]
>2(1—2n)(1 —7)— —2 Z (1+ k) + (v + k)1 + nln — 1)) Ap*|a]|2]" > 0,
by the provided condition (3.1). On the other hand, let f € X(v,k,n). Then by

Lemma 2.2, we get (3.2).
Choosing the values of z on the positive real axis the inequality (3.2) reduce to

(1= ) (1= 20) 5 + X521 (1+ (n = D) [0 (1+ke®) + (5 + ke'?) | AD#]an |21
Re 5\
(1-2m)% = 02, (1+ (n — Dp)Az*fag| =

>0.

ei@

Since Re (—eie) > — = —1, the above inequality reduces to

Re ((1 — A =25 + 5021+ (n— l)n)[n(f - 1)]A2’“|an|r"_1) o
(1—2n)% =32 (1+ (n— L)n)An"|a,|rm

Letting  — 1~ and by mean value theorem we get desired inequality (3.1). U
Corollary 3.1. If f € X(v,k,n), then
1—9)(1-2
ol < (1-7)(1- 29

(1+ (n— Dn)[nlk + 1) + (k + )] A"
Corollary 3.2. Let f(z) € ¥ be given by (1.1). Then f € X(v, k) if and only if

[e.9]

> [k + 1) + (k + ) A" (o) Jan| < (1 =),

n=1
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where n = 0, in Theorem 3.1.

4. GROWTH AND DISTORTION THEOREM
Theorem 4.1. Let f € X(v,k,n) given by (1.1). Then for 0 < |z| =r < 1 we get

1 (1-9)(1-2n L (L= —2n)

— r<|f(z)] < -+ r
r 2k +y 4 1A <G < (2k + v + 1)AL*

<

and
1 (=712 , 1 1=y -2y
2 (2k 44 DAY <@l < 2t (2k + 7 + 1)A*
The result is sharp for
(4.1) f(z) _ 1 (1 B 7)(1 — 2)‘)

VR
z (2k4+y+ 1)A"
Proof. Since f € ¥(v,k,n) and 0 < |z| = r < 1, then

1 (=901 -2n) 1, (1-7)(1-2p)
JEI= EN (2k + v+ 1)AS*" S (2 + 5+ DAY
and
{5 ik ok PSS Gl 1t ek )

7.
2] (2k +y + 1)A* T (2k 4y 1)A*
On the other hand

—1 1—7)(1—-2n 1 1—7)(1—-2n
re) <] (1 =) AL <1 (1 =) AL
z (2k +~v+1)A; e (2k+y+1)A;
and
—1 1—~)(1—-2n 1 1—7)(1—2n
PR E R (L) R W (B [N
z (2k +~v+1)A; e (2k+y+1)A;
This completes the proof of Theorem 4.1. 0

5. CLOSURE THEOREMS

Let f;(2), 7=1,2,...,1, be the function given by
1 > n
(51) f](Z) = ; + Z |an7j|z .
n=1

Theorem 5.1. Let the function fj(z) defined by (5.1) be in the class X(v, k,n) for
every j = 1,2,..., 1. Then the function f(z) defined by

1 Ui "
n=1

belongs to the class X(v, k,n), where g, = + 30 an;|, n=1,2,...
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Proof. Since f;(z) € X(v,k,n), it follows from Theorem 3.1 that

oo

> (14 (n=Dn)ln(k +1) + (k +9)A3" an] < (1=7)(1 = 2n),

n=1

for every 7 =1,2,...,1. Hence,

S (1 (n = Dl 1)+ k)],

13 (S o= v+ 0+ s 7)]A“|am|>
<7 31 =)= 20) = (1=)(1 - 20)
which implies that f is in (v, k,n). O

6. EXTREME POINTS
Theorem 6.1. Let

(61 fole) = -
and
62)  fu(x) == (1=~){ —2n) ">

+ a2, N2
2 1+ Mn—=0n)n0+Ek)+ (v+ k)]A"
Then f € X(v,k,n) if and only if it can be represented in the form

(6.3) f(z) = f:ownfn(z), i)wn =1, w, > 0.

Proof. From (6.1), (6.2) and (6.3), we have

(6:4) Z (It (n— D)tk + 1) + (+ ))AM

Since
i (1 =)L = 2n)w, (A4 (n=Dn)n(k +1) + (k+y)]A%"
= (14 (n—D)n)[nlk + 1) + (k + )] An* (1 =7)(1—=2n)

(6.5)

:iwn: l—w < 17

it follows from Theorem 3.1 that the function f € (v, k,n).
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Conversely, suppose that f is in 3(~, k,n), since
(1=~ —2n) 1

(66) Ay S PR -
(14 (n— Dn)[n(k + 1) + (k + )] An"
Setting
1+ @m—Dn)nk+1)+(k+9)] x

) = -1
(6.7) Wn -0 =21 ap, Wy nz:;wn,
it follows that
(6.8) f(2) =D waful2):

n=1

This completes the proof of the theorem. U

7. RADII OF MEROMORPHIC STARLIKENESS AND MEROMORPHIC CONVEXITY

Theorem 7.1. Let f € X(v,k,n). Then f is meromorphically starlike of order 9,
0 <6 <1, in the unit disc |z| < r3, where

K ) )(n(n—1)+1)[n(1—k)+(7+k)]/\2’“ =

pu— 1 f > ]_.
BER \nr2-9) (1—2p)(1—7) o=
The result is sharp for the extremal function f(z) given by (4.1).
Proof. We must show that
2f'(z)
+1{<1-9, |z|<rs.
f(2) A=
Since
(1=7)(1—=2n) n+1
(7.1) 1) ) < (" D e men e
: F(z2) =1 (1—y)(1—27) 2
(1+(n=1)m) [n(1+k) +(y+k)|An™
Hence, (7.1) holds true if
1-— 1—-2
(TL+ 1) ( ’7)( 77) . ’Z‘n-‘rl
(1+(n—=1)n) N1+ k) + (v + k)]Az"
(1+(n—=1)n) 1+ k) + (v + k)] A"
or
1-— 1—-2
(n+2_5) ( 7)( 77) . |Z‘n+1 S (1 . 6)
(14 (n—=1)n)[n(1+ k) + (v + k)]A2"

Thus, for

2 < (1-0) (A+@—1n)nd+k) +(+E)]A"
~ (n+2-9) (1=7)(1—=2n) '
Hence, f(z) is starlike of order 9. O
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Corollary 7.1. Let f € X(v,k,n). Then f is meromorphically convex of order ¢,
0 <6 <1, in the unit disc |z| < r4, where

ry = inf

n > 1.

n

K ) )<n<n—1>+1>{n<1—k>+<w+k>mwnil
n(n+2—9) (1—2n)(1—7) ’

The result is sharp for the extremal function f(z) given by (4.1).
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