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ON DEGREE OF APPROXIMATION OF SIGNALS IN THE
GENERALIZED ZYGMUND CLASS BY USING (E, r)(N, qn) MEAN

ANWESHA MISHRA1, BIRUPAKHYA PRASAD PADHY1, LAKSHMI NARAYAN MISHRA2,
AND UMAKANTA MISRA3

Abstract. In the present article, we have established a result on degree of approx-
imation of function (or signal) in the generalized Zygmund class Zl

(m),(l ≥ 1) by
using (E, r)(N, qn)- mean of Trigonometric Fourier series.

1. Introduction

Signal Analysis describes the field of study whose objective is to collect, understand
and deduce information and intelligence from various signals. Now-a-days the anal-
ysis of signals is a fundamental problem for many engineers and scientists. In the
recent past, we have seen the applications of mathematical methods such as Prob-
ability theory, Mathematical statistics etc. in the analysis of signals. Very recently,
approximation theory has got a large popularity as it has given a new dimension
in approximating the signals (or functions). The estimation of error functions in
Lipschitz class and Zygmund space using different summability techniques of Fourier
series and conjugate Fourier series have been of great interest among the researchers
in the last decades (for details see [2,3,9,10,13–18]). Later, the generalized Zygmund
class Zl

(m), l ≥ 1, is investigated by Leindler [8], Moricz [4], Moricz and Nemeth [5].
Very recently Nigam [7] and Singh et al. [11] proved approximation of functions in the
generalized Zygmund class by using Hausdroff means. Lal and Shireen [12] proved a
result on approximation of functions of generalized Zygmund class by Matrix Euler
summability mean of Fourier series. In the present paper, we investigate on the degree
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of approximation of a signal (or function) in the generalized Zygmund class Zl
(m),

l ≥ 1, by (E, r)(N, qn) product mean of the trigonometric Fourier series.

2. Definitions and Notations

Let h be a function, which is periodic in [0, 2π] such that
∫ 2π

0 |h(x)|ldx < ∞.
We denote

Ll[0, 2π] =
{

h : [0, 2π] → R :
∫ 2π

0
|h(x)|ldx < ∞

}
, l ≥ 1.

The Fourier series of h(x) is given by

(2.1)
∞∑

n=0
un(x) = a0

2 +
∞∑

n=1

(
an cos nx + bn sin nx

)
.

Let Sp(h; x) denotes the p-th partial sum of h(x) and is given by

Sp(h; x) = 1
π

∫ π

−π
h(x + v)

sin
(

p + 1
2

)
v

2 sin v
2

dv.

We define

∥h∥l =
( 1

2π

∫ 2π

0
|h(x)|ldx

) 1
l

, 1 ≤ l < ∞,

and
∥h∥l = esssup0≤x≤2π |h(x)|, l = ∞.

Let the Zygmund modulus of continuity of h(x) be
m(h; r) = sup

0≤r,x∈R
|h(x + v) + h(x − v) − 2h(x)| (see [1]).

Suppose B represents the Banach space of all 2π periodic functions which are contin-
uous and defined over [0, 2π] under the supremum norm. Clearly,

Z(α) =
{

h ∈ B : |h(x + v) + h(x − v) − 2h(x)| = O (|v|α) , 0 < α ≤ 1
}

is a Banach space under the norm ∥ · ∥(α) defined by

∥h∥(α) = sup
0≤x≤2π

|h(x)| + sup
x,v ̸=0

|h(x + v) + h(x − v) − 2h(x)|
|v|α

.

For h ∈ Ll[0, 2π], l ≥ 1, the integral Zygmund modulus of continuity is defined by

ml(h; r) = sup
0<v≤r

{ 1
2π

∫ 2π

0
|h(x + v) + h(x − v) − 2h(x)|ldx

} 1
l

,

and for h ∈ B, l = ∞,

m∞(h; r) = sup
0<v≤r

max
x

|h(x + v) + h(x − v) − 2h(x)|.
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Clearly, ml(h; r) → 0 as l → 0. Again,

Z(α), l =
{

h ∈ Ll[0, 2π] :
( ∫ 2π

0
|h(x + v) + h(x − v) − 2h(x)|ldx

) 1
l

= O(|v|α)
}

is a Banach space under the norm ∥ · ∥(α),l for 0 < α ≤ 1 and l ≥ 1. Clearly,

∥h∥(α),l = ∥h∥l + sup
v ̸=0

∥h(· + v) + h(· − v) − 2h(·)∥l

|v|α
.

Let

Z(m) =
{

h ∈ B : |h(x + v) + h(x − v) − 2h(x)| = O (m(v))
}

,

where m is a Zygmund modulus of continuity satisfying
(a) m(0) = 0;
(b) m(v1 + v2) ≤ m(v1) + m(v2).
Define

Z
(m)
l =

{
h ∈ Ll : 1 ≤ l < ∞, sup

v ̸=0

∥h(· + v) + h(· − v) − 2h(·)∥l

m(v) < ∞
}

,

where

∥h∥(m)
l = ∥h∥l + sup

v ̸=0

∥h(· + v) + h(· − v) − 2h(·)∥l

m(v) , l ≥ 1.

Clearly, ∥ · ∥(m)
l is a norm Z

(m)
l . Also, Z

(m)
l is complete since Ll, l ≥ 1, is complete.

So, Z
(m)
l is a Banach space under ∥ · ∥(m)

l . Agian, suppose m(v) and µ(v) represents
the Zygmund moduli of continuity such that m(v)

µ(v) is positive and non-decreasing then

∥h∥(µ)
l ≤ max

{
1,

m(2π)
µ(2π)

}
∥h∥(m)

l ≤ ∞.(2.2)

Clearly,
Z

(m)
l ⊆ Z

(µ)
l ⊆ Ll, l ≥ 1.

Let ∑un be an infinite series with sequence of partial sums {sn}. Suppose {qk}
represents the sequence of non-negative integers such that

Qn =
n∑

k=0
qk → ∞ as n → ∞.(2.3)

If

τN
n = 1

Qn

n∑
k=0

qn−ksk, n = 0, 1, 2, . . .(2.4)

represents the (N, qn) mean of {sn} generated by the sequence {qn}, then the series∑
un is said to be summable to ‘s’ whenever

lim
n→∞

τN
n → s.
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We know, (N, qn) method is regular [6]. The (E, r) transform of {sn} is given by

Er
n = 1

(1 + r)n

n∑
k=0

C(n, k)rn−ksk.(2.5)

If Er
n → s as n → ∞, then ∑

un is summable to ‘s’ by (E, r) summability. Also,
(E, r) method is regular [6].

The (E, r)(N, qn) transform of {sn} is given by

τEr,N
n = 1

(1 + r)n

n∑
k=0

C(n, k)
{ 1

Qk

k∑
ν=0

qk−νsν

}
.(2.6)

The series ∑un is summable to s by the (E, r)(N, qn) transform if τEr,N
n → s as

n → ∞.
The following notations are used in the rest part of our paper:

φ(x, v) =h(x + v) + h(x − v) − 2h(x),

κEr,N
n (v) = 1

2π(1 + r)n

n∑
k=0

C(n, k)


1

Qk

k∑
ν=0

qk−ν

sin
(

ν + 1
2

)
v

sin
(

v
2

)
 .

3. Known Results

Using Matrix Euler summability means, Lal and Shireen [12] proved the following
theorems.

Theorem 3.1. Let the lower triangular matrix A = (an,k) satisfy the following condi-
tions:

n∑
k=0

an,k =1, an,k ≥ 0, n = 0, 1, 2, . . . , k = 0, 1, 2, . . . ,(3.1)

n∑
k=0

|∆an,k| =O
( 1

n + 1

)
and (n + 1)an,n = O(1).(3.2)

The best approximation of the Fourier series (2.1) by Matrix-Euler mean is given by

En(h) = inf
tn

∆,E
∥tn

∆,E − h∥µ
l = O

(
1

n + 1

∫ π

1
(n+1)

m(v)
v2µ(v)dv

)
,(3.3)

where

tn
∆,E =

n∑
k=0

an,k
1
2k

k∑
ν=0

C(k, ν)sν ,

represents the Matrix-Euler mean of a 2π periodic and Lebesgue integrable function
h : [0, 2π] → R, that belongs to Z

(m)
l , l ≥ 1. Here, m and µ are the Zygmund moduli

of continuity and m(v)
µ(v) is positive and non-decreasing.
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Theorem 3.2. Let A = (an,k) be a lower triangular matrix satisfying (3.1) and (3.2) in
Theorem 3.1 along with the condition that m(v)

µ(v) is non-increasing. Then, for h ∈ Z
(m)
l ,

l ≥ 1, the best approximation by Matrix-Euler mean
(
tn

∆,E
)

is given by

En(h) = O

m
(

1
n+1

)
µ
(

1
n+1

) log(n + 1)π

 .(3.4)

4. Main Theorems

Theorem 4.1. Let h : [0, 2π] → R be a periodic function (with period 2π) belonging
to Z

(m)
l , l ≥ 1, which is integrable in the sense of Lebesgue. Then the degree of

approximation of h by using (E, r)(N, qn) mean of (2.1) is given by

En(h) = inf
τn

Er,N
∥τn

Er,N − h∥µ
l = O

(∫ π

1
n+1

m(v)
vµ(v)dv

)
,(4.1)

where m(v) and µ(v) are the Zygmund moduli of continuity and m(v)
vµ(v) is positive and

non-decreasing.

Theorem 4.2. The degree of approximation of a 2π periodic and Lebesgue integrable
function h, h : [0, 2π] → R, using (E, r)(N, qn) mean of (2.1) is given by

En(h) = inf
τn

Er,N
∥τn

Er,N − h∥µ
l = O

m
(

1
n+1

)
µ
(

1
n+1

) (
π

n + 1 − 1
(n + 1)2

) ,(4.2)

where h ∈ Z
(m)
l , l ≥ 1, m(v) and µ(v) are the Zygmund moduli of continuity and

m(v)
v µ(v) is positive and non-increasing.

We require the below mentioned lemmas to prove our main theorems.

5. Lemmas

Lemma 5.1.

|κEr,N
n | = O(n), for 0 ≤ v ≤ 1

n + 1 .

Lemma 5.2.

|κEr,N
n | = O

(1
v

)
, for 1

n + 1 ≤ v ≤ π.

Lemma 5.3. Let h ∈ Z
(m)
l . Then, for 0 < v ≤ π,

(i) ∥φ(·, v)∥l = O(m(v));
(ii) ∥φ(· + y, v) + φ(· − y, v) − 2φ(·, v)∥l = O(m(v)) or O(m(y));
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(iii) If m(v) and µ(v) are as defined in Theorem 4.1, then

∥φ(· + y, v) + φ(· − y, v) − 2φ(·, v)∥l = O

(
µ(y)m(v)

µ(v)

)
,

where φ(x, v) = h(x + v) + h(x − v) − 2h(x).

6. Proof of the Lemmas

Proof of Lemma 5.1. For 0 ≤ v ≤ 1
n+1 and sin nv ≤ n sin v, we have

|κEr,N
n (v)| = 1

2π(1 + r)n

∣∣∣∣∣∣∣∣
n∑

k=0
C(n, k)rn−k


1

Qk

k∑
ν=0

qk−ν

sin
(

ν + 1
2

)
v

sin v
2


∣∣∣∣∣∣∣∣

≤ 1
2π(1 + r)n

∣∣∣∣∣
n∑

k=0
C(n, k)rn−k

{
1

Qk

k∑
ν=0

qk−ν

(2ν + 1) sin v
2

sin v
2

}∣∣∣∣∣
≤ 1

2π(1 + r)n

∣∣∣∣ n∑
k=0

C(n, k)rn−k(2k + 1)
{ 1

Qk

k∑
ν=0

qk−ν

}∣∣∣∣
≤ (2n + 1)

2π(1 + r)n

∣∣∣∣ n∑
k=0

C(n, k)rn−k

∣∣∣∣
=O(n). □

Proof of Lemma 5.2. By Jordan’s lemma

sin
(

v

2

)
≥ v

π
, sin nv ≤ 1,

1
n + 1 ≤ v ≤ π.

Now,

|κEr,N
n (v)| = 1

2π(1 + r)n

∣∣∣∣∣∣∣∣
n∑

k=0
C(n, k)rn−k


1

Qk

k∑
ν=0

qk−ν

sin
(

ν + 1
2

)
v

sin v
2


∣∣∣∣∣∣∣∣

≤ 1
2π(1 + r)n

∣∣∣∣ n∑
k=0

C(n, k) rn−k
{ 1

Qk

k∑
ν=0

π

v
qk−ν

}∣∣∣∣
= 1

2v(1 + r)n

∣∣∣∣ n∑
k=0

C(n, k) rn−k
{ 1

Qk

k∑
ν=0

qk−ν

}∣∣∣∣
= 1

2v(1 + r)n

∣∣∣∣ n∑
k=0

C(n, k) rn−k

∣∣∣∣
=O

(1
v

)
. □

Proof of Lemma 5.3. See [12]. □
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7. Proof of Main Theorems

Proof of Theorem 4.1. Let Sk(h; x) denotes the k-th partial sum of the series (2.1).
We have

Sk(h; x) − h(x) = 1
2π

∫ π

0
φ(x, v)

sin
(

k + 1
2

)
v

sin v
2

dv

and the (N, qn) transform of it is given by

1
Qn

n∑
k=0

qn−k{Sk(h; x) − h(x)} = 1
2π

∫ π

0
φ(x, v) 1

Qn

n∑
k=0

qn−k

sin
(

k + 1
2

)
v

sin v
2

dv.

Let the (E, r)(N, qn) transform of Sk(h; x) by τEr,N
n . Then

τEr,N
n − h(x) = 1

2π(1 + r)n

∫ π

0
φ(x, v)

n∑
k=0

C(n, k) rn−k


1

Qn

n∑
k=0

qn−k

sin
(

k + 1
2

)
v

sin v
2

 dv

=
∫ π

0
φ(x; v)κEr,N

n (v)dv

=χn(x).

Then

χn(x + y) + χn(x − y) − 2χn(x) =
∫ π

0

{
φ(x + y, v) + φ(x − y, v) − 2φ(x, v)

}
κEr,N

n (v)dv.

Using Minkowski’s inequality, we have

∥χn(· + y) + χn(· − y) − 2χn(·)∥l

=
{ 1

2π

∫ 2π

0
|χn(x + y) + χn(x − y) − 2χn(x)|ldx

} 1
l

= 1
2π

[ ∫ 2π

0

∣∣∣∣ ∫ π

0

{
φ(x + y, v) + φ(x − y, v) − 2φ(x, v)

}
κEr,N

n (v)dv
∣∣∣∣ldx

] 1
l

≤
∫ π

0
|κEr,N

n (v)|
{ 1

2π

∫ 2π

0
|φ(x + y, v) + φ(x − y, v) − 2φ(x, v)|ldx

} 1
l

dv

=
∫ π

0
∥φ(· + y, v) + φ(· − y, v) − 2φ(·, v)∥l|κEr,N

n (v)|dv

=
∫ 1

n+1

0
∥φ(· + y, v) + φ(· − y, v) − 2φ(·, v)∥l|κEr,N

n (v)|dv

+
∫ π

1
n+1

∥φ(· + y, v) + φ(· − y, v) − 2φ(·, v)∥l|κEr,N
n (v)|dv

=Γ1 + Γ2.(7.1)
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Using Lemma 5.1, Lemma 5.3 and monotonicity of m(v)
µ(v) , with respect to ‘v’, we have

Γ1 =
∫ 1

n+1

0
∥φ(· + y, v) + φ(· − y, v) − 2φ(·, v)∥l|κEr,N

n (v)|dv

=
∫ 1

n+1

0
O
(

µ(y)m(v)
µ(v)

)
O(n)dv.

By using the second mean value theorem of integral, we have

Γ1 ≤O

nµ(y)
m
(

1
n+1

)
µ
(

1
n+1

) ∫ 1
n+1

0
dv



=O

 n

n + 1 µ(y)
m
(

1
n+1

)
µ
(

1
n+1

)
 = O

µ(y)
m
(

1
n+1

)
µ
(

1
n+1

)
 .(7.2)

Again, by using Lemma 5.2 and Lemma 5.3, we get

Γ2 =
∫ π

1
n+1

∥φ(· + y, v) + φ(· − y, v) − 2φ(·, v)∥l|κEr,N
n (v)|dv

≤
∫ π

1
n+1

O
(

µ(y)m(v)
µ(v)

)1
v

dv

=O
(

µ(y)
∫ π

1
n+1

m(v)
vµ(v)dv

)
.(7.3)

By (7.1), (7.2) and (7.3), we have

∥χn(· + y) + χn(· − y) − 2χn(·)∥l = O

µ(y)
m
(

1
n+1

)
µ
(

1
n+1

)
+ O

(
µ(y)

∫ π

1
n+1

m(v)
v µ(v)dv

)
.

Therefore, we have

(7.4) sup
y ̸=0

∥χn(· + y) + χn(· − y) − 2χn(·)∥l

µ(y) = O

m
(

1
n+1

)
µ
(

1
n+1

)
+ O

( ∫ π

1
n+1

m(v)
v µ(v)dv

)
.

As
φ(x, v) = |h(x + v) + h(x − v) − 2h(x)|,

by applying Minkowski’s inequality, we get
(7.5) ∥φ(x, v)∥l = ∥h(x + v) + h(x − v) − 2h(x)∥l = O(m(v)).
Now, using Lemma 5.1, Lemma 5.2 and (7.5),

∥χn(.)∥l ≤
( ∫ 1

n+1

0
+
∫ π

1
n+1

)
∥φ(·, v)∥l|κEr,N

n (v)|dv
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=O
(

n
∫ 1

n+1

0
m(v) dv

)
+ O

( ∫ π

1
n+1

m(v)
v

dv
)

=O
(

m
( 1

n + 1

))
+ O

( ∫ π

1
n+1

m(v)
v

dv
)

.(7.6)

From (7.4) and (7.6), we have
∥χn(·)∥µ

l

=∥χn(·)∥l + sup
y ̸=0

∥χn(· + y) + χn(· − y) − 2χn(·)∥l

µ(y)

=O
(

m
( 1

n + 1

))
+ O

( ∫ π

1
n+1

m(v)
v

dv
)

+ O

m
(

1
n+1

)
µ
(

1
n+1

)
+ O

( ∫ π

1
n+1

m(v)
v µ(v) dv

)

=
4∑

j=1
Gj.

In view of monotonicity of µ(v) for 0 < v ≤ π, we have

m(v) = m(v)
µ(v) µ(v) ≤ µ(π)m(v)

µ(v) = O
(

m(v)
µ(v)

)
.

Therefore,
G1 = O(G3).

Again, by using monotonicity of µ(v),

G2 =
∫ π

1
n+1

m(v)
v

dv =
∫ π

1
n+1

m(v)
vµ(v)µ(v)dv ≤ µ(π)

∫ π

1
n+1

m(v)
vµ(v)dv = O(G4).

Since m(v)
µ(v) is positive and increasing

G4 =
∫ π

1
n+1

m(v)
v µ(v)dv =

m
(

1
n+1

)
µ
(

1
n+1

) ∫ π

1
n+1

dv

v
≥

m
(

1
n+1

)
µ
(

1
n+1

) .

Therefore,
G3 = O(G4).

Thus,

∥χn(·)∥µ
l = O(G4) = O

( ∫ π

1
n+1

m(v)
vµ(v)dv

)
.

Hence,

En(h) = inf
n

∥χn(·)∥µ
l = O

( ∫ π

1
n+1

m(v)
vµ(v)dv

)
.
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This completes the proof of the Theorem 4.1. □

Proof of Theorem 4.2. In this theorem, since we have assumed m(v)
vµ(v) is positive and

decreasing, proceeding as in Theorem 4.1. We have

En(h) = inf
n

∥χn(.)∥µ
l = O

 m
(

1
n+1

)
(n + 1) µ

(
1

n+1

) ∫ π

1
n+1

dv

 ,

i.e.,

En(h) = O

m
(

1
n+1

)
µ
(

1
n+1

) (
π

(n + 1) − 1
(n + 1)2

) .

This is what we need to prove in Theorem 4.2. □

References
[1] A. Zygmund, Trigonometric Series, 2nd revised Edition, Cambridge university Press, Cambridge,

1959.
[2] B. P. Padhy, P. K. Das, M. Misra, P. Samanta and U. K. Misra, Trigonometric Fourier approxi-

mation of the conjugate series of a function of generalized Lipschitz class by product summability,
Computational Intelligence in Data Mining 1 (2016), 181–190.

[3] Deepmala, L. N. Mishra and V. N. Mishra, Trigonometric Approximation of signals (functions)
belonging to the W (Lr, ξ(t)), (r ≥ 1)-class by (E, q) (q > 0)-means of the conjugate series
of its Fourier series, GJMS Special Issue for Recent Advances in Mathematical Sciences and
Applications, Global Journal of Mathematical Sciences 2(2) (2014), 61–69.

[4] F. Moricz, Enlarged Lipschitz and Zygmund classes of functions and Fourier transforms, East
Journal on Approximations 16(3) (2010), 259–271.

[5] F. Moricz and J. Nemeth, Generalized Zygmund classes of functions and strong approximation
by Fourier series, Acta Sci. Math. 73(3–4) (2007), 637–648.

[6] G. H. Hardy, Divergent Series, Oxford University Press, Oxford, 1949.
[7] H. K. Nigam, On approximation in generalized Zygmund class, Demonstr. Math. 52(1) (2019),

370–387.
[8] L. Leindler, Strong approximation and generalized Zygmund class, Acta Sci. Math. 43(3–4) (1981),

301–309.
[9] L. N. Mishra, V. N. Mishra, K. Khatri and Deepmala, On the trigonometric approximation of

signals belonging to generalized weighted Lipschitz class W (Lr, ξ(t)), (r ≥ 1)-class by matrix
(C1, Np) operator of conjugate series of its Fourier series, Appl. Math. Comput. 237 (2014),
252–263.

[10] L. N. Mishra, V. N. Mishra and V. Sonavane, Trigonometric approximation of functions belonging
to Lipschitz class by matrix (C1, Np) operator of conjugate series of Fourier series, Adv. Difference
Equ. 2013(1) (2013), Article ID 127.

[11] M. V. Singh, M. L. Mittal and B. E. Rhoades, Approximation of functions in the generalized
Zygmund class using Hausdroff means, J. Inequal. Appl. 2017(1) (2017), Article ID 101.

[12] S. Lal and Shireen, Best approximation of functions of generalized Zygmund class by matrix-
Euler summability mean of Fourier series, Bull. Math. Anal. Appl. 5(4) (2013), 1–13.

[13] V. N. Mishra, Some Problems on Approximations of Functions in Banach Spaces, Ph. D. Thesis,
2007.



ON DEGREE OF APPROXIMATION OF SIGNALS... 141

[14] V. N. Mishra, K. Khatri and L. N. Mishra, Approximation of functions belonging to Lip (ξ(t), r)
class by (N, pn)(E, q)-summability of conjugate series of Fourier series, J. Inequal. Appl. 2012
(2012), Article ID 296.

[15] V. N. Mishra, K. Khatri and L. N. Mishra, Product (N, pn)(C, 1)-summability of a sequence of
a sequence of Fourier coefficients, Math. Sci. 6 (2012), Article ID 38.

[16] V. N. Mishra, K. Khatri, L. N. Mishra and Deepmala, Trigonometric approximation of periodic
signals belonging to generalized weighted Lipschitz W (Lr, ξ(t)), (r ≥ 1)-class by Norlund Euler
(N, pn)(E, q) operator of conjugate series of its Fourier series, J. Class. Anal. 5(2) (2014), 91–105.

[17] V. N. Mishra and L. N. Mishra, Trigonometric approximation of signals (functions) in Lp,
(p ≥ 1)-norm, International Journal of Contemporary Mathematical Sciences 7(19) (2012), 909–
918.

[18] V. N. Mishra, V. Sonavane and L. N. Mishra, Lr-Approximation of signals (functions) belonging
to weighted W (Lr, ξ(t))-class by (C1, Np) summability method of conjugate series of its Fourier
series, J. Inequal. Appl. 2013 (2013), Article ID 440.

1Department of Mathematics,
KIIT Deemed to be University,
Bhubaneswar-24, Odisha, India
Email address: m.anwesha17@gmail.com
Email address: birupakhya.padhyfma@kiit.ac.in

2Department of Mathematics,
School of Advanced Sciences,
Vellore Institute of Technology (VIT) University,
Vellore 632 014, Tamil Nadu, India
Email address: lakshminarayanmishra04@gmail.com

3Department of Mathematics,
National Institute of Science and Technology,
Berhampur, Odisha, India
Email address: umakanta_misra@yahoo.com


	1. Introduction
	2. Definitions and Notations
	3. Known Results
	4. Main Theorems
	5. Lemmas
	6. Proof of the Lemmas
	7. Proof of Main Theorems
	References

