CHARACTERIZATION OF GRAPHS OF CONNECTED DETOUR NUMBER 2

GASHAW A. MOHAMMEDSALEH ${ }^{1}$

Abstract

Let $G=(V, E)$ be a connected graph of order $P(G) \geq 2$. The connected detour number of G, denoted $c d n(G)$, is introduced and studied by A. P. Santhakumaran and S. Athisayanathan [7]. In this paper, we characterize connected graph G of $c d n(G)=2$ and of detour diameter $D(G)=5,6$.

1. Introduction

Let $G=(V, E)$ be a connected simple graph of p vertices and q edges. We assume that $p \geq 2$ and it is finite. For $u, v \in V(G)$, the length of a maximum $u-v$ path is called detour distance between u and v, and denoted by $D(u, v)$. A $u-v$ path of length $D(u, v)$ is called $\mathbf{u}-\mathbf{v}$ detour. For a vertex $v \in V$, the detour eccentricity $e_{D}(v)$ is defined by:

$$
\begin{aligned}
e_{D}(v) & =\max \{D(u, v): u \in V\}, \\
\operatorname{diam}_{D}(G) & =\max \left\{e_{D}(v): v \in V(G)\right\} .
\end{aligned}
$$

A vertex $w \in V(G)$ is said to lie on a $u-v$ detour Q, if w is a vertex of $V(Q)$ including u and v. A detour set (denoted d.s.) of G is a subset S of $V(G)$ such that every vertex v of G lies on $x-y$ detour for some $x, y \in S$. The detour number of G, denoted $d n(G)$, is defined by:

$$
d n(G)=\min \{|S|: S \text { is a detour set of } G\} .
$$

A detour basis of G is a detour set of order $d n(G)$. If S is a detour set of G and the induced subgraph $G[S]$ is connected, then S is called connected detour set

[^0](denoted c.d.s.) of G. The connected detour number of G, denoted $\operatorname{cdn}(G)$, is defined as:
$$
c d n(G)=\min \{|S|: S \text { is a connected detour set of } G\} .
$$

A connected detour basis of G is a connected detour set of G of order $\operatorname{cdn}(G)$. For the definitions of the concepts not given here, we refer to $[1,3-7]$. There are many research on connected detour number and edge detour graphs (see [8-10]). Ahmed and Ali [2], determined detour number for three special classes of graphs G, namely, unicyclic graphs, bicyclic graphs, and cog-graphs for C_{p}, K_{p} and $K_{m, n}$. In [7], the authors A. P. Santhakumaran and S. Athisayanathan characterized connected graphs G of $c d n(G)=2$ and $D(G) \leq 4$. In this paper, we characterize graphs G of $D(G)=5$ and 6 for which $\operatorname{cdn}(G)=2$.

2. Characterizations of Graphs G with $D(G)=5$ and $c d n(G)=2$

We start with the following proposition for graphs G having $\operatorname{cdn}(G)=2$.
Proposition 2.1. Let G be a connected graph of order $P(G) \geq 3$. If $\operatorname{cdn}(G)=2$, then G contains neither end-vertices nor cut-vertices.

Proof. (1) If v is an end-vertex of G and u is the vertex adjacent to v, then v is a cut-vertex, and $G-\{u, v\}$ contains at least one vertex, say w. Since u and v are in every c.d.s. of G; and $u v$ is the only $u-v$ detour, then $\{u, v\}$ is not a c.d.s. of G [7]. Thus, $\operatorname{cdn}(G) \geq 3$, contradicting the hypothesis. Therefore, G does not contain end-vertices.
(2) Now, assume that G contains a cut-vertex x and $\{x, y\}$ is a connected detour basis of G. By the proof of part (1), G contains no end-vertices, so y is not end-vertex. Let H_{1} and H_{2} be components of $G-\{x\}$, and let $y \in V\left(H_{1}\right)$. Since $P(G) \geq 3$, then H_{2} contains at least one vertex. Clearly, every $x-y$ detour does not contain vertices from H_{2}, contradicting the definition of d.s. Thus, G does not contain cut-vertices.

Now we proceed to find graphs G with detour diameter $D(G)=5$ for which $c d n(G)=2$.

Theorem 2.1. Let G be a connected graph of $P(G) \geq 6$ and with $D(G)=5$. Then, $\operatorname{cdn}(G)=2$ if and only if G is a cycle graph C_{6}, with or without any number of chords, or like the graph $G_{i}(i=1,2)$ depicted in Figure 1.

Proof. It is easy to verify that for C_{6} and for each $G_{i}(i=1,2) D\left(C_{6}\right)=D\left(G_{i}\right)=5$ and $\operatorname{cdn}\left(C_{6}\right)=\operatorname{cdn}\left(G_{i}\right)=2$, in which a, b is a detour basis of G_{i}.

To prove the converse, let G be a connected graph of $P(G) \geq 6$ and with $D(G)=5$, $\operatorname{cdn}(G)=2$. Then, by Proposition 2.1, G does not contain end-vertices and cutvertices. Since $D(G)=5$ and G is connected, then the circumference of G (denoted by $\operatorname{cir}(G))$ is $3 \leq \operatorname{cir}(G) \leq 6$. Therefore, we shall consider four cases for $\operatorname{cir}(G)$.

Figure 1.
Case (1). Let $\operatorname{cir}(G)=3$ and $P=\left(v_{1}, v_{2}, \ldots, v_{6}\right)$ is a $v_{1}-v_{6}$ detour diameter in G (see Figure 2).

Figure 2. P for $\operatorname{cir}(G)=3$.
Then v_{1} is not adjacent to v_{4}, v_{5}, v_{6}; and v_{6} is not adjacent to v_{2} and v_{3}. Moreover, v_{1} and v_{6} are not adjacent to any vertex other than $V(P)$. Since $\operatorname{deg} v_{i}=2,(i=1, \ldots, 6)$, then v_{1} must be adjacent to v_{3}, and v_{6} must be adjacent to v_{4}. By Proposition 2.1, G contains no cut-vertices, therefore there is either a $v_{2}-v_{5}$ path in G, or $v_{2}-v_{4}$ path and $v_{3}-v_{5}$ path. Each of the two possibilities implies the existence of a cycle of length ≥ 6 in G, contradicting our assumption. Thus, in this case there is no graph that fulfills the required conditions.

Case (2). Let $\operatorname{cir}(G)=4$, and $P=\left(v_{1}, v_{2}, \ldots, v_{6}\right)$ be a $v_{1}-v_{6}$ detour diameter of G (see Figure 3).

Figure 3.
Then v_{1} is not adjacent to v_{5} and v_{6}; and v_{6} is not adjacent to v_{2}. Thus, v_{1} is adjacent to v_{3} or v_{4}, and v_{6} is adjacent to v_{3} or v_{4}. Therefore, we consider four subcases.
(a) If $v_{1} v_{3}, v_{6} v_{4} \in E(G)$, then, as explained in case $(1), \operatorname{cir}(G) \geq 6$, a contradiction.
(b) If $v_{1} v_{3}, v_{6} v_{3} \in E(G)$, then either there is in G a $v_{2}-v_{4}$ path or $v_{2}-v_{5}$ path. Each of the two possibilities produces a graph G having $\operatorname{cir}(G) \geq 5$; a contradiction.
(c) If $v_{1} v_{4}, v_{6} v_{4} \in E(G)$, then, as in subcase (b), we arrive to a contradiction.
(d) If $v_{1} v_{4}, v_{6} v_{3} \in E(G)$, then G contains the 6 -cycle $\left(v_{1}, v_{2}, v_{3}, v_{6}, v_{5}, v_{4}, v_{1}\right)$ and so $\operatorname{cir}(G) \geq 6$, a contradiction.

Therefore, in case (2) there is no graph that satisfies the required conditions of the theorem.

Case (3). Let $\operatorname{cir}(G)=5$ and $P=\left(v_{1}, v_{2}, \ldots, v_{6}\right)$ is a $v_{1}-v_{6}$ detour diameter, then v_{1} is not adjacent to v_{6}, and each of v_{1}, v_{6} is not adjacent to any vertex not in $V(P)$. By Proposition 2.1, $\operatorname{deg} v_{i} \geq 2(i=1,6)$. Therefore, we have consider the following nine subcases.

Figure 4.
(a) If $v_{1} v_{5}, v_{2} v_{6} \in E(G)$, then such graph is like G_{1} with $n=0$ and without the edges $u_{1} u_{3}, u_{2} u_{4}$, in Figure 1.
(b) If $v_{1} v_{5}, v_{3} v_{6} \in E(G)$, then such graph is like G_{1} with $n=0$ and without the edges $u_{2} u_{4}$.
(c) If $v_{1} v_{5}, v_{4} v_{6} \in E(G)$, then G contains the 6 -cycle $\left(v_{1}, v_{5}, v_{6}, v_{4}, v_{3}, v_{2}, v_{1}\right)$, contradicting our assumption.
(d) If $v_{1} v_{4}, v_{2} v_{6} \in E(G)$, then G is like G_{2} with $m=n=0$ and without the edge $u_{1} u_{3}$ and $u_{2} u_{4}$.
(e) If $v_{1} v_{4}, v_{3} v_{6} \in E(G)$, then G contains the 6 -cycle $\left(v_{1}, v_{2}, v_{3}, v_{6}, v_{5}, v_{4}, v_{1}\right)$, contradicting our assumption.
(f) If $v_{1} v_{4}, v_{4} v_{6} \in E(G)$, then by Proposition 2.1, there must be a $v_{3}-v_{5}$ path or $v_{2}-v_{5}$ path. If G contains $v_{3}-v_{5}$ path, then G contains a cycle of length ≥ 6, a contradiction. Now, assume that G contains a $v_{2}-v_{5}$ path, of length \geq 2 then G contains $v_{2} v_{5} \in E(G)$, then G is like G_{2} in Figure 1 with $m=n=0$.
(g) If $v_{1} v_{3}, v_{2} v_{6} \in E(G)$, then G contains the 6 -cycle ($v_{1}, v_{3}, v_{4}, v_{5}, v_{6}, v_{2}, v_{1}$), contradicting the assumption.
(h) If $v_{1} v_{3}, v_{3} v_{6} \in E(G)$, then as in subcase (f) either G is like G_{2} with $m=n=0$, or $\operatorname{cir}(G) \geq 6$.
(i) If $v_{1} v_{3}, v_{4} v_{6} \in E(G)$, then by Proposition 2.1, either G contains $v_{2}-v_{5}$ path, or $v_{2}-v_{4}$ path and $v_{3}-v_{5}$ path, see Figure 5.

Figure 5.

If G contains a $v_{2}-v_{5}$ path Q, then G contains a cycle $\left(v_{1}, v_{3}, v_{4}, v_{6}, v_{5}, Q, v_{2}, v_{1}\right)$, of length ≥ 6, a contradiction. If G contains a $v_{2}-v_{4}$ path R_{1} and $v_{3}-v_{5}$ path R_{2}, then G contains a cycle $\left(v_{1}, v_{3}, R_{2}, v_{5}, v_{6}, v_{4}, R_{1}, v_{2}, v_{1}\right)$, of length ≥ 6 contradicting our assumption.

In view of the explanations in the subcases (a)-(i) we deduce that G_{1} and G_{2} in Figure 1 are of the general forms that satisfy the requirements of the theorem in this case.

Case (4). Let $\operatorname{cir}(G)=6$, and C be a 6 -cycle in G. Because $D(G)=5$, then there is no vertex in G, other than the vertices of C, adjacent to a vertex of C. Therefore, $P(G)=6$ and so G is C_{6} with, or without some chords. Hence, the proof of the theorem is completed.

3. Characterization of Graphs G with $D(G)=6$ and $c d n(G)=2$

In the following proposition we establish that if G is a block of $D(G)=6$, then the circumference of G is more than four.

Proposition 3.1. Let G be a block of order $p \geq 7$ and with $D(G)=6$, then $\operatorname{cir}(G)=$ 5, 6 or 7 .

Proof. Let $P=\left(u_{1}, u_{2}, \ldots, u_{6}, u_{7}\right)$ be a detour diameter of G, shown in Figure 6 .

Figure 6.
Since G is a block, then it does not contain cut-vertices and end-vertices. Because $D(G)=6$, then u_{1} and u_{7} each is not adjacent to any vertex other than $u_{2}, u_{3}, \ldots, u_{6}$. It is clear that $\operatorname{cir}(G) \leq 7$. If u_{1} is adjacent to u_{5}, u_{6} or u_{7}, and/or u_{7} is adjacent to u_{1}, u_{2} or u_{3}, then G contains a cycle of length more than four (see Figure 6). To compute the proof we shall show that G contains a cycle of length 5,6 or 7 if u_{1} is adjacent to u_{3} or u_{4}, and u_{7} is adjacent to u_{4} or u_{5}. So, we consider the following four cases.

Case (1). If $u_{1} u_{3}, u_{7} u_{4} \in E(G)$, then we have the following four subcases.
(a) G contains a $u_{2}-u_{6}$ path Q_{1} which is edge-disjoint from P, this implies that G contains l-cycle $\left(u_{3}, u_{1}, u_{2},\left(Q_{1}\right), u_{6}, u_{7}, u_{4}, u_{3}\right)$ of length $l \geq 6$.
(b) G contains the edge $u_{2} u_{5}$ which implies that G contains the 7 -cycle (u_{3}, u_{1}, u_{2}, $\left.u_{5}, u_{6}, u_{7}, u_{4}, u_{3}\right)$.
(c) G contains edges $u_{2} u_{4}$ and $u_{3} u_{5}$, this implies that G contains the 7-cycle $\left(u_{2}, u_{1}, u_{3}, u_{5}, u_{6}, u_{7}, u_{4}, u_{2}\right)$.
(d) G contains a $u_{2}-u_{4}$ path Q_{2} and a $u_{3}-u_{6}$ path Q_{3}, which are edge-disjoint from P; this implies that G contains the cycle $\left(u_{3}, u_{1}, u_{2},\left(Q_{2}\right), u_{4}, u_{5}, u_{6},\left(Q_{3}\right), u_{3}\right)$ of length $l \geq 6$ (see Figure 7).

Figure 7.
Case (2). If $u_{1} u_{3}, u_{7} u_{5} \in E(G)$, then we have two subcases.
(i) G contains the edge $u_{2} u_{6}$, which implies that G contains the 7 -cycle $\left(u_{3}, u_{1}, u_{2}\right.$, $\left.u_{6}, u_{7}, u_{5}, u_{4}, u_{3}\right)$.
(ii) G contains a $u_{2}-u_{5}$ path R_{1} and a $u_{3}-u_{6}$ path R_{2} which are edge disjoint from $E(P)$, which implies that G contains cycle $\left(u_{3}, u_{1}, u_{2},\left(R_{1}\right), u_{5}, u_{7}, u_{6},\left(R_{2}\right), u_{3}\right)$ of length $l \geq 6$ (see Figure 8).

Figure 8.
Case (3). If $u_{1} u_{4}, u_{5} u_{7} \in E(G)$, then, as in case (2), G contains a cycle of length 6 or 7 .

Case (4). If $u_{1} u_{4}, u_{4} u_{7} \in E(G)$, then we have four subcases for the cycles in G.
$(\alpha) G$ contains a $u_{2}-u_{5}$ path F_{1} other than $\left(u_{2}, u_{3}, u_{4}, u_{5}\right)$, this implies that G contains a cycle $\left(u_{2}, u_{1}, u_{4}, u_{7}, u_{6}, u_{5},\left(F_{1}\right), u_{2}\right)$ of length ≥ 6 (see Figure 9).
(β) G contains a $u_{2}-u_{6}$ path F_{2}, this produces that G contains a cycle $\left(u_{2}, u_{3}, u_{4}, u_{5}\right.$, $\left.\left(F_{2}\right), u_{2}\right)$ of length $l \geq 5$.

Figure 9.
$(\gamma) G$ contains the edge $u_{3} u_{5}$ implying that G contains the 7 -cycle $\left(u_{3}, u_{2}, u_{1}, u_{4}, u_{7}\right.$, $\left.u_{6}, u_{5}, u_{3}\right)$.
(δ) G contains a $u_{3}-u_{6}$ path F_{3}, this produces that G contains a cycle $\left(u_{3}, u_{2}, u_{1}, u_{4}\right.$, $\left.u_{7}, u_{6},\left(F_{3}\right), u_{3}\right)$ of length $l \geq 6$.

Hence, the proof of the proposition is completed.
Theorem 3.1. Let G be a connected graph of order $p \geq 7$ and with detour diameter $D(G)=6$. Then, $\operatorname{cdn}(G)=2$ if and only if G is a cycle graph C_{7}^{*}, with or without any number of chords, or G belongs to the family F shown in Figure 10.

$G_{1}, \quad n \geq 2$

$G_{2}, \quad n, m \geq 1$

$G_{7}, \quad n, m \geq 1$

Figure 10. The family F

$$
G_{3}, \quad n \geq 1
$$

$G_{5}, \quad n \geq 1$

G_{4}

$G_{6}, \quad n, m \geq 1$

Proof. It is straightforward to verify that $D\left(C_{7}^{*}\right)=D\left(G_{i}\right)=6$, and $\operatorname{cdn}\left(C_{7}^{*}\right)=$ $c d n\left(G_{i}\right)=2$, in which $\{a, b\}$ is a connected detour basis of $G_{i}(1 \leq i \leq 7)$.

To prove the converse, let G be a connected graph of order $p \geq 7, D(G)=6$ and $\operatorname{cdn}(G)=2$. Then, by the Proposition 2.1, G is a block, and by Proposition 3.1, $\operatorname{cir}(G)=5,6$ or 7 . Thus, we shall consider three cases depending on the circumference of G.

Case (1). Let $\operatorname{cir}(G)=5$ and $C=\left(v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{1}\right)$. Since G is connected and $P(G) \geq 7$, then there is a vertex $u_{1} \neq v_{i}(1 \leq i \leq 5)$ adjacent to a vertex, say v_{1}, of C. Because deg $u_{1} \geq 2$, then either u_{1} is adjacent to another vertex of C not adjacent to v_{1}, or it is adjacent to a vertex $x \neq v_{i}(1 \leq i \leq 5)$. If $u_{1} x \in E(G)$, then x is not adjacent to any other vertex $x \notin V(C)$, and, also, it is not adjacent to any vertex of C, because, otherwise $D(G) \geq 7$ or $\operatorname{cir}(G) \geq 6$. Therefore u_{1} must be adjacent to
non-adjacent vertices of C, say v_{1} and v_{3} and it is not adjacent to any other vertex of G, that is $\operatorname{deg} u_{1}=2$. It is clear that every vertex $y \notin V(C)$ is of degree 2 and adjacent to two non-adjacent vertices of C.

Let $w_{1} \in V(G), w_{1} \notin V(C)$ and $w_{1} \neq u_{1}$, then the following hold.
(a) If $w_{1} v_{1}, w_{1} v_{3} \in E(G)$, then G is like the graph G_{1}, in Figure 10, with $n=2$ (taking $u_{2}=w_{1}$) and with edge $v_{2} v_{4}$ or $v_{2} v_{5}$, and G may contain edge $\left\{v_{1} v_{3}, v_{1} v_{4}, v_{3} v_{5}\right\}$. Therefore, G_{1} is of a general form of this subcase, because $P(G) \geq 7$.
(b) If $w_{1} v_{2}, w_{1} v_{5} \in E(G)$, then $\operatorname{cir}(G) \geq 7$, a contradiction.
(c) If $w_{1} v_{2}, w_{1} v_{4} \in E(G)$, then $\operatorname{cir}(G) \geq 6$, a contradiction.
(d) If $w_{1} v_{1}, w_{1} v_{4} \in E(G)$, (or $w_{1} v_{3}, w_{1} v_{5} \in E(G)$), then G is like the graph G_{2}, in Figure 10, with $m=n=1$ and G may contain some of the edges $v_{1} v_{4}$ or $v_{1} v_{3}$. Therefore, G_{2} is of a general form of this subcase, because $P(G) \geq 7$.

Case (2). Let $\operatorname{cir}(G)=6, C=\left(v_{1}, v_{2}, \ldots, v_{6}, v_{1}\right)$ and let $W=V(G)-V(C)$. If $w \in W$, then $w \mathrm{~S}$ is adjacent to at least two vertices of C, for otherwise $D(G) \geq 7$. Since $\operatorname{cir}(G)=6$, then w is not adjacent to any two adjacent vertices of C. Therefore, every vertex of W is of degree 3 or 2 , and it is not adjacent to any vertex other than the vertices of C. Thus, we shall consider G in the following three subcases.
(a) Let every vertex of W is of degree 3 . If $w \in W$, and w is adjacent to v_{1} then it is adjacent to v_{3} and v_{5}. If in addition to w, there is $w^{\prime} \in W$ adjacent to v_{2}, v_{4} and v_{6}, then G contains the 8 -cycle $\left(v_{1}, w, v_{3}, v_{2}, w^{\prime}, v_{4}, v_{5}, v_{6}, v_{1}\right)$ (see Figure 11) contradicting the assumption. Thus, without loss of generality every vertex of W is adjacent to v_{1}, v_{3} and v_{5}. Therefore, G is like the graph G_{3} in Figure 10 with $n \geq 1$ and a number of dotted chords of C.

Figure 11.
(b) Let every vertex of W is of degree 2. Let u be any vertex in W and assume that u is adjacent to v_{1}. Then u is adjacent to v_{3}, v_{4} or v_{5}. Therefore, we have two general possibilities, namely:
(i) $u v_{1}, u v_{4} \in E(G)$;
(ii) $u v_{1}, u v_{3}\left(\right.$ or $\left.u v_{1}, u v_{5}\right) \in E(G)$.

For subcase (i), if u^{\prime} is another vertex of W, then, for all connections of u^{\prime} with a pair of non-adjacent vertices of C, the graph G will not satisfy the requirements $D=6$ and $c d n=2$. Therefore W consists of exactly one vertex u, and so $P(G)=7$. Hence, G is like the graph G_{4} shown in Figure 10.
(ii) Let $u v_{1}, u v_{3} \in E(G)$. If each $u \in W$ is adjacent to the some non-adjacent pair of $V(C)$ like v_{1}, v_{3}, then G is like G_{5} shown in Figure 10. If there is a vertex $u_{1} \in V(G)$ adjacent to, say v_{1}, v_{3}, and there is at least one vertex $w_{1} \in V(G)$ adjacent to v_{1}, v_{5} (or v_{3}, v_{5}), then G is like G_{6} with $n, m \geq 1$. For other connections of the vertices of W to pairs of non-adjacent vertices of $V(C)$, we have the following.
(a) If $u v_{1}, u v_{3} ; w v_{1}, w v_{5} ; x v_{3}, x v_{5} \in V(G)$, where $x \in W$, then we have a graph like H_{1} shown in Figure 12. Clearly, $\operatorname{cdn}\left(H_{1}\right)=3$, so H_{1} does not fulfill the requirements.
(b) If $u v_{1}, u v_{3} ; w v_{4}, w v_{6} \in V(G)$, then we have a graph like H_{2} shown in Figure 12. Clearly, $D\left(H_{2}\right)=7$, so H_{2} does not fulfil the required conditions.

Figure 12.
(c) Now, assume that W consists of vertices of degree 2 and of degree 3. Let w be a vertex in W of degree 3. Then, without loss of generality, assume that w is adjacent to v_{1}, v_{3} and v_{5}. Let $u \in W$ of degree 2 , then we have the following possibilities.
(1) If u is adjacent to v_{1} and v_{3}, then G is like the graph G_{7}, with $n, m \geq 1$, shown in Figure 10.
(2) If u is adjacent to v_{2} and v_{4}, then G contains a 7 -cycle $\left(v_{1}, v_{6}, v_{5}, w, v_{3}, v_{4}, u, v_{2}\right.$, v_{1}), a contradiction.
(3) If u is adjacent to v_{1} and v_{4}, then $\operatorname{cdn}(G) \geq 2$, a contradiction.
(4) If u is adjacent to v_{3} and v_{5}, then G is like the graph G_{7} in Figure 10.

Hence, the graph G in Case (2), for which $\operatorname{cir}(G)=6$, is in general construction, is like $G_{i}(i=3,4,5,6,7)$.

Case (3). Let $\operatorname{cir}(G)=7$ and $C=\left(v_{1}, v_{2}, \ldots, v_{7}, v_{1}\right)$. If there is a vertex u in G other than the vertices of C, then u is adjacent to a vertex of C, say v_{1}. This implies
that G contains a 7 -path, namely $u, v_{1}, v_{2}, \ldots, v_{7}$, contradicting the hypothesis of the theorem. Therefore, $P(G)=7$, and so G is the 7 -cycle graph C_{7}^{*} with some chords of C.

Hence, the proof of the theorem is completed.

References

[1] K. Abhishek and A. Ganesan, Detour distance pattern of a graph, International Journal of Pure and Applied Mathematics 87 (5) (2013), 719-728.
[2] A. M. Ahmed and A. A. Ali, The connected detour numbers of special classes of connected graphs, J. Math. 20 (2019), 1-9.
[3] G. Chartrand, H. Escuadro and P. Zang, Detour distance in graph, J. Combin. Math. Combin. Copmut. 53 (2005), 75-94.
[4] G. Chartrand, L. Johns and P. Zang, Detour numbers of a graph, Util. Math. Combin. 64 (2003), 97-113.
[5] G. Chartrand and L. Lesnik, Graphs and Digraphs, 6th Edition, Taylor and Francis Group, CRC Press, New York, 2016.
[6] G. Chartrand and P. Zang, Distance in graphs-taking the long view, AKCE Int. J. Graphs Comb. 1(1) (2004), 1-13.
[7] A. P. Santhakumaran and S. Athisayanathan, On the connected detour number of a graph, J. Prime Res. Math. 5 (2009), 149-170.
[8] A. P. Santhakumaran and S. Athisayanathan, The connected detour number of a graph, J. Combin. Math. Combin. Copmut. 69 (2009), 205-218.
[9] A. P. Santhakumaran and P. Titus, The vertex detour number of a graph, AKCE Int. J. Graphs Comb. 4(1) 2007), 99-112.
[10] A. P. Santhakumaran and P. Titus, The connected vertex detour number of a graph, Acta Univ. Sapientiae Math. 2(2) (2010), 146-159.
${ }^{1}$ Department of Mathematics, College of Science,
Salahaddin University/Erbil.
Email address: gashaw.mohammed@su.edu.krd

[^0]: Key words and phrases. Detour distance, detour number, connected detour number.
 2010 Mathematics Subject Classification. Primary: 05C30. Secondary: 05C31, 05C38.
 DOI 10.46793/KgJMat2301.119M
 Received: January 26, 2020.
 Accepted: July 21, 2020.

