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SOME EXTENSIONS OF A THEOREM OF PAUL TURÁN
CONCERNING POLYNOMIALS

N. A. RATHER1, ISHFAQ DAR1, AND A. IQBAL1

Abstract. In this paper, certain new results concerning the maximum modulus
of the polar derivative of a polynomial with restricted zeros are obtained. These
estimates strengthen some well known inequalities for polynomial due to Turán,
Dubinin and others.

1. Introduction

In scientific disciplines like physics, engineering, computer science, biology, physical
chemistry, economics, and other applied areas, experimental observations and investi-
gations when translated into mathematical language are called mathematical models.
The solution of these models could lead to problems of estimating how large or small
the maximum modulus of the derivative of an algebraic polynomial can be in terms
of the maximum modulus of that polynomial. Bounds for such type of problems
are of some practical importance. Since, there are no closed formulae for precise
evaluation of these bounds and whatever is available in literature is in the form of
approximations. However for practical purposes, nobody ever needs exacts bounds
and mathematicians must only indicate methods for obtaining approximate bounds.
These approximate bounds, when computed efficiently, are quite satisfactory for the
needs of investigators and scientists. Therefore there is always a desire to look for
better and improved bounds than those available in literature. It is this aspiration of
obtaining more refined and revamped bounds that has inspired our work in this article.
In this paper, we have generalized and refined some well known results concerning the
polynomials due to Turán [16], Dubinin [6] and others. To begin with let Pn denote
the linear space of all polynomials of the form P (z) = ∑n

ν=0 aνz
ν of degree n ≥ 1
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and let P ′(z) be the derivative of P (z). Then concerning the lower bound for the
maximum of |P ′(z)| in terms of maximum of |P (z)| for class of polynomials P ∈ Pn

not vanishing outside unit disc, Turán [16] showed that

(1.1) max
|z|=1

|P ′(z)| ≥ n

2 max
|z|=1

|P (z)|.

Equality in inequality (1.1) holds for those polynomials P ∈ Pn which have all their
zeros on |z| = 1. As an extension of (1.1), Govil [8] proved that if P ∈ Pn and P (z)
has all its zeros in |z| ≤ k, k ≥ 1, then

(1.2) max
|z|=1

|P ′(z)| ≥ n

1 + kn
max
|z|=1

|P (z)|.

In literature, there exist several generalizations and extensions of (1.1) and (1.2)
(see [1, 2, 4, 5, 13–15]). Dubinin [6] refined inequality (1.1) by proving that if all the
zeros of P ∈ Pn lie in |z| ≤ 1, then

(1.3) max
|z|=1

|P ′(z)| ≥ 1
2

(
n+

√
|an| −

√
|a0|√

|an|

)
max
|z|=1

|P (z)|.

The polar derivative DαP (z) of P ∈ Pn with respect to the point α ∈ C is defined by
DαP (z) := nP (z) + (α− z)P ′(z).

The polynomial DαP (z) is of degree at most n − 1 and it generalizes the ordinary
derivative P ′(z) of P (z) in the sense that

lim
α→∞

DαP (z)
α

= P ′(z),

uniformly for |z| ≤ R, R > 0.
A. Aziz [1], Aziz and Rather ([4,5]) obtained several sharp estimates for maximum

modulus of DαP (z) on |z| = 1 and among other things they extended inequality (1.2)
to the polar derivative of a polynomial by showing that if P ∈ Pn has all its zeros in
|z| ≤ k, k ≥ 1, then for every α ∈ C with |α| ≥ k

(1.4) max
|z|=1

|DαP (z)| ≥ n

(
|α| − k

1 + kn

)
max
|z|=1

|P (z)|.

2. Main Results

In this paper, we obtain certain refinements and generalizations of inequalities (1.1),
(1.2), (1.3) and (1.4). We first prove the following result.

Theorem 2.1. If P ∈ Pn and P (z) has all its zeros in |z| ≤ k, k ≥ 1, then for every
α ∈ C, with |α| ≥ k

max
|z|=1

|DαP (z)| ≥|α| − k

1 + kn

(
n+

√
kn|an|−

√
|a0|√

kn|an|

)(
max
|z|=1

|P (z)| + |an−1|ϕ(k)
k

)
+ ψ(k)|na0 + αa1|,

(2.1)
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where ϕ(k) =
(

kn−1
n

− kn−2−1
n−2

)
or (k−1)2

2 and ψ(k) = 1− 1
k2 or 1− 1

k
according as n > 2

or n = 2.

Remark 2.1. Since all the zeros of P (z) lie in |z| ≤ k, k ≥ 1, it follows that
√

|a0| ≤√
kn|an|. In view of this, inequalities (2.1) refines inequality (1.4).

If we divide the two sides of inequality (2.1) by |α| and let |α| → ∞, we get the
following result.

Corollary 2.1. If P ∈ Pn and P (z) has all its zeros in |z| ≤ k, k ≥ 1, then

max
|z|=1

|P ′(z)| ≥ 1
1 + kn

(
n+

√
kn|an|−

√
|a0|√

kn|an|

)(
max
|z|=1

|P (z)| + |an−1|
k

ϕ(k)
)

+ ψ(k)|a1|,
(2.2)

where ϕ(k) =
(

kn−1
n

− kn−2−1
n−2

)
or (k−1)2

2 and ψ(k) = 1− 1
k2 or 1− 1

k
according as n > 2

or n = 2.

The result is best possible and equality in inequality (2.2) holds for P (z) = zn +kn.

Remark 2.2. As before, it can be easily seen that inequality (2.2) refines inequality
(1.2). Further for k = 1, inequality (2.2) reduces to inequality (1.3).

Next, we present the following result which is generalisation of Theorem 2.1 and in
particular, includes refinement of inequality (1.2) as a special case.

Theorem 2.2. If all the zeros of P ∈ Pn lie in |z| ≤ k, k ≥ 1, then for every α ∈ C
with |α| ≥ k, 0 ≤ l < 1,

max
|z|=1

|DαP (z)| ≥ n

1 + kn

{
(|α| − k

)
max
|z|=1

|P (z)| + (|α| + 1/kn−1)lm
}

+ (|α| − k)
kn(kn + 1)

(√
kn|an|−lm−

√
|a0|√

kn|an|−lm

)(
kn max

|z|=1
|P (z)| − lm

)

+ (|α| − k)|an−1|ϕ(k)
k(1 + kn)

(
n+

√
kn|an|−lm−

√
|a0|√

kn|an|−lm

)
+ ψ(k)|na0 + αa1|,

(2.3)

where m = min|z|=k |P (z)|, ϕ(k) =
(

kn−1
n

− kn−2−1
n−2

)
or (k−1)2

2 and ψ(k) = 1 − 1
k2 or

1 − 1
k

according as n > 2 or n = 2.

If we divide both sides of inequality (2.3) by |α| and let |α| → ∞, we get the
following result.
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Corollary 2.2. If all the zeros of P ∈ Pn lie in |z| ≤ k, k ≥ 1, then for 0 ≤ l < 1

max
|z|=1

|P ′(z)| ≥ n

1 + kn

{
max
|z|=1

|P (z)| + lm

}
+ ψ(k)|a1|

+ 1
kn(kn + 1)

(√
kn|an|−lm−

√
|a0|√

kn|an|−lm

)(
kn max

|z|=1
|P (z)| − lm

)

+ |an−1|
k(1 + kn)

(
n+

√
kn|an|−lm−

√
|a0|√

kn|an|−lm

)
ϕ(k),

(2.4)

where m = min|z|=k |P (z)|, ϕ(k) =
(

kn−1
n

− kn−2−1
n−2

)
or (k−1)2

2 and ψ(k) = 1 − 1
k2 or

1 − 1
k

according as n > 2 or n = 2.

Remark 2.3. For l = 0, Corollary 2.2 reduces to Corollary 2.1 and for k = 1, inequality
(2.4) refines inequality (1.3).

3. Lemmas

We need the following lemmas for the proof of our theorems. The first lemma is due
to Dubinin [6].

Lemma 3.1. If P ∈ Pn and P (z) has all its zeros in |z| ≤ 1, then

(3.1) |P ′(z)| ≥ 1
2

(
n+

√
|an| −

√
|a0|√

|an|

)
|P (z)|, for |z| = 1.

The next lemma is special case of a result due to Aziz and Rather [3, 4].

Lemma 3.2. If P ∈ Pn and P (z) has its all zeros in |z| ≤ 1, then for |z| = 1
|Q′(z)| ≤ |P ′(z)|,

where Q(z) = znP (1/z).

Lemma 3.3. If all the zeros of P ∈ Pn lie in a circular region C and w is any zero
of DαP (z), the polar derivative of P (z), then at most one of the points w and α may
lie outside C.

The above lemma is due to Laguerre (see [10]). The following lemma is due to
Frappier, Rahman and Ruscheweyh [7].

Lemma 3.4. If P (z) is a polynomial of degree at most n ≥ 1, then for R ≥ 1
(3.2) max

|z|=R
|P (z)| ≤ Rn max

|z|=1
|P (z)| − (Rn −Rn−2)|P (0)|, if n ≥ 2,

and
(3.3) max

|z|=R
|P (z)| ≤ Rmax

|z|=1
|P (z)| − (R − 1)|P (0)|, if n = 1.

Next lemma is the famous result of P. D. Lax [9].



SOME EXTENSIONS OF A THEOREM OF PAUL TURÁN 973

Lemma 3.5. If P ∈ Pn does not vanish in |z| < 1, then

|P ′(z)| ≤ n

2 max
|z|=1

|P (z)|, for |z| = 1.

We also need the following lemma.

Lemma 3.6. If P (z) = an
∏n

j=1(z − zj) is a polynomial of degree n ≥ 2 having no
zero in |z| < 1, then for R ≥ 1

(3.4) max
|z|=R

|P (z)| ≤ Rn + 1
2 max

|z|=1
|P (z)| −

(
Rn−1

n
− Rn−2−1

n−2

)
|P ′(0)|, if n > 2,

and

(3.5) max
|z|=R

|P (z)| ≤ R2 + 1
2 max

|z|=1
|P (z)| − (R − 1)2

2 |P ′(0)|, if n = 2.

Proof of Lemma 3.6. For each θ, 0 ≤ θ < 2π, we have

(3.6) P (Reiθ) − P (eiθ) =
R∫

1

eiθP ′(teiθ)dt,

which gives with the help of (3.2) of Lemma 3.4 and Lemma 3.5 for n > 2

|P (Reiθ) − P (eiθ)| ≤
R∫

1

|P ′(teiθ)|dt

≤n

2

R∫
1

tn−1dtmax
|z|=1

|P (z)| −
R∫

1

(tn−1 − tn−3)dt|P ′(0)|

=R
n − 1
2 max

|z|=1
|P (z)| −

(
Rn − 1
n

− Rn−2 − 1
n− 2

)
|P ′(0)|.

Consequently for n > 2 and 0 ≤ θ < 2π, we have
|P (Reiθ)| ≤ |P (Reiθ) − P (eiθ)| + |P (eiθ)|

≤ Rn + 1
2 max

|z|=1
|P (z)| −

(
Rn − 1
n

− Rn−2 − 1
n− 2

)
|P ′(0)|,

which immediately leads to (3.4). Similarly we can prove inequality (3.5) by using
inequality (3.3) of Lemma 3.4. This proves Lemma 3.6. □

Finally we require the following lemma.

Lemma 3.7. If P ∈ Pn has all its zeros in |z| ≤ k, where k ≥ 1, then for 0 ≤ l < 1

max
|z|=k

|P (z)| ≥ 2kn

1 + kn
max
|z|=1

|P (z)| + l

(
kn − 1
kn + 1

)
min
|z|=k

|P (z)|

+ 2kn−1|an−1|
kn + 1

(
kn − 1
n

− kn−2 − 1
n− 2

)
, if n > 2,

(3.7)



974 N. A. RATHER, I. DAR, AND A. IQBAL

and

max
|z|=k

|P (z)| ≥ 2k2

1 + k2 max
|z|=1

|P (z)| + l

(
k2 − 1
k2 + 1

)
min
|z|=k

|P (z)| + k(k − 1)2|a1|
k2 + 1 , if n = 2.

(3.8)

Proof of Lemma 3.7. Since all the zeros of P ∈ Pn lie in |z| ≤ k, k ≥ 1, therefore, all
the zeros of g(z) = P (kz) lie in |z| ≤ 1 and hence all the zeros of f(z) = zng(1/z) =
znP (k/z) lie in |z| ≥ 1. Moreover, m = min|z|=k |P (z)| = min|z|=1 |f(z)|, so that

m|zn| ≤ |f(z)|, for |z| = 1.

We show that for λ ∈ C with |λ| < 1, f(z) + λmzn ̸= 0 in |z| < 1. This is trivially
true if m = 0. Henceforth we suppose that m ̸= 0, so that all the zeros of f(z) lie in
|z| > 1. By the maximum modulus theorem

(3.9) m|zn| < |f(z)|, for |z| < 1.

Now if there is point z = z0 with |z0| < 1, such that f(z0) + λmzn
0 = 0, then

|f(z0)| = |λ||zn
0 |m < |zn

0 |m,

a contradiction to inequality (3.9). Hence, it follows that the polynomial T (z) =
f(z) + λmzn does not vanish in |z| < 1. Applying inequality (3.4) of Lemma 3.6 to
the polynomial T (z), with R = k ≥ 1 and n > 2, we get for |z| = 1,

|f(kz) + λknmzn| ≤kn + 1
2 |f(z) + λmzn| −

(
kn − 1
n

− kn−2 − 1
n− 2

)
|f ′(0)|.

Which implies, for n > 2,

|f(kz) + λmknzn| ≤ kn + 1
2

(
|f(z)| + |λm|

)
−
(
kn − 1
n

− kn−2 − 1
n− 2

)
|f ′(0)|.(3.10)

Choosing argument of λ suitably in the left hand side of inequality (3.10), we get for
n > 2

|f(kz)| + |λ|mkn ≤ kn + 1
2

(
|f(z)| + |λ|m

)
−
(
kn − 1
n

− kn−2 − 1
n− 2

)
kn−1|an−1|.

Replacing f(z) by znP (k/z), we obtain for n > 2 and |z| = 1

kn max
|z|=1

|P (z)| + |λ|mkn ≤kn + 1
2

(
max
|z|=k

|P (z)| + |λ|m
)

−
(
kn − 1
n

− kn−2 − 1
n− 2

)
kn−1|an−1|,

which on simplification yields inequality (3.7). In a similar manner we can prove
inequality (3.8) by applying inequality (3.5) of Lemma 3.6 instead of inequality (3.4)
to the polynomial T (z). This proves Lemma 3.7. □
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4. Proof of the Theorems

Proof of Theorem 2.1. Let f(z) = P (kz). Since P ∈ Pn has all its zeros in |z| ≤ k
where k ≥ 1, therefore, f ∈ Pn and f(z) has all its zeros in |z| ≤ 1. If Q(z) = znf(1/z),
then it is easy to verify that

(4.1) |Q′(z)| = |nf(z) − zf ′(z)|, for |z| = 1.

Combining (4.1) with Lemma 3.2, we get

(4.2) |f ′(z)| ≥ |nf(z) − zf ′(z)|, for |z| = 1.

Now for every α ∈ C with |α| ≥ k, we have for |z| = 1,
|Dα/kf(z)| = |nf(z) + (α/k − z)f ′(z)| ≥ |α/k||f ′(z)| − |nf(z) − zf ′(z)|,

which gives with the help of (4.2)

(4.3) |Dα/kf(z)| ≥
(

|α| − k

k

)
|f ′(z)|.

Consequently,

(4.4) max
|z|=k

|DαP (z)| ≥ (|α| − k) max
|z|=k

|P ′(z)|.

Again since all the zeros of f(z) = P (kz) lie in |z| ≤ 1, therefore, using Lemma 3.1,
we have

|f ′(z)| ≥ 1
2

(
n+

√
kn|an| −

√
|a0|√

kn|an|

)
|f(z)|, for |z| = 1.

Replacing f(z) by P (kz), we obtain

kmax
|z|=1

|P ′(kz)| ≥ 1
2

(
n+

√
kn|an| −

√
|a0|√

kn|an|

)
max
|z|=1

|P (kz)|,

which implies

(4.5) max
|z|=k

|P ′(z)| ≥ 1
2k

(
n+

√
kn|an| −

√
|a0|√

kn|an|

)
max
|z|=k

|P (z)|.

Combining inequality (4.4) and inequality (4.5), we have

(4.6) max
|z|=k

|DαP (z)| ≥ (|α| − k)
2k

(
n+

√
kn|an| −

√
|a0|√

kn|an|

)
max
|z|=k

|P (z)|.

Further since DαP (z) is a polynomial of degree at most n− 1, using inequality (3.2)
of Lemma 3.4, we have for n > 2

max
|z|=R

|DαP (z)| ≤ Rn−1 max
|z|=1

|DαP (z)| − (Rn−1 −Rn−3)|na0 + αa1|.
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Using this inequality and inequality (3.7) of Lemma 3.7 with l = 0 and R = k ≥ 1 in
(4.6), we have for n > 2

kn−1 max
|z|=1

|DαP (z)| − (kn−1 − kn−3)|na0 + αa1|

≥(|α| − k)
2k

(
n+

√
kn|an| −

√
|a0|√

kn|an|

)

×
{

2kn

1 + kn
max
|z|=1

|P (z)| + 2kn−1|an−1|
kn + 1

(
kn − 1
n

− kn−2 − 1
n− 2

)}
,

which on simplification gives

max
|z|=1

|DαP (z)| ≥|α| − k

1 + kn

(
n+

√
kn|an| −

√
|a0|√

kn|an|

)

×
{

max
|z|=1

|P (z)| + |an−1|
k

(
kn − 1
n

− kn−2 − 1
n− 2

)}
+
(
1 − 1/k2

)
|na0 + αa1|, if n > 2.

The above inequality is equivalent to the inequality (2.1) for n > 2. For n = 2, the
result follows on similar lines by using inequality (3.3) of Lemma 3.4 and inequality
(3.8) of Lemma 3.7 in the inequality (4.6). This completes the proof of Theorem
2.1. □

Proof of Theorem 2.2. By hypothesis P ∈ Pn has all zeros in |z| ≤ k, k ≥ 1. If P (z)
has a zero on |z| = k, then m = min|z|=k |P (z)| = 0 and result follows from Theorem
2.1. Henceforth, we suppose that P (z) has all its zeros in |z| < k, k ≥ 1, so that
m > 0. Now if f(z) = P (kz), then f ∈ Pn and f(z) has all zeros in |z| < 1 and
m = min|z|=k |P (z)| = min|z|=1 |f(z)|. This implies

m ≤ |f(z)|, for |z| = 1.

By the Rouche’s Theorem, we conclude that for every λ ∈ C with |λ| < 1, the
polynomial g(z) = f(z) − λmzn has all zeros in |z| < 1. Applying inequality (4.3) to
the polynomial g(z), it follows for |z| = 1 and |α| ≥ k

|Dα/kg(z)| ≥
(

|α| − k

k

)
|g′(z)|.

Since all the zeros of g(z) lie in |z| < 1, using Lemma 3.1, we obtain for |z| = 1 and
|α| ≥ k

|Dα/kg(z)| ≥ 1
2

(
|α| − k

k

)n+

√
|knan − λm| −

√
|a0|√

|knan − λm|

 |g(z)|.
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Using the fact that the function S(x) = x−
√

|a0|
x

, x > 0, is non-decreasing function
of x and |knan − λm| ≥ kn|an| − |λ|m > 0, we get for every λ ∈ C with |λ| < 1 and
|z| = 1

(4.7) |Dα/kg(z)| ≥ 1
2

(
|α| − k

k

)n+

√
kn|an| − |λ|m−

√
|a0|√

kn|an| − |λ|m

 |g(z)|.

Replacing g(z) by f(z) − λmzn in (4.7), we get for |z| = 1 and |α| ≥ k∣∣∣∣∣Dα/kf(z) − nmαλ

k
zn−1

∣∣∣∣∣
≥1

2

(
|α| − k

k

)(
n+

√
kn|an| − |λ|m−

√
|a0|√

kn|an| − |λ|m

)(
|f(z) − λm|

)
.

(4.8)

Since all the zeros of f(z) − λmzn = g(z) lie in |z| < 1 and |α/k| ≥ 1, it follows by
Lemma 3.3 that all the zeros of

Dα/k(f(z) −mλzn) = Dα/kf(z) − nmαλ

k
zn−1

lie in |z| < 1. This implies that

(4.9)
∣∣∣Dα/kf(z)

∣∣∣ ≥ nm|α|
k

|z|n−1, for |z| ≥ 1.

In view of this inequality, choosing argument of λ in the left hand side of inequality
(4.8) such that∣∣∣∣∣Dα/kf(z) − nmαλ

k
zn−1

∣∣∣∣∣ =
∣∣∣Dα/kf(z)

∣∣∣− nm|α||λ|
k

, for |z| = 1,

we get for |z| = 1 and |α| ≥ k∣∣∣Dα/kf(z)
∣∣∣− nm|α||λ|

k

≥1
2

(
|α| − k

k

)n+

√
kn|an| − |λ|m−

√
|a0|√

kn|an| − |λ|m

(|f(z)| − |λ|m
)
,

which on simplification yields

∣∣∣Dα/kf(z)
∣∣∣ ≥ 1

2

(
|α| − k

k

)n+

√
kn|an| − |λ|m−

√
|a0|√

kn|an| − |λ|m

 |f(z)|

− 1
2

(
|α| − k

k

)
√
kn|an| − |λ|m−

√
|a0|√

kn|an| − |λ|m

 |λ|m+ n

2

(
|α| + k

k

)
|λ|m.
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This implies for |z| = 1 and |α| ≥ k

max
|z|=k

|DαP (z)| ≥1
2

(
|α| − k

k

)n+

√
kn|an| − |λ|m−

√
|a0|√

kn|an| − |λ|m

max
|z|=k

|P (z)|

− 1
2

(
|α| − k

k

)
√
kn|an| − |λ|m−

√
|a0|√

kn|an| − |λ|m

 |λ|m+ n

2

(
|α| + k

k

)
|λ|m.

(4.10)

Moreover, since DαP (z) is a polynomial of degree at most n− 1, applying inequality
(3.2) of Lemma 3.4 and inequality (3.7) of Lemma 3.7 with R = k ≥ 1, we obtain for
|α| ≥ k, 0 ≤ l < 1 and |z| = 1

kn−1 max
|z|=1

|DαP (z)| − (kn−1 − kn−3)|na0 + αa1|

≥1
2

(
|α| − k

k

)(
n+

√
kn|an| − lm−

√
|a0|√

kn|an| − lm

)

×
{

2kn

1 + kn
max
|z|=1

|P (z)| + kn − 1
kn + 1 lm+ 2kn−1|an−1|

kn + 1

(
kn − 1
n

− kn−2 − 1
n− 2

)}

− 1
2

(
|α| − k

k

)(√
kn|an| − lm−

√
|a0|√

kn|an| − lm

)
lm+ n

2

(
|α| + k

k

)
lm, if n > 2.

Equivalently, we have for |α| ≥ k, 0 ≤ l < 1 and |z| = 1

max
|z|=1

|DαP (z)| ≥ n

1 + kn

{
(|α| − k

)
max
|z|=1

|P (z)| + (|α| + 1/kn−1)lm
}

+ (|α| − k)
kn(kn + 1)

(√
kn|an| − lm−

√
|a0|√

kn|an| − lm

)(
kn max

|z|=1
|P (z)| − lm

)

+ (|α| − k)|an−1|
k(1 + kn)

(
n+

√
kn|an| − lm−

√
|a0|√

kn|an| − lm

)

×
(
kn − 1
n

− kn−2 − 1
n− 2

)
+ (1 − 1/k2)|na0 + αa1|, if n > 2.

That proves the inequality (2.3) for n > 2. For the case n = 2, the result follows on
similar lines by using inequality (3.3) of Lemma 3.4 and inequality (3.8) of Lemma
3.7 in the inequality (4.10). This completes the proof of Theorem 2.2. □
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