A GENERAL APPROACH TO CHAIN CONDITION IN BL-ALGEBRAS

JAMAL KAZEMIASL ${ }^{1}$, FARHAD KHAKSAR HAGHANI ${ }^{2 *}$, AND SHAHRAM HEIDARIAN ${ }^{2}$

Abstract

In this paper, we present a general definition of the notion of Noetherian and Artinian $B L$-algebra and present a more comprehensive insight at the chain conditions in $B L$-algebras. We derive some theorems which generalize the existence results. We give an axiomatic approach to the notion of being Noetherian and Artinian, which is also applicable to other algebraic structures. We use a theoretical approach to define arithmetic notion that is also possible for other algebraic devices. In this study, we only focus to $B L$-algebras.

1. Introduction

Motamed and Moghaderi [5] introduced the notion of Noetherian and Artinian BLalgebras and provided some results on the subject, which are analogues to the results of the Noetherian and Artinian modules. O. Zahiri [8] defined the notion of length for a filter in $B L$-algebras and derived some new relations between Noetherian and Artinian $B L$-algebras. Zhan and Meng [9] defined another type of chain conditions in terms of the ideals of a $B L$-algebra, and called $B L$-algebras satisfying in the relevant conditions, co-Noetherian and co-Artinian $B L$-algebras. They also proved some results on co-Noetherian and co-Artinian $B L$-algebras which are analogues to the results of the Noetherian and Artinian modules. In this paper, we provide a more general definition of the chain condition in $B L$-algebras that can be defined in any other algebraic structure, but we limit ourselves to $B L$-algebras for simplicity. We provide some theorems on this general definition which generalize the results in [5] and [9].

[^0]The structure of the paper is as follows. In Section 2, we recall some definitions and results about $B L$-algebras which will be used in the sequel. In Section 3, we define the notion of complete family, structural, multiplicative and Noetherian (Artinian) $B L$-algebras with respect to a family of subsets of a $B L$-algebra. We also obtain some results about the relation between Noetherian, Artinian, finitely generated, maximal (minimal) element, multiplicative, onto $B L$-homomorphism and one to one $B L$-homomorphism $B L$-algebras.

2. Preliminaries

In this section, we recall and review some definitions and results, corresponding to co-Noetherian, Noetherian (Artinian) BL-algebras, which will be used throughout of the paper.

An algebra $(A, \wedge, \vee, \odot, \rightarrow, 0,1)$ of the type $(2,2,2,2,0,0)$ is called a $B L$-algebra if for all $a, b, c \in A$ satisfies the following axioms:
($B L 1$) $(A, \wedge, \vee, 0,1)$ is a bounded lattice;
($B L 2$) $(A, \odot, 1)$ is a commutative monoid;
$(B L 3) \odot$ and \rightarrow form an adjoint pair, i.e., $c \leq a \rightarrow b$ if and only if $a \odot c \leq b$;
(BL4) $a \wedge b=a \odot(a \rightarrow b)$;
$(B L 5)(a \rightarrow b) \vee(b \rightarrow a)=1$.
We will denote $\bar{x}=x \rightarrow 0$ and $x^{--}=(\bar{x})^{-}$for all $x \in A$.
Examples of $B L$-algebras [2] are t-algebras, $([0,1], \wedge, \vee, \odot, \rightarrow, 0,1)$, where $([0,1], \wedge$, $\vee, 0,1)$ is the usual lattice on $[0,1]$ and \odot is a continuous t-norm, whereas \rightarrow is the corresponding residuum.

Throughout of this paper by A, we denote the universe of a $B L$-algebra. A $B L$ algebra is nontrivial if $0 \neq 1$. For any $B L$-algebra A, the reduct $L(A)=(A, \wedge, \vee, 0,1)$ is a bounded distributive lattice. We denote the set of natural numbers by \mathbb{N} and define $a^{0}=1$ and $a^{n}=a^{n-1} \odot a$, for $n \in \mathbb{N} \backslash\{0\}$. Hájek [2] defined a filter of a $B L$ algebra A to be a nonempty subset F of A such that (i) if $a, b \in F$ implies $a \odot b \in F$, (ii) if $a \in F, a \leq b$ then $b \in F$. E. Turunen [6] defined a deductive system of a $B L$-algebra A to be a nonempty subset D of A such that (i) $1 \in D$ and (ii) $x \in D$ and $x \rightarrow y \in D$ implies $y \in D$. Note that a subset F of a $B L$-algebra A is a deductive system of A if and only if F is a filter of $A[6]$. Let F be a filter of a $B L$-algebra A, then F is a proper filter if $F \neq A$. A proper filter P of A is called a prime filter of A if for all $x, y \in A, x \vee y \in P$ implies $x \in P$ or $y \in P$. A proper filter P of A is Prime if and only if P can not be expressed as an intersection of two filters properly containing P or equivalently, for all $x, y \in A$, either $x \rightarrow y \in P$ or $y \rightarrow x \in P[6]$.

If F, G and P are filters of A, then P is a prime filter of A if and only if $F \cap G \subseteq P$ implies $F \subseteq P$ or $G \subseteq P$.

In [6], it can be seen that a proper filter M of A is a maximal filter of A if and only if for all $x \notin M$, there exists $n \in \mathbb{N}$ such that $\left(x^{n}\right)^{-} \in M$. Every maximal filter of A is a prime filter of $A[6]$. The set of all filters, prime filters and maximal filters of a $B L$-algebra A are denote by $\digamma(A), \operatorname{Spec}(A)$ and $\operatorname{Max}(A)$, respectively. The
filter of A generated by X is denoted by $\langle X\rangle$, where $X \subseteq A$, in which $\langle\emptyset\rangle=\{1\}$ and $\langle X\rangle=\left\{a \in A: x_{1} \odot x_{2} \odot \cdots \odot x_{n} \leq a\right.$, for some $n \in \mathbb{N}$ and $\left.x_{1}, x_{2}, \ldots, x_{n} \in X\right\}$ [6]. $F \in \digamma(A)$ is called a finitely generated filter, if $F=\left\langle x_{1}, \ldots, x_{n}\right\rangle$, for some $x_{1}, \ldots, x_{n} \in A$ and $n \in \mathbb{N}$. For $F \in \digamma(A)$ and $x \in A \backslash F$, define $F\langle x\rangle=\langle F \cup\{x\}\rangle$ or equally $F\langle x\rangle=\left\{a \in A: a \geq f \odot x^{n}\right.$ for some $f \in F$ and $\left.n \geq 1\right\}$.
Definition 2.1 ([7]). Let A and B be two $B L$-algebras. A map $f: A \rightarrow B$ defined on A, is called a $B L$-homomorphism if for all $x, y \in A, f(x \rightarrow y)=f(x) \rightarrow f(y)$, $f(x \odot y)=f(x) \odot f(y)$ and $f\left(0_{A}\right)=0_{B}$. We also define $\operatorname{ker}(f)=\{a \in A: f(a)=1\}$ and $f(A)=\{f(a): a \in A\}$.
Definition 2.2 ([5]). A $B L$-algebra A is called Noetherian (Artinian), if for every increasing (decreasing) chain of its filters $F_{1} \subseteq F_{2} \subseteq \cdots\left(F_{1} \supseteq F_{2} \supseteq \cdots\right)$, there exists $n \in \mathbb{N}$ such that $F_{i}=F_{n}$ for all $i \geq n$.

Definition 2.3 ([2,4]). Let A be a $B L$-algebra. A nonempty subset $I \subseteq A$ is called an ideal of A, if the following conditions hold:
(i) $0 \in I$;
(ii) if $x \in I$ and $\left(x^{-} \rightarrow y^{-}\right)^{-} \in I$, then $y \in I$.

Definition 2.4 ([9]). A $B L$-algebra A is said to be co-Noetherian with respect to ideals if every ideal of A is finitely generated. We say that A satisfies the ascending chain condition with respect to ideals if for every ascending chain sequence $I_{1} \subseteq I_{2} \subseteq \ldots$ of ideals of A, there exists $n \in \mathbb{N}$ such that $I_{i}=I_{n}$ for all $i \geq n$.

Definition 2.5 ([1,5]). Let A and B be $B L$-algebras. Then for every $a, c \in A$ and $b, d \in B$, we define the product of two $B L$-algebras which is clearly a $B L$-algebra, as follows:

$$
\begin{aligned}
& (a, b) \wedge(c, d)=(a \wedge c, b \wedge d) ; \\
& (a, b) \vee(c, d)=(a \vee c, b \vee d) ; \\
& (a, b) \rightarrow(c, d)=(a \rightarrow c, b \rightarrow d) ; \\
& (a, b) \odot(c, d)=(a \odot c, b \odot d) ; \\
& (a, b) \leq(c, d) \Leftrightarrow(a \leq c, b \leq d) .
\end{aligned}
$$

3. Main Concepts and Results

In this section, regarding to the definitions of co-Noetherian, Noetherian (Artinian), multiplicative and $P \mathcal{F} B L$-algebras and using related mentioned theorems, we derive some new results of finitely generated, maximal (minimal) element, onto $B L$-homomorphism, one-to-one $B L$-homomorphism, in a Noetherian (Artinian) $B L$ algebras.
Definition 3.1. Let A be a $B L$-algebra and \mathcal{F} be a family of subsets of $A . A$ is said to be Noetherian with respect to family \mathcal{F}, if for any chain of elements of \mathcal{F}, $F_{1} \subseteq F_{2} \subset \cdots$, there exists $n \in \mathbb{N}$ such that $F_{i}=F_{n}$ for all $i \geq n$. We may similarly define Artinian $B L$-algebras.

Example 3.1. We know that every finite $B L$-algebra A is Noetherian and Artinian [5]. Therefore, if \mathcal{F} is a family of subsets of A, since \mathcal{F} is finite, so A is Noetherian (Artinian) with respect to family \mathcal{F}.

Theorem 3.1. Let A be a BL-algebra and \mathcal{F} be a family of subsets of A. Then A is Noetherian (Artinian) with respect to \mathcal{F} if and only if any set of elements of \mathcal{F} has a maximal (minimal) element.

Proof. Let A be a Noetherian $B L$-algebra with respect to \mathcal{F} and S be a nonempty set of elements of \mathcal{F} which does not have a maximal element, then, there exists $F_{1} \in \mathcal{F}$. Since S does not have a maximal element, there is $F_{2} \in S$ such that $F_{1} \subset F_{2}$. By continuing this procedure, we obtain the following increasing chain of elements of \mathcal{F} : $F_{1} \subset F_{2} \subset \cdots$, which is a contradiction. So S has a maximal element.

Conversely, let $F_{1} \subseteq F_{2} \subseteq \cdots$, be an increasing chain of elements of \mathcal{F} and put $S=\left\{F_{i}: i \in \mathbb{N}\right\}$. Since S is nonempty, then it has a maximal element F_{n}. Thus $F_{i}=F_{n}$ for all $i \geq n$ and A is Noetherian with respect to \mathcal{F} (Artinian case can be treated similarly).

Definition 3.2. Let A be a $B L$-algebra and \mathcal{F} be a family of subsets of A which is closed under intersection operation (that is intersection of any number of elements of \mathcal{F} is also an element of \mathcal{F}). If $B \subseteq A$, then the set generated by B in \mathcal{F} is defined as the intersection of all elements of \mathcal{F} containing B and denoted by $\langle B\rangle$, i.e.,

$$
\langle B\rangle=\bigcap_{B \subseteq F}^{F \in \mathcal{F}} F,
$$

$\langle B\rangle$ is said to be finitely generated if there exists a set $C \subseteq A$ such that $\langle B\rangle=\langle C\rangle$ and C is finite.

Example 3.2. Let $A=\{0, a, b, c, 1\}$, with $0<c<a<1$ and $0<c<b<1$. For every $x, y \in A$, we define the operations " \odot " and " \rightarrow " as follows:

\odot	0	c	a	b	1
0	0	0	0	0	0
c	0	c	c	c	c
a	0	c	a	c	a
b	0	c	c	b	b
1	0	c	a	b	1

\rightarrow	0	c	a	b	1
0	1	1	1	1	1
c	0	1	1	1	1
a	0	b	1	b	1
b	0	a	a	1	1
1	0	c	a	b	1

Then it is easy to see that $(A, \wedge, \vee, \odot, \rightarrow, 0,1)$ is a $B L$-algebra [3]. If we consider $\mathcal{F}=\left\{F_{1}, F_{2}, F_{3}, F_{4}\right\}$ and $B=\{b\} \subseteq A$, where $F_{1}=\{0, a\}, F_{2}=\{0, a, b\}, F_{3}=$ $\{0, a, b, 1\}$ and $F_{4}=\{0, a, b, c, 1\}$, then

$$
\langle\{b\}\rangle=\bigcap_{\{b\} \subseteq F_{i}}^{F_{i} \in \mathcal{F}} F_{i}=F_{2} \cap F_{3} \cap F_{4}=\{0, a, b\} .
$$

Definition 3.3. Let \mathcal{F} be a family of subsets of $B L$-algebra $A . \mathcal{F}$ is said to be complete if for any subset B of $A,\langle B\rangle$ is nonempty.

Example 3.3. Let $A=\{0, a, 1\}$. For every $x, y \in A$, we define the operations " \odot " and " \rightarrow " as follows:

\odot	0	a	1
0	0	0	0
a	0	a	a
1	0	a	1

\rightarrow	0	a	1
0	1	1	1
a	0	1	1
1	0	a	1

Then it is easy to see that $(A, \wedge, \vee, \odot, \rightarrow, 0,1)$ is a $B L$-algebra.
Let $\mathcal{F}=\{\{a\},\{0, a\},\{0, a, 1\}\}$, then \mathcal{F} is complete, since for every element of the powerset of A, we have: $\langle\{0\}\rangle=\{0, a\} \cap\{0, a, 1\}=\{0, a\},\langle\{a\}\rangle=\langle\emptyset\rangle=$ $\{a\} \cap\{0, a\} \cap\{0, a, 1\}=\{a\},\langle\{0, a\}\rangle=\{0, a\} \cap\{0, a, 1\}=\{0, a\},\langle\{0,1\}\rangle=$ $\langle\{a, 1\}\rangle=\langle\{0, a, 1\}\rangle=\{0, a, 1\},\langle\{1\}\rangle=\{0, a, 1\}=\{1\}$.

Definition 3.4. Let A be a $B L$-algebra and \mathcal{F} be a complete family which is closed under intersection. Then \mathcal{F} is said to be closed under chain union if for any chain $F_{1} \subseteq F_{2} \subseteq \cdots$, of elements of $\mathcal{F}, \bigcup_{i=1}^{\infty} F_{i}$ also belongs to \mathcal{F}.

Example 3.4. (i) The family \mathcal{F} in Example 3.2, is closed under chain union.
(ii) If we define the operations " \odot " and " \rightarrow " on $A=[0,1]$ (real unit interval) by $x \odot y=\min \{x, y\}$ and

$$
x \rightarrow y= \begin{cases}1, & x \leq y \\ y, & x>y\end{cases}
$$

then $(A, \wedge, \vee, \odot, \rightarrow, 0,1)$ is a $B L$-algebra (Gödel structure) [7]. Now, the family $\mathcal{F}=\left\{(0,1], F_{n}=\left[\frac{1}{n}, 1\right]_{n \geq 1}\right\}=\left\{(0,1], F_{1}, F_{2}, F_{3}, \ldots, F_{n}, \ldots\right\}$, is closed under chain union.

Theorem 3.2. Let A be a BL-algebra and \mathcal{F} be a family of subsets of A which is closed under intersection and chain union. Then A is Noetherian with respect to \mathcal{F} if and only if any element of \mathcal{F} is finitely generated.

Proof. Set $S=\{G \in \mathcal{F}: G \subseteq F, G$ is finitely generated $\}$. Since F is nonempty, then it has an element x and $\langle x\rangle \in S$. By Theorem 3.1, it has a maximal element F_{1}. By definition of $S, F_{1} \subseteq F$ and $F_{1}=\left\langle x_{1}, \ldots, x_{n}\right\rangle$ for some $n \in \mathbb{N}$ and $x_{1}, x_{2}, \ldots, x_{n} \in A$. Since F is not finitely generated so $F_{1} \subset F$ and there exists $x \in F \backslash F_{1}$. We also have $\left\langle x_{1}, \ldots, x_{n}, x\right\rangle \subseteq F$ and $\left\langle x_{1}, \ldots, x_{n}, x\right\rangle \in S$ which contradicts the maximality of F_{1}, i.e., F is finitely generated.

Conversely, let any element of \mathcal{F} be finitely generated and $F_{1} \subseteq F_{2} \subseteq \cdots$, be an increasing chain of elements of \mathcal{F}. We set $F=F_{1} \cup F_{2} \cup \cdots$, thus \mathcal{F} is finitely generated by definition and $F=\left\langle x_{1}, \ldots, x_{n}\right\rangle$ for $x_{i} \in A$. Now, by chaining condition, there exists $m \in \mathbb{N}$ such that $x_{1}, \ldots, x_{n} \in F_{m}$ and so $F=\left\langle x_{1}, \ldots, x_{n}\right\rangle \subseteq F_{m} \subseteq F$. Thus, $F_{m}=F_{i}$ for $i \geq m$ and A is Noetherian with respect to \mathcal{F}.

If \mathcal{F} is a family of all filters of the $B L$-algebra A, then we obtain the concept of Noetherian and Artinian $B L$-algebra, which is introduced by Motamed and Moghaderi [5]. When \mathcal{F} is a family of all ideals of the $B L$-algebra A, we obtain the concept of co-Noetherian and co-Artinian $B L$-algebra which is introduced in [9].
Definition 3.5. Let \mathcal{A} be the family of all $B L$-algebras. Then \mathcal{F} is said to be a complete family for elements of \mathcal{A} if for every element A of \mathcal{A} there exists $F_{1} \in \mathcal{F}$ such that F_{1} is a complete family for A and is closed under intersection.

Definition 3.6. Let \mathcal{F} be a complete family for all $B L$-algebras, then \mathcal{F} is said to be structural if it has the following property.

If A_{1} and A_{2} are two $B L$-algebras and $\varphi: A_{1} \rightarrow A_{2}$ is an onto $B L$-homomorphism, then $\varphi^{-1}(F)$ is also an element of \mathcal{F}, for every $F \in \mathcal{F}, F \subseteq A_{2}$.
Theorem 3.3. Let \mathcal{F} be a structural family for the family of the all BL-algebras. If A_{1}, A_{2} are two BL-algebras, $\psi: A_{1} \rightarrow A_{2}$ is an onto $B L$-homomorphism and A_{1} is Noetherian with respect to \mathcal{F}, then A_{2} is also Noetherian with respect to \mathcal{F}.

Proof. Let $F_{1} \subseteq F_{2} \subseteq \cdots$, be a chain of elements of \mathcal{F} for A_{2}. Then, by Definition 3.6, $\psi^{-1}\left(F_{1}\right) \subseteq \psi^{-1}\left(F_{2}\right) \subseteq \cdots$, is a chain of elements of \mathcal{F} for $A_{1} . A_{1}$ is Noetherian with respect to family \mathcal{F}, then there exists $n \in \mathbb{N}$ such that $\psi^{-1}\left(F_{i}\right)=\psi^{-1}\left(F_{n}\right)$ for all $i \geq n$. Since ψ is an onto $B L$-homomorphism, then $F_{i}=F_{n}$ for all $i \geq n$. Hence, A_{2} is also Noetherian with respect to \mathcal{F}.

Definition 3.7. Let \mathcal{F} be a complete family for $B L$-algebra A which is closed under intersection and $F \in \mathcal{F}$. Then F is said to be cyclic if there exists $a \in A$ such that $F=\langle a\rangle$. If any $F \in \mathcal{F}$ is cyclic, then A is called principal with respect to \mathcal{F} which is denoted by $P \mathcal{F}-B L$.
Example 3.5. We consider $B L$-algebra A and collection \mathcal{F} in Example 3.3, then $\{a\}=$ $\langle a\rangle=\langle\{a\}\rangle$, i.e., $\{a\}$ is cyclic.
Theorem 3.4. Let A be a BL-algebra and \mathcal{F} be a complete family for A such that any element $F \in \mathcal{F}$ which is generated by two elements, is cyclic. If A is Noetherian with respect to family \mathcal{F}, then A is $P \mathcal{F}-B L$.
Proof. Let $F \in \mathcal{F}$, then by Theorem 3.2, F is finitely generated. So $F=\left\langle x_{1}, \ldots, x_{n}\right\rangle$ for some $n \in \mathbb{N}$ and $x_{1}, \ldots, x_{n} \in A$. We proceed by mathematical induction. From induction hypothesis, there is $b \in A$ such that $\left\langle x_{1}, \ldots, x_{n-1}\right\rangle=\langle b\rangle$. Thus, $\left\langle x_{1}, \ldots, x_{n}\right\rangle=\left\langle b, x_{n}\right\rangle$. So by hypothesis, there exists $a \in A$ such that $\left\langle b, x_{n}\right\rangle=\langle a\rangle$. Therefore, $F=\langle a\rangle$, i.e., F is cyclic.
Theorem 3.5. Let A be a BL-algebra and \mathcal{F} be a complete family for A which is closed under intersection. If A is $P \mathcal{F}-B L$ and \mathcal{F} is closed under chain union, then A is Noetherian with respect to \mathcal{F}.

Proof. Let $F_{1} \subseteq F_{2} \subseteq \cdots$, be a chain of elements of \mathcal{F}. Then $F=F_{1} \cup F_{2} \cup \cdots$, is also an element of \mathcal{F}. Since A is $P \mathcal{F}-B L$, then $F=\langle a\rangle$ for some $a \in A$. So, there
exists $t \in \mathbb{N}$ such that $a \in F_{t}$. Thus, $F_{i}=F_{t}=F$ for all $i \geq t$ and A is Noetherian with respect to \mathcal{F}.

Theorem 3.6. Let A be a BL-algebra and \mathcal{F} be a complete family for A such that any chain of finitely generated elements of \mathcal{F} is stopping. Then A is Noetherian with respect to \mathcal{F}.

Proof. We assume that A is not Noetherian with respect to \mathcal{F}. By Theorem 3.2, there is an element $F \in \mathcal{F}$ which is not finitely generated. Thus, there is $a_{1} \in F$ such that $\left\langle a_{1}\right\rangle \subsetneq F$. So, there exists $a_{2} \in F \backslash\left\langle a_{1}\right\rangle$ such that $\left\langle a_{1}, a_{2}\right\rangle \subsetneq F$. By continuing this procedure, we come to a proper increasing chain of finitely generated elements of $\mathcal{F}\left(\left\langle a_{1}\right\rangle \subsetneq\left\langle a_{1}, a_{2}\right\rangle \subsetneq \cdots\right)$, which is a contradiction. Therefore, A is a Noetherian $B L$-algebra with respect to \mathcal{F}.

Definition 3.8. Let \mathcal{A} be a family of all $B L$-algebras and \mathcal{F} be a complete family for \mathcal{A}. Then \mathcal{F} is said to be multiplicative if for every two $B L$-algebras A and B, the following properties hold.
(i) If $F, G \in \mathcal{F}, F \subseteq A$ and $G \subseteq B$, then $F \times G \in \mathcal{F}$, where $F \times G \subseteq A \times B$.
(ii) If $F \times G$ is an element of \mathcal{F} which is a subset of $A \times B$, then F and G are also elements of \mathcal{F}.

Theorem 3.7. Let \mathcal{A} be a family of all $B L$-algebras and \mathcal{F} be a complete family for \mathcal{A}. If \mathcal{F} is multiplicative, then A_{1} and A_{2} are Noetherian with respect to \mathcal{F} if and only if $A_{1} \times A_{2}$ is Noetherian with respect to \mathcal{F}.
Proof. Let $A_{1} \times A_{2}$ be Noetherian with respect to \mathcal{F}. If $F_{1} \subseteq F_{2} \subseteq \cdots$, is a chain for A_{1}, then by multiplicity of $\mathcal{F}, F_{1} \times\langle a\rangle \subseteq F_{2} \times\langle a\rangle \subseteq \cdots$, is a chain for $A_{1} \times A_{2}$, for any $a \in A_{2}$. Since $A_{1} \times A_{2}$ is Noetherian, there exists $n \in \mathbb{N}$ such that $F_{i} \times\langle a\rangle=F_{n} \times\langle a\rangle$ for all $i \geq n$. Therefore, $F_{i}=F_{n}$ for all $i \geq n$ and A_{1} is Noetherian with respect to \mathcal{F}. Similarly, we may prove that A_{2} is Noetherian with respect to \mathcal{F}.

Conversely, let A_{1} and A_{2} be Noetherian $B L$-algebras with respect to \mathcal{F} and $F_{1} \times$ $G_{1} \subseteq F_{2} \times G_{2} \subseteq \cdots$, be a chain for $A_{1} \times A_{2}$. Then by hypothesis, $F_{1} \subseteq F_{2} \subseteq \cdots$, and $G_{1} \subseteq G_{2} \subseteq \cdots$ are chains for A_{1} and A_{2}, respectively. So, there exist $n, m \in \mathbb{N}$ such that $F_{i}=F_{n}, G_{j}=G_{m}$ for all $i \geq n$ and $j \geq m$. We set $k=\max \{n, m\}$, then $F_{i} \times G_{i}=F_{k} \times G_{k}$ for all $i \geq k$. Therefore, $A_{1} \times A_{2}$ is Noetherian with respect to \mathcal{F} (Artinian case can be treated similarly).

Corollary 3.1. Let \mathcal{A} be a family of all BL-algebras and \mathcal{F} be a complete family for \mathcal{A} which is multiplicative. If $A_{1}, A_{2}, \ldots, A_{n}$ are BL-algebras, then $A_{1}, A_{2}, \ldots, A_{n}$ are Noetherian (Artinian) with respect to \mathcal{F} if and only if $A_{1} \times A_{2} \times \cdots \times A_{n}$ is Noetherian (Artinian) with respect to \mathcal{F}.
Proof. Let $A_{1} \times A_{2} \times \cdots \times A_{n}$ be Noetherian with respect to \mathcal{F}. We complete the proof by induction on n. For $n=1$, the induction holds. If $n=2$, by Theorem 3.7, it is true. Let for $n=k$ it is true, i.e., if $A_{1} \times A_{2} \times \cdots \times A_{k}$ is Noetherian with respect to \mathcal{F}, then $A_{1}, A_{2}, \ldots, A_{k}$ are Noetherian with respect to \mathcal{F}. Let $B=A_{1} \times A_{2} \times \cdots \times A_{k}$,
so $A_{1} \times A_{2} \times \cdots \times A_{k} \times A_{k+1}=B \times A_{k+1}$. By Theorem 3.7, $B \times A_{k+1}$ is Noetherian with respect to \mathcal{F}, thus B and A_{k+1} are Noetherian with respect to \mathcal{F}. Therefore, $A_{1}, A_{2}, \ldots, A_{k}, A_{k+1}$ are Noetherian with respect to \mathcal{F}.

Conversely, it is clear by induction on n and applying Theorem 3.7 (Artinian case with respect to \mathcal{F} can be treated similarly).

Theorem 3.8. Let \mathcal{F} be a structural family for the family of all BL-algebras. If A_{1} and A_{2} are two BL-algebras, $\psi: A_{1} \rightarrow A_{2}$ is a BL-homomorphism and A_{1} is Noetherian (Artinian) with respect to \mathcal{F}, then $\psi\left(A_{1}\right)$ is also Noetherian (Artinian) with respect to \mathcal{F}.

Proof. Let $\psi\left(F_{1}\right) \subseteq \psi\left(F_{2}\right) \subseteq \cdots$, be an increasing chain of elements of \mathcal{F} for $\psi\left(A_{1}\right)$. Since A_{1} is Noetherian with respect to family \mathcal{F}, and $F_{1} \subseteq F_{2} \subseteq \cdots$, is an increasing chain of elements of \mathcal{F} for A_{1}, there exists $n \in \mathbb{N}$ such that $F_{i}=F_{n}$ for all $i \geq n$. Then $\psi\left(F_{i}\right)=\psi\left(F_{n}\right)$ for all $i \geq n$. So, $\psi\left(A_{1}\right)$ is Noetherian with respect to \mathcal{F}. Similarly, we may prove that if A_{1} is Artinian with respect to \mathcal{F}, then so is $\psi\left(A_{1}\right)$.

Theorem 3.9. Let \mathcal{F} be a structural family for the family of all BL-algebras. If A_{1} and A_{2} are two $B L$-algebras, $\psi: A_{1} \rightarrow A_{2}$ is an onto $B L$-homomorphism and A_{1} is Artinian with respect to \mathcal{F}, then A_{2} is also Artinian with respect to \mathcal{F}.

Proof. Let $F_{1} \supseteq F_{2} \supseteq \cdots$, be a decreasing chain of elements of \mathcal{F} for A_{2}. Then, by Definition 3.6, $\psi^{-1}\left(F_{1}\right) \supseteq \psi^{-1}\left(F_{2}\right) \supseteq \cdots$, is a decreasing chain of elements of \mathcal{F} for A_{1}. Since A_{1} is Noetherian with respect to family \mathcal{F}, there exists $n \in \mathbb{N}$ such that $\psi^{-1}\left(F_{i}\right)=\psi^{-1}\left(F_{n}\right)$ for all $i \geq n$. By the fact that ψ is an onto $B L$-homomorphism, so $\psi\left(\psi^{-1}\left(F_{i}\right)\right)=\psi\left(\psi^{-1}\left(F_{n}\right)\right)$ for all $i \geq n$. Hence, $F_{i}=F_{n}$ for all $i \geq n, A_{2}$ is Artinian with respect to \mathcal{F}.

Theorem 3.10. Let \mathcal{F} be a structural family for the family of all $B L$-algebras. If A is a $B L$-algebra, $\psi: A \rightarrow A$ is an onto $B L$-homomorphism and A is Noetherian with respect to \mathcal{F}, then ψ is an one-to-one $B L$-homomorphism.
Proof. Let $\operatorname{ker}(\psi) \subseteq \operatorname{ker}\left(\psi^{2}\right) \subseteq \cdots$, be a chain of elements of \mathcal{F} for A. Since A is Noetherian with respect to family \mathcal{F}, there exists $n \in \mathbb{N}$ such that $\operatorname{ker}\left(\psi^{i}\right)=\operatorname{ker}\left(\psi^{n}\right)$ for all $i \geq n$. Suppose $x \in \operatorname{ker}(\psi)$, then $\psi(x)=1$. Since ψ and ψ^{n} are onto $B L$ homomorphisms, there exists $a \in A$ such that $x=\psi^{n}(a)$, so $\psi(x)=\psi^{n+1}(a)=1$, i.e., $a \in \operatorname{ker}\left(\psi^{n+1}\right)=\operatorname{ker}\left(\psi^{n}\right)$. This means that $x=\psi^{n}(a)=1$. Therefore, $\operatorname{ker}(\psi)=1$ and ψ is an one-to-one $B L$-homomorphism.

Theorem 3.11. Let \mathcal{F} be a structural family for the family of the all $B L$-algebras. If A is a $B L$-algebra, $\psi: A \rightarrow A$ is an one to one $B L$-homomorphism and A is Artinian with respect to \mathcal{F}, then ψ is an onto BL-homomorphism.

Proof. Suppose ψ is not an onto $B L$-homomorphism, i.e., $A \supset \psi(A)$. Since ψ is one to one, so $\psi(A) \supset \psi^{2}(A)$. We also have $\psi^{n-1}(A) \supset \psi^{n}(\mathrm{~A})$ for all $n \geq 2$, i.e., $A \supset \psi(A) \supset \psi^{2}(A) \supset \cdots \supset \psi^{n}(A) \supset \cdots$ is a decreasing chain of elements of \mathcal{F}. This
chain is not stationary, because, if there exists $k \in \mathbb{N}$ such that $\psi^{k+1}(A)=\psi^{k}(A)$, then by the injectivity of ψ, there exists a map $\varphi: A \rightarrow A, \varphi(\psi(A))=I_{A}$, thus $\varphi\left(\psi^{k+1}(A)\right)=\varphi\left(\psi^{k}(A)\right)$, i.e., $\psi^{k}(A)=\psi^{k-1}(A)$. By continuing this procedure, we get $\psi(A)=A$, which is a contradiction. Therefore, the chain is not stationary and hence A is not Artinian $B L$-algebra, which is a contradiction with hypothesis. Therefore, $A=\psi(A)$ and ψ is an onto $B L$-homomorphism.

4. Conclusion

In $B L$-algebras (indeed in any algebraic structure), the results of chain conditions can be defined. Chain conditions are defined to study the properties of an algebraic structure. However, we must note that we can prove similar results for chain conditions. It is considerable that these results can be formulated in general structure to have a general approach to chain conditions. We may also define chain conditions with respect to partial order relation in our future work.

Acknowledgements. The authors are grateful to the editor and referees for their valuable comments and suggestions which improved the paper.

References

[1] S. A. Borumand and S. Motamed, Some resultrs in BL-algebras, MLQ Math. Log. Q. 55 (2009), 649-658.
[2] P. Hájek, Metamathematics of Fuzzy Logic, Kluwer Academic Publisher, Dordrecht, 1998.
[3] R. T. Khorami and S. A. Borumand, Nodal filters in BL-algebras, Journal of Intelligent \& Fuzzy Systems 28 (2015), 1159-1167.
[4] B. L. Meng and X. L. Xin, Prime ideals and Gödel ideals of BL-algebras, Journal of Advances in Mathematics 99 (2015), 2989-3005.
[5] S. Motamed and J. Moghadari, Noetherian and Artinian BL-algebras, Soft Computing 16 (2012), 1989-1994.
[6] E. Turunen, BL-algebras of basic fuzzy logic, Mathware and Soft Computing 6 (1999), 49-61.
[7] E. Turunen, Mathematics Behind Fuzzy Logic, Physica-Verlag, Heidelberg, 1999.
[8] O. Zahiri, Chain conditions in BL-algebras, Soft Computing 18 (2014), 419-426.
[9] J. H. Zhan and B. L. Meng, Some resulte in co-Noetherian BL-algebras, International Journal of Scientific and Innovative Mathematical Research 3 (2015), 18-25.

[^1]${ }^{2}$ Department of Mathematics, Shahrekord branch,
Islamic Azad University,
Shahrekord, Iran.
Email address: haghani1351@yahoo.com
Email address: heidarianshm@gmail.com
*Corresponding Author

[^0]: Key words and phrases. Artinian (Noetherian) BL-algebra, PF $B L$-algebra, Maximal element, Complete family.

 2010 Mathematics Subject Classification. Primary: 03G99. Secondary: 06D99, 08A99.
 DOI 10.46793/KgJMat2206.959K
 Received: December 06, 2019.
 Accepted: June 01, 2020.

[^1]: ${ }^{1}$ Department of Mathematics, Bandar Imam Khomeini branch, Payame Noor University, Bandar Imam Khomeini, Iran
 Email address: Kazemiasl.j@gmail.com

