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RIGHT AND LEFT MAPPINGS IN EQUALITY ALGEBRAS

MONA AALY KOLOGANI1, MOHAMMAD MOHSENI TAKALLO2, RAJAB ALI BORZOOEI3,
AND YOUNG BAE JUN4

Abstract. The notion of (right) left mapping on equality algebras is introduced,
and related properties are investigated. In order for the kernel of (right) left map-
ping to be filter, we investigate what conditions are required. Relations between
left mapping and →-endomorphism are investigated. Using left mapping and →-
endomorphism, a characterization of positive implicative equality algebra is estab-
lished. By using the notion of left mapping, we define →-endomorphism and prove
that the set of all →-endomorphisms on equality algebra is a commutative semigroup
with zero element. Also, we show that the set of all right mappings on positive
implicative equality algebra makes a dual BCK-algebra.

1. Introduction

Non-classical logic has become a considerable formal tool for computer science
and artificial intelligence to deal with fuzzy information and uncertainty information.
Many-valued logic, a great extension and development of classical logic, has always
been a crucial direction in non-classical logic. A crucial question for every many-
valued logic is, what should be structure of its truth values. It is generally accepted
that in fuzzy logic, it should be a residuated lattice, possibly fulfilling some additional
properties. On the basis of that, we may now distinguish various kinds of formal
fuzzy logics. Most important among them seem to be BL-logics, MTL-logics and
IMTL-logics. The answer to the above question is positive and the fuzzy type theory
(FTT) has indeed been introduced in [12]. However, the basic connective in FTT
is a fuzzy equality since it is developed as a generalization of the elegant classical
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formal system originated by Henkin (see [5]). So Novák in [13] introduced a special
algebra so called EQ-algebra and that reflects directly the syntax of FTT. Viewing the
axioms of EQ-algebras with a purely algebraic eye it appears that unlike in the case of
residuated lattices where the adjointness condition ties product with implication, the
product in EQ-algebras is quite loosely related to the other connectives. For instance,
a moment’s reflection shows that one can replace the product of an EQ-algebra by any
other binary operation which is smaller or equal than the original product (viewed
as a two-place function) and still obtains an EQ-algebra. However, the huge freedom
in choosing the product might prohibit to find deep related algebraic results, hence
our aim was to find something similar to EQ-algebras but without a product: an
axiomatic treatment of equality/equivalence. Because of that Jenei in [9] introduced
a new structure, called equality algebras. It has two connectives, a meet operation
and an equivalence, and a constant 1.

Left and right mappings are very important concepts and mathematicians have
used them in various mathematical fields. For example, Kondo [11] introduced the
notion of left mapping on BCK-algebras and investigated some properties of it. He
showed that in a positive implicative BCK-algebra, if a left map is surjective, then it
is also an injective one. Borzooei and Aaly [2], introduced left and right stabilizers
by using a fixed point sets of right and left mappings. They investigated that under
which conditions these sets can be equal. Also, by using the (right) left stabilizers,
produced a basis for a topology on hoops and showed that the generated topology by
this basis is Baire, connected, locally connected and separable. Moreover, Hail, Abu
baker and Mohd [4], by using the notion of (right) left mapping defined different kinds
of derivation on BCK/BCI-algebras. The notion of derivation and extended of that
are introduced on different kinds of logical algebras such as UP-algebras, MV-algebras
and etc. In UP-algebras, Iampan in [6] proved that the fixed point set and the kernel
of left derivation are UP-subalgebras and investigated under which condition they can
be an ideal or filter. Kamali in [10], extended the notion of derivation on MV-algebras
by using left and right mappings and investigate some properties of them.

Now, in this paper, we introduce the concept of (right) left mapping on equality
algebras and investigate several properties. Then by using of left and right mapping
on equality algebras, we construct a commutative monoid, a commutative semigroup
with zero element and a dual BCK-algebra.

2. Preliminaries

In this section, we recollect some definitions and results which will be used in the
next sections.

Definition 2.1 ([8]). By an equality algebra, we mean an algebra (X, ∧, ∼, 1) satisfying
the following conditions:

(E1) (X, ∧, 1) is a commutative idempotent integral monoid (i.e., meet semilattice
with the top element 1);
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(E2) The operation “∼” is commutative;
(E3) (∀a ∈ X)(a ∼ a = 1);
(E4) (∀a ∈ X)(a ∼ 1 = a);
(E5) (∀a, b, c ∈ X)(a ≤ b ≤ c ⇒ a ∼ c ≤ b ∼ c, a ∼ c ≤ a ∼ b);
(E6) (∀a, b, c ∈ X)(a ∼ b ≤ (a ∧ c) ∼ (b ∧ c));
(E7) (∀a, b, c ∈ X)(a ∼ b ≤ (a ∼ c) ∼ (b ∼ c)),

where a ≤ b if and only if a ∧ b = a. The equality algebra (X, ∧, ∼, 1) is simply
denoted by X only.

In an equality algebra (X, ∧, ∼, 1), we define two operations “→” and “↔” on X
as follows:

a → b := a ∼ (a ∧ b),
a ↔ b := (a → b) ∧ (b → a).

Proposition 2.1 ([8]). Let (X, ∧, ∼, 1) be an equality algebra. Then for all a, b, c ∈ X,
the following assertions are valid:

a → b = 1 ⇔ a ≤ b,

a → (b → c) = b → (a → c),(2.1)
1 → a = a, a → 1 = 1, a → a = 1,(2.2)
a ≤ b → c ⇔ b ≤ a → c,

a ≤ b → a,(2.3)
a ≤ (a → b) → b,(2.4)
a → b ≤ (b → c) → (a → c),(2.5)
b ≤ a ⇒ a ↔ b = a → b = a ∼ b,

a ∼ b ≤ a ↔ b ≤ a → b,

a ≤ b ⇒
{

b → c ≤ a → c,
c → a ≤ c → b,

(2.6)

((a → b) → b) → b = a → b.(2.7)

An equality algebra X is said to be bounded if there exists an element 0 ∈ X such
that 0 ≤ a for all a ∈ X. In a bounded equality algebra X, we define the negation
“¬” on X by ¬a = a → 0 = a ∼ 0 for all a ∈ X.

A subset A of X is called a deductive system (or filter) of X (see [9]) if it satisfies

1 ∈ A,(2.8)
(∀a, b ∈ X)(a ∈ A, a ≤ b ⇒ b ∈ A),
(∀a, b ∈ X)(a ∈ A, a ∼ b ∈ A ⇒ b ∈ A).

Denote by DS(X) the set of all deductive systems of X.
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Lemma 2.1 ([7]). Let X be an equality algebra. A subset A of X is a deductive
system of X if and only if it satisfies (2.8) and

(∀a, b ∈ X)(a ∈ A, a → b ∈ A ⇒ b ∈ A).

Definition 2.2 ([14]). An equality algebra X is said to be commutative if it satisfies:

(∀x, y ∈ X)((x → y) → y = (y → x) → x).

Definition 2.3 ([1]). Given an equality algebra (X, ∧, ∼, 1) and a, b ∈ X, we define

X(a, b) := {x ∈ X | a ≤ b → x}.

It is clear that 1, a and b are contained in X(a, b).

Definition 2.4 ([1]). An equality algebra (X, ∧, ∼, 1) is called an &-equality algebra
if for all a, b ∈ X, the set X(a, b) has the least element which is denoted by a ⊙ b.

Proposition 2.2 ([1]). If X = (X, ∧, ∼, 1) is an &-equality algebra, then

(∀a, b ∈ X)(a ⊙ b = b ⊙ a),
(∀a, b, c ∈ X)((a ⊙ b) ⊙ c = a ⊙ (b ⊙ c)),
(∀a, b, c ∈ X)(a ≤ b ⇒ a ⊙ c ≤ b ⊙ c).

Lemma 2.2 ([1]). Let X = (X, ∧, ∼, 1) be an equality algebra in which there exists a
binary operation “⊙” such that

(∀a, b, c ∈ X)(a → (b → c) = (a ⊙ b) → c).

Then X = (X, ∧, ∼, 1) is an &-equality algebra.

3. Left Mappings

In this section, we define the notion of left mapping on equality algebra and inves-
tigate some properties of it. Moreover, we define the notions of →-homomorphism,
positive implicative and &-equality algebras and study the relation among them.

Definition 3.1. Given a fixed element a in an equality algebra X, we define a
self-mapping fa of X by

fa : X → X, x 7→ a → x,

and we say that fa is a left mapping on X.

Let L(X) denote the set of all left mappings on an equality algebra X.

Example 3.1. Let X = {0, a, b, 1} be a set with the following Hasse diagram.

rr rr

0

a b

1

�
�

A
A
�
�

A
A
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Then (X, ∧, 1) is a commutative idempotent integral monoid. We define a binary
operation ∼ on X by Table 1. Then (X, ∧, ∼, 1) is an equality algebra, and the

Table 1. Cayley table for the implication “∼”

∼ 0 a b 1
0 1 b a 0
a b 1 0 a
b a 0 1 b
1 0 a b 1

implication “→” is given by Table 2.

Table 2. Cayley table for the implication “→”

→ 0 a b 1
0 1 1 1 1
a b 1 b 1
b a a 1 1
1 0 a b 1

Let fa and fb be self mappings of X defined by
fa(0) = fa(b) = b, fa(a) = fa(1) = 1

and
fb(0) = fb(a) = a, fb(b) = fb(1) = 1,

respectively. It is routine to verify that fa and fb are left mappings on X.

Remark 3.1. It is clear that f0(x) = 1 and f1(x) = x for all x in a bounded equality
algebra X.

Question 1. If fa is a left mapping on X, then is f 2
a a left mapping on X?

The following example shows that the answer to the above question is false.

Example 3.2. Let X = {0, a, b, c, d, 1} be a set with the following Hasse diagram.

r
0
JJ 


ra rb

 JJ
rcrd
r1

Then (X, ∧, 1) is a commutative idempotent integral monoid. We define a binary
operation ∼ on X by Table 3. Then E = (X, ∧, ∼, 1) is an equality algebra, and
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Table 3. Cayley table for the implication “∼”

∼ 0 a b c d 1
0 1 d d d c 0
a d 1 c d c a
b d c 1 d c b
c d d d 1 d c
d c c c d 1 d
1 0 a b c d 1

Table 4. Cayley table for the implication “→”

→ 0 a b c d 1
0 1 1 1 1 1 1
a d 1 d 1 1 1
b d d 1 1 1 1
c d d d 1 1 1
d c c c d 1 1
1 0 a b c d 1

the implication “→” is given by Table 4. Define a mapping fa : X → X by fa(0) =
fa(b) = d and fa(a) = fa(c) = fa(d) = fa(1) = 1. Then fa is a left mapping on X,
but f 2

a is not a left mapping on X since

d = a → 0 = fa(0) ̸= f 2
a (0) = a → (a → 0) = a → d = 1.

Definition 3.2. An equality algebra X is said to be positive implicative if it satisfies

(∀x, y, z ∈ X)(x → (y → z) = (x → y) → (x → z)).(3.1)

Theorem 3.1. In a positive implicative equality algebra X, if fa is a left mapping on
X, then so is f 2

a .

Proof. For any x ∈ X, we have

f 2
a (x) = fa(fa(x)) = a → (a → x) = (a → a) → (a → x) = 1 → (a → x) = a → x.

Therefore, f 2
a is a left mapping on X. □

Corollary 3.1. In a positive implicative equality algebra X, if fa is a left mapping
on X for a ∈ X, then so is fn

a for every n ∈ N.

Proof. It is by mathematical induction. □

Proposition 3.1. Let X be an equality algebra and fa be a left mapping on X. Then
the following statements hold:
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(1) fa(x) → fa(y) ≤ fa(x → y) and the equality is true when X is positive implica-
tive;

(2) the left mapping fa on X is isotone, that is, if x ≤ y, then fa(x) ≤ fa(y);
(3) x ≤ fa(x) ≤ f 2

a (x) ≤ · · · and the equality is true when a = 1;
(4) x → y ≤ fn

a (x) → fn
a (y) for any n ∈ N and the equality is true when a = 1;

(5) Im(fn
a ) ⊆ · · · ⊆ Im(f 2

a ) ⊆ Im(fa);
(6) Fix(fa) ⊆ Fix(f 2

a ) ⊆ · · · , where Fix(fa) := {x ∈ X | fa(x) = x};
(7) ker(fa) ⊆ ker(f 2

a ) ⊆ · · · and the equality is true when a = 1, where ker(fa) :=
{x ∈ X | fa(x) = 1};

(8) Fix(fn
a ) ⊆ Im(fn

a ) for any n ∈ N and the equality is true when X is positive
implicative;

(9) Fix(fn
a ) ∩ ker(fn

a ) = {1} for any n ∈ N, for all a, x, y ∈ X;
(10) if X is an &-equality algebra, then f 2

a = fa for any a ∈ X, with a ⊙ a = a.

Proof. Let a, x, y ∈ X. Using (2.1) and (2.6), we have

fa(x) → fa(y) = (a → x) → (a → y) ≤ a → (x → y) = fa(x → y),

which proves (1).
(2) and (3) are straightforward by (2.6) and (2.3), respectively.
(4) Using (2.1) and (2.5), we have x → y ≤ (a → x) → (a → y) = fa(x) → fa(y).

Suppose that x → y ≤ fk
a (x) → fk

a (y) for k ∈ N. Then

x → y ≤ fk
a (x) → fk

a (y) ≤ fa(fk
a (x)) → fa(fk

a (y)) = fk+1
a (x) → fk+1

a (y),

and so x → y ≤ fn
a (x) → fn

a (y) by mathematical induction.
(5) If y ∈ Im(f 2

a ), then y = f 2
a (x) = fa(fa(x)) for some x ∈ X and so y ∈ Im(fa),

which shows that Im(f 2
a ) ⊆ Im(fa). Repeating this process induces

Im(fn
a ) ⊆ · · · ⊆ Im(f 2

a ) ⊆ Im(fa).

By the similar way to the proof of (5), we have (6), (7) and (8).
(9) Let x ∈ Fix(fn

a )∩ker(fn
a ). Then x = fn

a (x) = 1. Hence, Fix(fn
a )∩ker(fn

a ) = {1}
for any n ∈ N.

(10) Let a ∈ X with a ⊙ a = a. Then

f 2
a (x) = a → (a → x) = (a ⊙ a) → x = a → x = fa(x),

for all x ∈ X and so f 2
a = fa. □

We pose a question as follows. Given a left mapping fa on X, is the subset Fix(fa)
of X a filter of X? But the following example shows that the answer is negative.

Example 3.3. Let Y = {0, a, b, c, 1} be a set with the following Hasse diagram.

rr rrr0c
a b

1
JJ





JJ
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Then (Y, ∧, 1) is a commutative idempotent integral monoid. We define a binary
operation ∼ on Y by Table 5. Then (Y, ∧, ∼, 1) is an equality algebra which is not

Table 5. Cayley table for the implication “∼”

∼ 0 a b c 1
0 1 0 0 0 0
a 0 1 c b a
b 0 c 1 a b
c 0 b a 1 c
1 0 a b c 1

commutative, and the implication (→) is given by Table 6. We know that the map

Table 6. Cayley table for the implication “→”

→ 0 a b c 1
0 1 1 1 1 1
a 0 1 b b 1
b 0 a 1 a 1
c 0 1 1 1 1
1 0 a b c 1

fb : Y → Y given by fb(0) = 0, fb(a) = fb(c) = a and fb(b) = fb(1) = 1 is a left
mapping on Y . Then Fix(fb) = {0, a, 1}, which is not a filter of Y .

Proposition 3.2. Given a left mapping fa on X, the following statements are equiv-
alent.

(1) (∀x, y ∈ X)(∀n ∈ N) (yn → x = yn+1 → x), where

yn → x = y → (y → · · · (y︸ ︷︷ ︸ → x))
n times

.

(2) (∀n ∈ N)(Im(fn
a ) = Fix(fn

a )).
(3) (∀n ∈ N)(fn

a = fn+1
a ).

Proof. (1) ⇒ (2) By Proposition 3.1 (8), we have Fix(fn
a ) ⊆ Im(fn

a ). If y ∈ Im(fn
a ),

then there exists x ∈ X such that fn
a (x) = y. By (1), we get

y = fn
a (x) = fn+1

a (x) = · · · = f 2n
a (x) = fn

a (fn
a (x)) = fn

a (y).
Hence, y ∈ Fix(fn

a ), and so Im(fn
a ) ⊆ Fix(fn

a ). Therefore, Im(fn
a ) = Fix(fn

a ).
(2) ⇒ (1) Let x, y ∈ X. It is clear that yn → x ≤ yn+1 → x. On the other hand,

(yn+1 → x) → (yn → x) = fn+1
y (x) → fn

y (x) = fn
y (fy(x)) → fn

y (x).
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Then fy(x) ∈ Im(fn
y ) = Fix(fn

y ) and so fn
y (fy(x)) = fy(x). Since fy(x) ≤ fn

y (x), we
have

(yn+1 → x) → (yn → x) = fy(x) → (fn
y (x)) = 1,

and so (yn+1 → x) ≤ (yn → x). Therefore, yn → x = yn+1 → x.
(1) ⇔ (3) The proof is clear. □

Corollary 3.2. In a positive implicative equality algebra X, the conditions (2) and
(3) of Proposition 3.2 are always valid.

Definition 3.3. Let X and Y be equality algebras. A mapping f : X → Y is called
a →-homomorphism if f(a → x) = f(a) → f(x) for all a, x ∈ X.

By a →-endomorphism on X we mean a →-homomorphism from X to X. It is
clear that the left mapping f1 on X is a →-homomorphism.

Example 3.4. Let X be the equality algebra as in Example 3.1 and Y be the equality
algebra as in Example 3.3. We define a mapping f : X → Y by f(0) = f(b) = 0 and
f(a) = f(1) = 1. Then f is a →-homomorphism.

Theorem 3.2. Let (X, ∧X , ∼X , 1X) and (Y, ∧Y , ∼Y , 1Y ) be equality algebras. Then
every homomorphism from X to Y is a →-homomorphism.

Proof. Let f : X → Y be a homomorphism. Then
f(x →X y) = f((x ∧X y) ∼X x)

= f(x ∧X y) ∼Y f(x)
= (f(x) ∧Y f(y)) ∼Y f(x)
= f(x) →Y f(y),

for all x, y ∈ X. Hence, f is a →-homomorphism. □

The following example shows that a left mapping is not a →-endomorphism.

Example 3.5. The left mapping fa in Example 3.2 is not a →-endomorphism since
1 = fa(c) = fa(d → 0) ̸= fa(d) → fa(0) = (a → d) → (a → 0) = 1 → d = d.

We provide a condition for a left mapping to be a →-endomorphism, and consider
a characterization of a positive implicative equality algebra by using the notion of left
mapping.

Theorem 3.3. An equality algebra X is a positive implicative if and only if every left
mapping on X is a →-endomorphism of X.

Proof. Let X be a positive implicative equality algebra and fa : X → X be a left
mapping on X where a ∈ X. Then

fa(x → y) = a → (x → y) = (a → x) → (a → y) = fa(x) → fa(y),
for all x, y ∈ X, and so fa is a →-endomorphism of X.
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Conversely, assume that every left mapping on X is a →-endomorphism of X. Let
fa be a left mapping on X for each a ∈ X. Then fa is a →-endomorphism of X and
so

a → (x → y) = fa(x → y) = fa(x) → fa(y) = (a → x) → (a → y).
Therefore, X is a positive implicative equality algebra. □

Corollary 3.3. Let fa be a left mapping on X. If f 2
a = fa, then fa is a →-

endomorphism.

Corollary 3.4. If fa is a →-endomorphism on X, then fn
a = fn+1

a for any n ∈ N.

Theorem 3.4. Let X be an &-equality algebra. Then L(X) is a commutative monoid
under the composition of mappings with the zero element f1.

Proof. For any fa, fb, fc ∈ L(X), where a, b, c ∈ X, we have
(fa ◦ fb)(x) = fa(fb(x)) = fa(b → x) = a → (b → x) = (a ⊙ b) → x = fa⊙b(x),

for all x ∈ X. Hence, L(X) is closed under the operation ◦. Also, we have
(fa ◦ (fb ◦ fc))(x) = fa(f(b⊙c)(x)) = f(a⊙(b⊙c))(x) = f((a⊙b)⊙c)(x)

= f(a⊙b) ◦ fc(x) = ((fa ◦ fb) ◦ fc)(x),
(fa ◦ fb)(x) = fa(b → x) = a → (b → x) = b → (a → x) = fb(a → x)

= (fb ◦ fa)(x),
and (fa ◦ f1)(x) = fa⊙1(x) = fa(x) for all x ∈ X. Therefore, L(X) is a commutative
monoid. □

Theorem 3.5. In a positive implicative equality algebra X, if fa is a left mapping on
X for a ∈ X, then Im(fa), Fix(fa) and ker(fa) are closed under the operation →.

Proof. If x, y ∈ Im(fa), then there exist u, v ∈ X such that fa(u) = x and fa(v) = y.
It follows that
x → y = fa(u) → fa(v) = (a → u) → (a → v) = a → (u → v) = fa(u → v) ∈ Im(fa).
Thus, Im(fa) is closed under →. Let x, y ∈ ker(fa). Then fa(x) = 1 = fa(y) and thus

fa(x → y) = a → (x → y) = (a → x) → (a → y) = fa(x) → fa(y) = 1.

Hence, x → y ∈ ker(fa) and so ker(fa) is closed under →. Let x, y ∈ Fix(fa). Then
fa(x) = x and fa(y) = y. Thus,

x → y = fa(x) → fa(y) = (a → x) → (a → y) = a → (x → y) = fa(x → y),
and so x → y ∈ Fix(fa). Hence, Fix(fa) is closed under →. □

Using mathematical induction, we have the following corollary.

Corollary 3.5. In a positive implicative equality algebra X, if fa is a left mapping
on X for a ∈ X, then Im(fn

a ), Fix(fn
a ) and ker(fn

a ) are closed under the operation →
for all n ∈ N.
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We define an order “≤” and equality “=” on L(X) as follows.
fa ≤ fb ⇔ fa(x) ≤ fb(x) for all x ∈ X,

fa = fb ⇔ fa ≤ fb & fb ≤ fa,

for all fa, fb ∈ L(X).
Proposition 3.3. If X is a positive implicative equality algebra, then the following
assertions are true in L(X):

(1) fa ◦ fb = fb ◦ fa;
(2) fa ◦ fa = fa;
(3) f1 ◦ fa = fa = fa ◦ f1;
(4) a ≤ b ⇒ fb ≤ fa, fa ◦ fb = fa.

Proof. (1) Let a, b, x ∈ X. Then by (2.1), it is clear that
fa ◦ fb(x) = fa(fb(x)) = a → (b → x) = b → (a → x) = fb(fa(x)) = fb ◦ fa(x).

(2) Let a, x ∈ X. Since X is a positive equality algebra, we get that
fa ◦ fa(x) = fa(fa(x)) = a → (a → x) = a → x = fa(x).

(3) The proof is clear.
(4) Let a, b ∈ X such that a ≤ b. Then for any x ∈ X, by (2.6), we get fb(x) =

b → x ≤ a → x = fa(x). Moreover, since X is positive implicative, we have
fa ◦ fb(x) = a → (b → x) = (a → b) → (a → x) = 1 → (a → x) = a → x = fa.

This completes the proof. □

Let End→(X) denote the set of all left mappings on X which is a →-homomorphism,
that is,

End→(X) = {fa ∈ L(X) | fa is a →-homomorphism}.

Theorem 3.6. If X is a positive implicative &-equality algebra, then (End→(X), ◦)
is a commutative semigroup with the zero element f1.

Proof. Let x ∈ X. Since X is an &-equality algebra, we get
(fa ◦ fb)(x) = a → (b → x) = (a ⊙ b) → x = fa⊙b(x),

and so, fa⊙b(x) ∈ L(X). Since X is a positive implicative equality algebra, we have
(fa ◦ fb)(x → y) = fa⊙b(x → y) = (a ⊙ b) → (x → y)

= ((a ⊙ b) → x) → ((a ⊙ b) → y)
= (fa ◦ fb)(x) → (fa ◦ fb)(y).

Let fa, fb, fc ∈ End→(X). Since X is an &-equality algebra, we have
(fa ◦ (fb ◦ fc))(x) = fa⊙(b⊙c)(x) = f(a⊙b)⊙c(x) = ((fa ◦ fb) ◦ fc)(x).

Also fa ◦ fb = fb ◦ fa and fa ◦ f1 = f1 by Proposition 3.3. Therefore, (End→(X), ◦) is
a commutative semigroup with the zero element f1. □



826 M. AALY KOLOGANI, M. MOHSENI TAKALLO, R. A. BORZOOEI, AND Y. B. JUN

4. Right Mappings

In this section, we introduce the notion of right mapping and investigate some
properties of it. Also, we prove that kernel of g2

a is a filter of X. Finally we show
that the set of all right mappings on positive implicative equality algebra is a dual
BCK-algebra.

Definition 4.1. Given a fixed element a in an equality algebra X, we define a
self-mapping ga of X by

ga : X → X, x 7→ x → a,(4.1)
and we say that ga is a right mapping on X.

Let R(X) denote the set of all right mappings on an equality algebra X.

Example 4.1. Let X be the equality algebra as in Example 3.1. Then define a self
mapping ga : X → X by ga(0) = ga(a) = 1 and ga(b) = ga(1) = a. It is routine to
verify that ga is a right mapping on X.

Proposition 4.1. Every right mapping gβ on X, where β is any element of X,
satisfies the following conditions:

(1) (∀a ∈ X)(ga(a) = 1, ga(1) = a);
(2) (∀a, b ∈ X)(ga(1) ≤ ga(b));
(3) If X is bounded, then ga(0) = 1 and g0(a) = ¬a for all a ∈ X;
(4) (∀x ∈ X)(g1(x) = 1);
(5) (∀a, x, y ∈ X)(x ≤ y ⇒ ga(y) ≤ ga(x)).

Proof. Straightforward. □

Proposition 4.2. For any right mapping gβ on X where β is any element of X, we
have the following assertions.

(1) If X is a commutative equality algebra, then g2
a(x) = g2

x(a) for all x, a ∈ X.
(2) For any natural number n ∈ N and a ∈ X, we have

gn
a =

{
ga n is odd,
g2

a n is even.

(3) g2
a(x) → ga(y) = g2

a(y) → ga(x) for any a, x, y ∈ X.
(4) y → g2

a(x) = ga(x) → ga(y) and g2
a(x) → g2

a(y) = x → g2
a(y) for any a, x, y ∈

X.
(5) g2

a(x) = 1 if and only if fx(a) = a, where fx is a left mapping on X.
(6) The mapping g2

a is isotone.

Proof. (1) Since X is a commutative equality algebra, we have
g2

a(x) = (x → a) → a = (a → x) → x = g2
x(a),

for all a, x ∈ X.
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(2) Let x, a ∈ X and n ∈ N. Suppose n = 4. Then
g4

a(x) = (((x → a) → a) → a) → a = (x → a) → a = g2
a(x),

by (2.7). By the similar way, we can prove that gn
a (x) = g2

a(x) for any even number
n ∈ N. Now, if n = 3, then

g3
a(x) = ((x → a) → a) → a = x → a = ga(x),

by (2.7). By the similar way, we can prove that gn
a (x) = ga(x) for any odd number

n ∈ N.
(3) Let a, x, y ∈ X. Then

g2
a(x) → ga(y) = ((x → a) → a) → (y → a)

= y → (((x → a) → a) → a)
= y → (x → a)
= y → ga(x),

by (2.7). By the similar way, we can prove that g2
a(y) → ga(x) = y → ga(x). Hence,

g2
a(x) → ga(y) = g2

a(y) → ga(x).
(4) Let x, y, a ∈ X. Then

y → g2
a(x) = y → ((x → a) → a) = (x → a) → (y → a) = ga(x) → ga(y),

by (2.7). Also, we have
g2

a(x) → g2
a(y) = ((x → a) → a) → ((y → a) → a)

= (y → a) → (((x → a) → a) → a)
= (y → a) → (x → a)
= ga(y) → ga(x) = x → g2

a(y).
(5) and (6) are straightforward. □

Theorem 4.1. For any right mapping ga on X, the following are equivalent.
(1) g2

a is a →-endomorphism.
(2) g2

a(x → y) = x → g2
a(y) for all x, y ∈ X.

(3) g2
a(x → y) = ga(y) → ga(x) for all x, y ∈ X.

Proof. (1) ⇒ (2). Let g2
a be a →-endomorphism and x, y ∈ X. Then

g2
a(x → y) = g2

a(x) → g2
a(y)

= ((x → a) → a) → ((y → a) → a)
= (y → a) → (((x → a) → a) → a)
= (y → a) → (x → a)
= x → ((y → a) → a)
= x → g2

a(y),
by (2.7).
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(2) ⇒ (3). For any x, y ∈ X we have
g2

a(x → y) =x → g2
a(y) = x → ((y → a) → a) = (y → a) → (x → a)

=ga(y) → ga(x),
by (2).

(3) ⇒ (1). For any a, x, y ∈ X we have
g2

a(x) → g2
a(y) = ((x → a) → a) → ((y → a) → a)

= (y → a) → (((x → a) → a) → a)
= (y → a) → (x → a)
= ga(y) → ga(x)
= g2

a(x → y),

by (2.7) and (3). Therefore, g2
a is a →-endomorphism on X. □

Theorem 4.2. For any right mapping ga on X, the following are equivalent.
(1) g2

a is an identity map.
(2) ga is an injective map.
(3) ga is a surjective map.

Proof. (1) ⇒ (2). Let g2
a be an identity map. Let x, y ∈ X be such that ga(x) = ga(y).

Then x → a = y → a and so
x = g2

a(x) = (x → a) → a = (y → a) → a = g2
a(y) = y.

Hence, ga is an injective map on X.
(2) ⇒ (3). For any x, y ∈ X, we have ga((x → a) → a) = ga(x) by (2.7). Since ga

is an injective map on X, it follows that (x → a) → a = x. Moreover, we know that
Im(ga) ⊆ X. Let y ∈ X. Then ga(y → a) = (y → a) → a = y and so y ∈ Im(ga).
Hence, X = Im(ga). Therefore, ga is a surjective map on X.

(3) ⇒ (1). Using (2.4), we have x ≤ (x → a) → a = g2
a(x) for any x ∈ X. Since

ga is a surjective map, for any y ∈ X, there exists x ∈ X such that ga(x) = y, i.e.,
x → a = y. It follows from (2.1) and (2.7) that

g2
a(y) → y = ((y → a) → a) → (x → a) = x → (y → a) = y → y = 1,

that is, g2
a(y) ≤ y for all y ∈ X. Hence, g2

a(y) = y for all y ∈ X and therefore g2
a is an

identity map. □

Corollary 4.1. For any right mapping gβ on X where β is any element of X, the
following are equivalent.

(1) g2
a is an injective map for all a ∈ X.

(2) g2
a is an identity map for all a ∈ X.

(3) g2
a is a surjective map for all a ∈ X.

Proof. By Theorem 4.2 and Proposition 4.2 (2), the proof is clear. □
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Theorem 4.3. For any right map ga on X, the set ker(g2
a) = {x ∈ X | g2

a(x) = 1} is
a filter of X.

Proof. Let a ∈ X. Since g2
a(1) = (1 → a) → a = a → a = 1, we get that 1 ∈ ker(g2

a).
Let x, y ∈ X be such that x, x → y ∈ ker(g2

a). Then g2
a(x) = g2

a(x → y) = 1. It
follows from (2.1), (2.5) and (2.7) that

g2
a(y) = (y → a) → a

= 1 → ((y → a) → a)
= (((x → y) → a) → a) → ((y → a) → a)
= (y → a) → ((((x → y) → a) → a) → a)
= (y → a) → ((x → y) → a)
= (x → y) → ((y → a) → a)
= (x → y) → (1 → ((y → a) → a))
= (x → y) → (((x → a) → a) → ((y → a) → a))
= (x → y) → ((y → a) → (((x → a) → a) → a))
= (x → y) → ((y → a) → (x → a))
= (x → y) → (x → ((y → a) → a))
≥ y → ((y → a) → a)
= (y → a) → (y → a)
= 1

Hence, g2
a(y) = 1, and so y ∈ ker(g2

a). Therefore, ker(g2
a) is a filter of X. □

Corollary 4.2. For any right map g2k
a on X, the set ker(g2k

a ) is a filter of X, where
k is any natural number.

Proposition 4.3. Let gβ be a right mapping on X where β is any element of X. If
F and G are filters of X such that F ∩ G = {1}, then g2

x(y) = g2
y(x) = 1 for all x ∈ F

and y ∈ G.

Proof. Let F and G be filters of X such that F ∩ G = {1}. Suppose x ∈ F and y ∈ G.
Since x ≤ (x → y) → y and y ≤ (x → y) → y by (2.1), (2.2) and (2.4), we have
(x → y) → y ∈ F ∩ G = {1} and so g2

y(x) = (x → y) → y = 1. By the similar way we
can prove that g2

x(y) = 1. □

Let X be a positive implicative equality algebra. We define the implication “↪→”
on R(X) as follows:

↪→: R(X) × R(X) → R(X), (ga, gb) 7→ ga(x) → gb(x).
Using the positive implicativity of X, we have

(ga ↪→ gb)(x) = ga(x) → gb(x) = (x → a) → (x → b) = x → (a → b) = ga→b(x),
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and so ga → gb ∈ R(X).

Theorem 4.4. If X is a positive implicative equality algebra, then (R(X), ↪→, g1) is
a dual BCK-algebra (see [3] for the notion of dual BCK-algebra).

Proof. Let ga, gb, gc ∈ R(X). Then
((gb ↪→ gc) ↪→ ((gc ↪→ ga) ↪→ (gb ↪→ ga)))(x)

=(gb(x) → gc(x)) → ((gc(x) → ga(x)) → (gb(x) → ga(x)))
=((x → b) → (x → c)) → (((x → c) → (x → a)) → ((x → b) → (x → a)))
=(x → (b → c)) → ((x → (c → a)) → (x → (b → a)))
=(x → (b → c)) → (x → ((c → a) → (b → a)))
=x → ((b → c) → ((c → a) → (b → a)))
=x → 1 = g1(x)

and
(gb ↪→ ((gb ↪→ ga) ↪→ ga))(x) = gb(x) → ((gb(x) → ga(x)) → ga(x))

=(x → b) → (((x → b) → (x → a)) → (x → a))
=(x → b) → ((x → (b → a)) → (x → a))
=(x → b) → (x → ((b → a) → a))
=x → (b → ((b → a) → a))
=x → ((b → a) → (b → a))
=x → 1 = g1(x),

for all x ∈ X by (2.1), (2.2), (2.5) and (3.1). Thus,
(gb ↪→ gc) ↪→ ((gc ↪→ ga) ↪→ (gb ↪→ ga)) = g1,

and gb ↪→ ((gb ↪→ ga) ↪→ ga) = g1. Since
(ga ↪→ ga)(x) = ga(x) → ga(x) = (x → a) → (x → a) = 1 = x → 1 = g1(x)

and
(ga ↪→ g1)(x) = ga(x) → g1(x) = (x → a) → (x → 1)

= x → (a → 1) = x → 1 = g1(x),
for all x ∈ X, we have ga ↪→ ga = g1 and ga ↪→ g1 = g1. Assume that ga → gb = g1
and gb → ga = g1. Then

(x → a) → (x → b) = ga(x) → gb(x) = (ga ↪→ gb)(x) = g1(x) = x → 1 = 1
and

(x → b) → (x → a) = gb(x) → ga(x) = (gb ↪→ ga)(x) = g1(x) = x → 1 = 1,

for all x ∈ X. It follows that ga(x) = x → a = x → b = gb(x) for all x ∈ X. Hence,
ga = gb. Therefore, (R(X), ↪→, g1) is a dual BCK-algebra. □
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Define an order “≤” on R(X) as follows:

(∀ga, gb ∈ R(X))(ga ≤ gb ⇔ (ga ↪→ gb)(x) = g1(x) for all x ∈ X.

It is clear that if X is a positive implicative equality algebra, then (R(X), ≤) is a
partially ordered set.

Proposition 4.4. If X is a positive implicative equality algebra, then the following
assertions are true in R(X):

(1) ga ↪→ gb ≤ (gb ↪→ gc) ↪→ (ga ↪→ gc);
(2) ga ≤ (ga ↪→ gb) ↪→ gb;
(3) ga ≤ ga;
(4) ga ≤ gb and gb ≤ ga imply ga = gb;
(5) ga ≤ g1;
(6) fa ≤ fb ⇒ fb ↪→ fc ≤ fa ↪→ fc, fc ↪→ fa ≤ fc ↪→ fb;
(7) fa ↪→ (fb ↪→ fc) = fb ↪→ (fa ↪→ fc);
(8) fa ≤ fb ↪→ fc ⇒ fb ≤ fa ↪→ fc;
(9) fa ↪→ fb ≤ (fc ↪→ fa) ↪→ (fc ↪→ fb);

(10) fa ≤ fb ↪→ fa.

Proof. It is easy by routine calculations. □

5. Conclusions and Future Works

In this paper, the notion of (right) left mapping on equality algebras is introduced,
some properties of it are investigated and it is proved that the set of all right mappings
on positive implicative equality algebra makes a dual BCK-algebra. Also, we studied
that under which condition the kernel of (right) left mapping is a filter. The notion of
→-endomorphism is introduced and it is proved that the set of all →-endomorphisms
on equality algebra is a commutative semigroup with zero element. Moreover, the
relation between left mapping and →-endomorphism and a characterization of positive
implicative equality algebra are investigated.

In future work, by using the notion of (right) left mapping on equality algeras and
the set of fixed point of that, we can introduce the notion of (right) left stabilizer
on equality algebra and by using this notion we can define a basis of a topology on
equality algebra. Also, we can introduce the notion of derivation on equality algebra
and extend it.
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