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INFINITELY MANY SOLUTIONS TO A FOURTH-ORDER
IMPULSIVE DIFFERENTIAL EQUATION WITH TWO CONTROL

PARAMETERS

HADI HAGHSHENAS1 AND GHASEM A. AFROUZI2

Abstract. In this article, we give some new criteria to guarantee the infinitely
many solutions for a fourth-order impulsive boundary value problem. Our main
tool to ensure the existence of infinitely many solutions is the classical Ricceri’s
Variational Principle.

1. Introduction.

In this paper, we consider the following boundary value problem for a fourth-order
impulsive differential equation:

(1.1)


u(4)(t) + Au′′(t) +Bu(t) = λf(t, u(t)) + µg(t, u(t)), t ̸= tj, t ∈ [0, 1],
△u′′(tj) = I1j(u′(tj)), −△u′′′(tj) = I2j(u(tj)), j = 1, 2, . . . ,m,
u(0) = u(1) = u′′(0) = u′′(1) = 0,

where A, B are two real constants, f, g : [0, 1] × R → R are two L2-Carathéodory
functions, I1j, I2j ∈ C(R,R), 0 = t0 < t1 < t2 < · · · < tm < tm+1 = 1, the operator ∆
is defined as ∆U(tj) = U(t+j ) − U(t−j ), where U(t+j )

(
U(t−j )

)
denotes the right-hand

(left-hand) limit of U at tj and λ > 0 and µ ≥ 0 are referred to as control parameters.
In recent years, a great deal of work has been done in the study of the existence of

solutions for impulsive boundary value problems (IBVPs for short).
Some classical tools have been used to study such problems in the literatures. These

techniques include the coincidence degree theory of Mawhin, the method of upper and
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lower solutions with monotone iterative technique, and some fixed point theorems in
cones.

On the other hand, in the last few years, many researchers have used variational
methods to study the existence of solutions for IBVPs. We refer the interested readers
to [1–4,6–8].

Motivated by the paper [1], in the present paper, by employing the classical Ricceri’s
Variational Principle, we obtain a sequence of solutions to problem (1.1) which is
unbounded. Note that when µ = 0 system (1.1) reduces to the one studied in [8]. Our
results extend those ones in [8].

The remaining part of this paper is organized as follows. Some fundamental facts
will be given in Section 2 and the main result of this paper will be presented in
Section 3.

2. Preliminaries

Our main tool to ensure the existence of infinitely many solutions for the problem
(1.1) is the classical Ricceri’s Variational Principle ([5, Theorem 2.5]) that we now
recall here.

Theorem 2.1. Let X be a reflexive real Banach space. Let ϕ, ψ : X → R be two
Gateaux differentiable functionals such that ϕ is sequentially weakly lower semicontin-
uous, strongly continuous and coercive and ψ is sequentially weakly upper semicontin-
uous. For every r > infX ϕ, let us put

φ(r) = inf
u∈ϕ−1(]−∞,r[)

supv∈ϕ−1(]−∞,r]) ψ(v) − ψ(u)
r − ϕ(u) .

If γ := lim infr→+∞ φ(r) < +∞, then for each λ ∈]0, 1
γ
[, only one of the following

statements holds to the functional Iλ := ϕ− λψ:
(A1) Iλ possesses a global minimum;
(A2) there is a sequence (un) of critical points (local minima) of Iλ such that

lim
n→+∞

ϕ(un) = +∞.

Here and in the sequel, we suppose that A and B satisfy the following condition:

(2.1) A ≤ 0 ≤ B.

Define

H1
0 ([0, 1]) :={u ∈ L2([0, 1]) : u′ ∈ L2([0, 1]), u(0) = u(1) = 0},

H2([0, 1]) :={u ∈ L2([0, 1]) : u′, u′′ ∈ L2([0, 1])}.

Take X := H2([0, 1])⋂H1
0 ([0, 1]) and define

(2.2) ∥u∥X =
( ∫ 1

0
|u′′(t)|2 − A|u′(t)|2 +B|u(t)|2dt

) 1
2
.
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Since A,B satisfy (2.1), it is straightforward to verify that (2.2) defines a norm for
the Sobolev space X and this norm is equivalent to the usual norm defined as follows:

∥u∥ := ∥u′′∥L2([0,1]).

It follows from (2.1) that ∥u∥ ≤ ∥u∥X . For the norm in C1([0, 1])

∥u∥∞ = max
{

max
t∈[0,1]

|u(t)|, max
t∈[0,1]

|u′(t)|
}
,

we have the following relation.

Lemma 2.1 ([8]). Let M1 := 1 + 1
π
. Then ∥u∥∞ ≤ M1∥u∥X for all u ∈ X.

Definition 2.1. By a weak solution of the problem (1.1), we mean any u ∈ X such
that∫ 1

0
[u′′(t)v′′(t) − Au′(t)v′(t) +Bu(t)v(t)]dt+

m∑
j=1

I2j(u(tj))v(tj) +
m∑

j=1
I1j(u′(tj))v′(tj)

=λ
∫ 1

0
f(t, u(t))v(t)dt+ µ

∫ 1

0
g(t, u(t))v(t)dt

holds for every v ∈ X.

Put
F (t, x) :=

∫ x

0
f(t, ξ)dξ, G(t, x) :=

∫ x

0
g(t, ξ)dξ,

for all (t, x) ∈ [0, 1] × R.

3. Main Results

In this section, we present our main results. To this end, we need the following
assumptions.

(H1) Assume that there exist two positive constants k1 and k2 such that for each
u ∈ X

0 ≤
m∑

j=1

∫ u′(tj)

0
I1j(s)ds ≤ k1 max

j∈{1,2,...,m}
|u′(tj)|2

and

0 ≤
m∑

j=1

∫ u(tj)

0
I2j(s)ds ≤ k2 max

j∈{1,2,...,m}
|u(tj)|2.

Also put k3 := 2.048(3
8 − 9

10.44A+ 79
14.48B) and k4 := k2 + k3. These constants will

be used in the hypotheses of Theorem 3.1.
(H2) Assume that {t1, t2, . . . , tm} ⊆ [1

4 ,
3
4 ].

(H3) Assume that F (t, u) ≥ 0 for (t, u) ∈
(
[0, 1

4 ]⋃[3
4 , 1]

)
× R.
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Theorem 3.1. Suppose that (H1), (H2) and (H3) are satisfied. Also
(H4)

M2
1 lim inf

ξ→+∞

∫ 1
0 sup|x|≤ξ F (t, x)dt

ξ2 <
1
k4

lim sup
ξ→+∞

∫ 3
4

1
4
F (t, ξ)dt
ξ2 ,

and λ ∈]λ1, λ2[, where

λ1 := k4

lim sup
ξ→+∞

∫ 3
4

1
4

F (t,ξ)dt

ξ2

, λ2 := 1

M2
1 lim inf

ξ→+∞

∫ 1
0 sup|x|≤ξ F (t,x)dt

ξ2

.

If G is a nonnegative function satisfying the condition

(3.1) g∞ := lim
ξ→+∞

∫ 1
0 sup|x|≤ξ G(t, x)dt(

ξ2

M2
1

) < +∞,

then for every µ ∈ [0, µg,λ[, where

µg,λ := 1
g∞

(
1 − λM2

1 lim inf
ξ→+∞

∫ 1
0 sup|x|≤ξ F (t, x)dt

ξ2

)
,

the problem (1.1) has an unbounded sequence of weak solutions in X.

Proof. Fix λ ∈]λ1, λ2[ and let g be a function satisfying the condition (3.1). Since
λ < λ2, one has µg,λ > 0. Fix µ ∈ [0, µg,λ[ and put

v1 := λ1, v2 := λ2

1 + (µ
λ
)λ2g∞

.

If g∞ = 0, clearly, v1 = λ1, v2 = λ2 and λ ∈]v1, v2[. If g∞ ̸= 0, since µ < µg,λ, we
obtain λ

λ2
+ µg∞ < 1, and so v2 > λ. Hence, since λ > λ1 = v1, one has λ ∈]v1, v2[.

Take X = H2
(
[0, 1]

)
∩ H1

0

(
[0, 1]

)
and define in X the functional Iλ for each u ∈ X,

as follows
Iλ(u) := ϕ(u) − λψ(u),

where

ϕ(u) =1
2∥u∥2

X +
m∑

j=1

∫ u
′ (tj)

0
I1j(s)ds+

m∑
j=1

∫ u(tj)

0
I2j(s)ds,

ψ(u) =
∫ 1

0
F (t, u(t))dt+ µ

λ

∫ 1

0
G(t, u(t))dt.

It is not hard to show that every critical point of Iλ is a weak solution of system
(1.1). So, our goal is to apply Theorem 2.1 to ϕ and ψ. In the first step, it is
well known that ϕ, ψ : X → R are two Gateaux differentiable functionals such
that ϕ is sequentially weakly lower semicontinuous, strongly continuous and coercive.
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Moreover, ψ is sequentially weakly upper semicontinuous. Now, we wish to prove that
γ = lim infr→+∞ φ(r) < ∞, where

φ(r) = inf
ϕ(u)<r

sup
ϕ(v)≤r

ψ(v) − ψ(u)

r − ϕ(u) .

Let
Q(t, x) := F (t, x) + µ

λ
G(t, x), (t, x) ∈ [0, 1] × R.

Let (ξn) be a real sequence such that ξn > 0 for all n ∈ N and ξn → +∞ as n → ∞
and

lim
n→∞

∫ 1

0
sup

|x|≤ξn

Q(t, x)dt

ξ2
n

= lim inf
ξ→+∞

∫ 1

0
sup
|x|≤ξ

Q(t, x)dt

ξ2 .

Put rn = ξ2
n

2M2
1

for all n ∈ N. Then for every u ∈ X, with ϕ(u) < rn, we have

∥u∥2
∞ ≤ M2

1 ∥u∥2
X ≤ 2M2

1ϕ(u) < 2M2
1 rn = ξ2

n,

thus
ϕ−1(] − ∞, rn[) ⊆ {u ∈ X : ∥u∥∞ ≤ ξn}.

Hence, taking into account that ϕ(0) = ψ(0) = 0 for every n large enough, one has

φ(rn) = inf
ϕ(u)<rn

sup
ϕ(v)≤rn

ψ(v) − ψ(u)

rn − ϕ(u) ≤
sup

ϕ(v)≤rn

ψ(v) − ψ(0)

rn − ϕ(0)

= 1
rn

sup
ϕ(v)≤rn

ψ(v) = 2M2
1

ξ2
n

sup
ϕ(v)≤rn

ψ(v)

≤ 2M2
1

ξ2
n

∫ 1

0
sup

|x|≤ξn

Q(t, x)dt

≤

∫ 1

0
sup

|x|≤ξn

F (t, x)dt

ξ2
n

2M2
1

+ µ

λ
·

∫ 1

0
sup

|x|≤ξn

G(t, x)dt

ξ2
n

2M2
1

.

Therefore, it follows from (H4) and condition (3.1) that

(3.2) γ ≤ lim inf
n→+∞

φ(rn) ≤ lim
n→+∞

∫ 1
0 sup

|x|≤ξn

F (t, x) + (µ
λ
)G(t, x)dt

ξ2
n

2M2
1

< +∞.

Here, we can observe that ]λ1, λ2[⊆]0, 1
γ
[. Hence, for the fixed λ ∈]λ1, λ2[, the inequality

(3.2) assures that Theorem 2.1 can be used and either Iλ has a global minimum
or there exists a sequence (un) of weak solutions of the problem (1.1) such that
lim

n→∞
∥un∥X = +∞.
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The other step is to verity that the functional Iλ has no global minimum. Since

k4

λ
< lim sup

ξ→+∞

∫ 3
4

1
4

F (t, ξ)dt

ξ2 ,

we can consider a real sequence (γn) and a positive constant τ such that γn → +∞
as n → ∞ and

(3.3) k4

λ
< τ <

∫ 3
4

1
4

F (t, γn)dt

γ2
n

,

for each n ∈ N large enough. Thus, if we consider a sequence (wn) in X defined by
setting

wn(t) =



64γn

(
t3 − 3

4t
2 + 3

16t
)
, t ∈

[
0, 1

4

[
,

γn, t ∈
[1
4 ,

3
4

]
,

64γn

(
−t3 + 9

4t
2 − 27

16t+ 7
16

)
, t ∈

]3
4 , 1

]
,

then, taking (H1) and (H2) into account, we conclude

ϕ(wn) = 2.048
(3

8 − 9
10.44A+ 79

14.48B
)
γ2

n +
m∑

j=1

∫ γn

0
I2j(s)ds ≤ k3γ

2
n + k2γ

2
n = k4γ

2
n.

On the other hand, since G is nonnegative, we observe

ψ(wn) ≥
∫ 3

4

1
4

F (t, γn)dt.

So, from (3.3), we conclude

Iλ(wn) = ϕ(wn) − λψ(wn) ≤ k4γ
2
n − λ

∫ 3
4

1
4

F (t, γn)dt ≤ γ2
n(k4 − λτ),

for every n ∈ N large enough. Note that k4 − λτ < 0. Hence, the functional Iλ is
unbounded from below, and it follows that Iλ has no global minimum and we have
the conclusion. □

We have the following corollary as a special case of Theorem 3.1.

Corollary 3.1. Suppose that f : R → R is a nonnegative function and let F (x) =∫ x
0 f(ξ)dξ for all x ∈ R. Also,

lim inf
ξ→+∞

F (ξ)
ξ2 = 0 and lim sup

ξ→+∞

F (ξ)
ξ2 = +∞.
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Then for every continuous function g : R → R whose G(x) =
∫ x

0 g(ξ)dξ for every
x ∈ R, is a nonnegative function satisfying the condition

g∗ := lim
ξ→+∞

sup|x|≤ξ G(x)
ξ2

M2
1

< +∞,

and for every µ ∈ [0, µ∗[, where µ∗ := 1
g∗

(
1 −M2

1 lim infξ→+∞
F (ξ)

ξ2

)
, the problem{

u(4)(t) + Au′′(t) +Bu(t) = f(u(t)) + µg(u(t)), t ∈ [0, 1],
u(0) = u(1) = u′′(0) = u′′(1) = 0,

has an unbounded sequence of weak solutions.
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