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ITERATIVE CONTINUOUS COLLOCATION METHOD FOR
SOLVING NONLINEAR VOLTERRA INTEGRAL EQUATIONS

K. ROUIBAH1, A. BELLOUR2, P. LIMA3, AND E. RAWASHDEH4

Abstract. This paper is concerned with the numerical solution of nonlinear
Volterra integral equations. The main purpose of this work is to provide a new
numerical approach based on the use of continuous collocation Lagrange polynomi-
als for the numerical solution of nonlinear Volterra integral equations. It is shown
that this method is convergent. The results are compared with the results obtained
by other well-known numerical methods to prove the effectiveness of the presented
algorithm.

1. Introduction

In this paper, we study a numerical method based on iterative continuous collocation
method for the solution of nonlinear Volterra integral equations of the form,

(1.1) x(t) = f(t) +
∫ t

0
K(t, s, x(s))ds, t ∈ I = [0, T ],

where the functions f, K are sufficiently smooth.
The integral equations are often involved in various fields such as physics and

biology (see, for example [5, 14, 15]), and they also occur as reformulations of other
mathematical problems, such as ordinary differential equations and partial differential
equations (see [14]).

There has been a growing interest in the numerical solution of Equation (1.1) (see,
for example, [2, 3, 7, 8, 10, 11, 13, 15–17, 19, 21]) such as, Chebyshev approximation
[2], Adomian’s method [3, 15], Taylor polynomial approximations [21], homotopy
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perturbation method [10], the series expansion method [11], fixed point method [16],
Haar wavelet method [17], rationalized Haar functions method [19]. Moreover, many
collocation methods for approximating the solutions for Equation (1.1) have been
developed recently (see, [5, 9, 18,20,22]) such as Lagrange spline collocation method
[5], cubic B-spline collocation method [9], quintic B-spline collocation method [18],
Taylor collocation method [20], and sinc-collocation method for Volterra integral
equations is used in [22].

The numerical solution of these equations has a high computational cost due to
the nonlinearity and most of the collocation methods for nonlinear Volterra integral
equations transform (1.1) into a system of nonlinear algebraic equations.

This paper is concerned with the continuous piecewise polynomial collocation
method based on the use of Lagrange polynomials. Our goal is to develop an it-
erative explicit solution to approximate the solution of nonlinear Volterra integral
equation (1.1).

The main advantages of the current collocation method are that it is direct and
there is no algebraic system to be solved, which makes the proposed algorithm very
effective, easy to implement and the calculation cost low.

This paper is organized as follows. In Section 2, we divide the interval [0, T ]
into subintervals, and we approximate the solution of (1.1) in each interval by using
iterative Lagrange polynomials. Global convergence is established in Section 3. Finally,
we report our numerical results and demonstrate the efficiency and accuracy of the
proposed numerical scheme by considering some numerical examples in Section 4.

2. Description of the Collocation Method

Let ΠN be a uniform partition of the interval I = [0, T ] defined by tn = nh,
n = 0, . . . , N −1, where the stepsize is given by T

N
= h. Let the collocation parameters

be 0 ≤ c1 < · · · < cm ≤ 1 and the collocation points be tn,j = tn + cjh, j = 1, . . . , m,
n = 0, . . . , N − 1. Define the subintervals σn = [tn, tn+1].

Moreover, denote by πm the set of all real polynomials of degree not exceeding m.
We define the real polynomial spline space of degree m as follows

S(0)
m (ΠN) = {u ∈ C(I,R) : un = u/σn ∈ πm, n = 0, . . . , N − 1}.

It holds for any y ∈ Cm+1([0, T ]) that

(2.1) y(tn + sh) = L0(s)y(tn) +
m∑

j=1
Lj(s)y(tn,j) + hm+1 y(m+1)(ζn(s))

(m + 1)! s
m∏

j=1
(s − cj),

where s ∈ [0, 1], L0(v) = (−1)m ∏m
l=1

v−cl

cl
and Lj(v) = v

cj

∏m
l ̸=j

v−cl

cj−cl
, j = 1, . . . , m, are

the Lagrange polynomials associated with the parameters cj, j = 1, . . . , m.
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Inserting (2.1) for the function s 7→ K(t, s, x(s))ds into (1.1), we obtain for each
j = 1, . . . , m, n = 0, . . . , N − 1,

x(tn,j) =f(tn,j) + h
n−1∑
p=0

b0K(tn,j, tp, x(tp)) + h
n−1∑
p=0

m∑
v=1

bvK(tn,j, tp,v, x(tp,v))

+ haj,0K(tn,j, tn, x(tn)) + h
m∑

v=1
aj,vK(tn,j, tn,v, x(tn,v)) + o(hm+1),(2.2)

such that aj,v =
∫ cj

0 Lv(η)dη and bv =
∫ 1

0 Lv(η)dη, v = 0, . . . , m.
It holds for any u ∈ S0

m(I, ΠN) that

(2.3) un(tn + sh) = L0(s)un−1(tn) +
m∑

j=1
Lj(s)un(tn,j), s ∈ [0, 1].

Now, we approximate the exact solution x by u ∈ S0
m(I, ΠN) such that u(tn,j) satisfies

the following nonlinear system,

un(tn,j) =f(tn,j) + h
n−1∑
p=0

b0K(tn,j, tp, up(tp)) + h
n−1∑
p=0

m∑
v=1

bvK(tn,j, tp,v, up(tp,v))

+ haj,0K(tn,j, tn, un−1(tn)) + h
m∑

v=1
aj,vK(tn,j, tn,v, un(tn,v)),(2.4)

for j = 1, . . . , m, n = 0, . . . , N − 1, where u−1(t0) = x(0) = f(0).
Since the above system is nonlinear, we will use an iterative collocation solution

uq ∈ S0
m(I, ΠN), q ∈ N, to approximate the exact solution of (1.1) such that

(2.5) uq
n(tn + sh) = L0(s)uq

n−1(tn) +
m∑

j=1
Lj(s)uq

n(tn,j), s ∈ [0, 1],

where the coefficients uq
n(tn,j) are given by the following formula:

uq
n(tn,j) =f(tn,j) + h

n−1∑
p=0

b0K(tn,j, tp, uq
p(tp)) + h

n−1∑
p=0

m∑
v=1

bvK(tn,j, tp,v, uq
p(tp,v))

+ haj,0K(tn,j, tn, uq
n−1(tn)) + h

m∑
v=1

aj,vK(tn,j, tn,v, uq−1
n (tn,v)),(2.6)

such that uq
−1(t0) = f(0) for all q ∈ N and the initial values u0(tn,j) ∈ J (J is a

bounded interval).
The above formula is explicit and the approximate solution uq is obtained without

solving any algebraic system. The complexity of the proposed algorithm can be
measured in terms of how many times the function K must be evaluated at each
collocation point.

From (2.5) it follows that the number of such evaluations is O(mn) for each iteration.
Since the optimal number of iterations is q = m + 1 (as it will be shown in the next
section), we conclude that the total number of evaluations is O(m2 n), which makes
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this method competitive, in comparison with other methods where a nonlinear system
of equations is solved by an iterative algorithm.

In the next section, we prove the convergence of the approximate solution uq to the
exact solution x of (1.1) is of order m for all q ≥ m.

3. Convergence Analysis

In this section, we assume that the function K satisfies the Lipschitz condition with
respect to the third variable: there exists L ≥ 0 such that

|K(t, s, y1) − K(t, s, y2)| ≤ L|y1 − y2|.
The following lemmas will be used in this section.

Lemma 3.1 ([6]). Assume that {αn}n≥1 and {qn}n≥1 are given non-negative sequences
and the sequence (εn)n≥1 satisfies ε1 ≤ β and

εn ≤ β +
n−1∑
j=1

qj +
n−1∑
j=1

αjεj, n ≥ 2,

then

εn ≤

β +
n−1∑
j=1

qj

 exp
n−1∑

j=1
αj

 , n ≥ 2.

Lemma 3.2 ([1]). If {fn}n≥0, {gn}n≥0 and {εn}n≥0 are nonnegative sequences and

εn ≤ fn +
n−1∑
i=0

giεi, n ≥ 0,

then

εn ≤ fn +
n−1∑
i=0

figi exp
(

n−1∑
k=0

gk

)
, n ≥ 0.

Lemma 3.3 ([12]). Assume that the sequence {εn}n≥0 of nonnegative numbers satisfies

εn ≤ Aεn−1 + B
n−1∑
i=0

εi + K, n ≥ 0,

where A, B and K are nonnegative constants, then

εn ≤ ε0

R2 − R1
[(R2 − 1)Rn

2 + (1 − R1)Rn
1 ] + K

R2 − R1
[Rn

2 − Rn
1 ],

where

R1 =
1 + A + B −

√
(1 − A)2 + B2 + 2AB + 2B

2 ,

R2 =
1 + A + B +

√
(1 − A)2 + B2 + 2AB + 2B

2 .(3.1)

Therefore, 0 ≤ R1 ≤ 1 ≤ R2.
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The following result gives the existence and the uniqueness of a solution for the
nonlinear system (2.4).

Lemma 3.4. The nonlinear system (2.4) has a unique solution u ∈ S0
m(I, ΠN) for

sufficiently small h.

Proof. We will use the induction combined with the Banach fixed point theorem.
(i) On the interval σ0 = [t0, t1], the nonlinear system (2.4) becomes

u0(t0,j) =f(t0,j) + haj,0K(t0,j, t0, f(0)) + h
m∑

v=1
aj,vK(t0,j, t0,v, u0(t0,v)), j = 1, . . . , m.

We consider the operator Ψ defined by

Ψ : Rm → Rm,

x = (x1, . . . , xm) 7→ Ψ(x) = (Ψ1(x), . . . , Ψm(x)),

such that for j = 1, . . . , m, we have

Ψj(x) = f(t0,j) + haj,0K(t0,j, t0, f(0)) + h
m∑

v=1
aj,vK(t0,j, t0,v, xv).

Hence, for all x, y ∈ Rm, we have

∥Ψ(x) − Ψ(y)∥≤ hmaL∥x − y∥,

where a = max{|aj,v|, j = 1, . . . , m, v = 0, . . . , m}.
Since hmaL < 1 for sufficiently small h, then by the Banach fixed point theorem,

the nonlinear system (2.4) has a unique solution u0 on σ0.
(ii) Suppose that ui exists and is unique on the intervals σi, i = 0, . . . , n − 1, for

n ≥ 1. We show that un exists and is unique on the interval σn.
On the interval σn, the nonlinear system (2.4) becomes

un(tn,j) = F (tn,j) + h
m∑

v=1
aj,vK(tn,j, tn,v, un(tn,v)),(3.2)

where

F (tn,j) =f(tn,j) + h
n−1∑
p=0

b0K(tn,j, tp, up(tp))

+ h
n−1∑
p=0

m∑
v=1

bvK(tn,j, tp,v, up(tp,v)) + haj,0K(tn,j, tn, un−1(tn)).

We consider the operator Ψ defined by

Ψ : Rm → Rm,

x = (x1, . . . , xm) 7→ Ψ(x) = (Ψ1(x), . . . , Ψm(x)),
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such that for j = 1, . . . , m,

Ψj(x) = F (tn,j) + h
m∑

v=1
aj,vK(tn,j, tn,v, xv).

Hence, for all x, y ∈ Rm

∥Ψ(x) − Ψ(y)∥≤ hmaL∥x − y∥.

Since hmaL < 1 for sufficiently small h, then by the Banach fixed point theorem, the
nonlinear system (3.2) has a unique solution un on σn. □

The following result gives the convergence of the approximate solution u to the
exact solution x.

Theorem 3.1. Let f, K be m + 1 times continuously differentiable on their respective
domains. If −1 < R(∞) = (−1)m m∏

l=1

1−cl

cl
< 1, then, for sufficiently small h, the

collocation solution u converges to the exact solution x and the resulting error function
e := x − u satisfies

∥e∥ ≤ Chm+1,

where C is a finite constant independent of h.

Proof. Define the error e on σn by e(t) = en(t) = x(t)−un(t) for all n ∈ {0, 1, . . . , N −
1}.

We have, from (2.4) and (2.2), for all n = 0, . . . , N − 1, and j = 1, . . . , m,

|en(tn,j)| ≤hbL
n−1∑
p=0

|ep(tp)| + hbL
n−1∑
p=0

m∑
v=1

|ep(tp,v)| + haL|en−1(tn)|

+ haL
m∑

v=1
|en(tn,v)| + αhm+1,(3.3)

where α is a positive number and e−1(t0) = 0.
We consider the sequence εn = ∑m

v=1 |en(tn,v)| for n = 0, . . . , N − 1. Then, from
(3.3), εn satisfies for n = 0, . . . , N − 1,

εn ≤ hbLm
n−1∑
p=0

|ep(tp)| + hbLm
n−1∑
p=0

εp + haLm|en−1(tn)| + haLmεn + αmhm+1

≤ 2hbLm
n−1∑
p=0

∥ep∥ + hbLm
n−1∑
p=0

εp + haLmεn + αmhm+1.

Hence, for h < 1
Lam

and h ∈ (0, h], we have

εn ≤ 2bLm

1 − Lamh︸ ︷︷ ︸
α1

h
n−1∑
p=0

∥ep∥ + bLm

1 − Lamh︸ ︷︷ ︸
α2

h
n−1∑
p=0

εp + αm

1 − Lamh︸ ︷︷ ︸
α3

hm+1.
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Then, by Lemma 3.1, for all n = 0, . . . , N − 1,

εn ≤ α1 exp(Tα2)︸ ︷︷ ︸
α4

h
n−1∑
p=0

∥ep∥ + α3 exp(Tα2)︸ ︷︷ ︸
α5

hm+1.

Therefore, by using (2.1) and (2.3), we obtain

∥en∥ ≤ |R(∞)|∥en−1∥ + ρεn + βhm+1

≤ |R(∞)|∥en−1∥ + ρα4︸︷︷︸
α6

h
n−1∑
p=0

∥ep∥ + (ρα5 + β)︸ ︷︷ ︸
α7

hm+1,

where ρ = max{|Lj(t)| : t ∈ [0, 1], j = 1, . . . , m}.
Hence, by Lemma 3.3, we obtain for all n = 0, . . . , N − 1,

∥en∥ ≤ ∥e0∥
R2 − R1

[(R2 − 1)Rn
2 + (1 − R1)Rn

1 ] + α7h
m+1

R2 − R1
[Rn

2 − Rn
1 ]

≤ ∥e0∥
R2 − R1

[
(R2 − 1)R

T
h
2 + 1

]
+ α7h

m+1

R2 − R1

[
R

T
h
2

]
≤
( 1

R2 − R1

[
(R2 − 1)R

T
h
2 + 1

]
+ 1

R2 − R1

[
R

T
h
2

])
α7h

m+1,

where R1, R2 are defined by (3.1) such that A = |R(∞)|, B = α6h, K = α7h
m+1.

Since

lim
h−→0

( 1
R2 − R1

[
(R2 − 1)R

T
h
2 + 1

]
+ 1

R2 − R1

[
R

T
h
2

])

= 1
1 − |R(∞)| exp

(
2Tα6

1 − |R(∞)|

)
< +∞.

Then there exists γ > 0 such that for all h ∈ (0, h]
1

R2 − R1

[
(R2 − 1)R

T
h
2 + 1

]
+ 1

R2 − R1

[
R

T
h
2

]
≤ γ.

Thus, the proof is completed by taking C = α7γ. □

The following result gives the convergence of the iterative solution uq to the exact
solution x.

Theorem 3.2. Consider the iterative collocation solution uq, q ≥ 1, defined by (2.5)
and (2.6). If −1 < R(∞) = (−1)m ∏m

l=1
1−cl

cl
< 1, then for any initial condition

u0(tn,j) ∈ J , the iterative collocation solution uq, q ≥ 1, converges to the exact
solution x for sufficiently small h. Moreover, the following error estimate holds

∥uq − x∥ ≤ dβqhq + Chm+1,

where d, β and C are finite constants independent of h.
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Proof. We define the errors eq and ξq by eq(t) = eq
n(t) = uq

n(t) − x(t) and ξq = ξq
n =

uq
n(t) − un(t) on σn, n = 0, . . . , N − 1, where u is defined by Lemma 3.4.
We have, from (2.4) and (2.6), for all n = 0, . . . , N − 1 and j = 1, . . . , m,

|ξq
n(tn,j)| ≤hbL

n−1∑
p=0

|ξq
p(tp)| + hbL

n−1∑
p=0

m∑
v=1

|ξq
p(tp,v)| + haL|ξq

n−1(tn)|

+ haL
m∑

v=1
|ξq−1

n (tn,v)|.

Now, for each fixed q ≥ 1, we consider the sequence ηq
n = max{|ξq

n(tn,v)| : v =
1, . . . , m} for n = 0, . . . , N − 1, it follows that

ηq
n ≤ hbL

n−1∑
p=0

|ξq
p(tp)| + hbLm

n−1∑
p=0

ηq
p + haL|ξq

n−1(tn)| + haLmηq−1
n

≤ 2hbL
n−1∑
p=0

∥ξq
p∥ + hbLm

n−1∑
p=0

ηq
p + haLmηq−1

n .

Hence, by Lemma 3.2, for all n = 0, . . . , N − 1,

ηq
n ≤2hbL

n−1∑
p=0

∥ξq
p∥ + haLmηq−1

n + exp(TLbm)ab(hLm)2
n−1∑
p=0

ηq−1
p

+ 2 exp(TLbm)Tm(bL)2h
n−1∑
p=0

∥ξq
p∥.(3.4)

We consider the sequence ηq = max{ηq
n, n = 0, . . . , N − 1} for q ≥ 1. Then, from

(3.4), ηq satisfies

ηq
n ≤ 2(bL + exp(TLbm)Tm(bL)2)︸ ︷︷ ︸

α1

h
n−1∑
p=0

∥ξq
p∥ + α2hηq−1,

where α2 = (aLm + exp(TLbm)abT (Lm)2).
Therefore, by using (2.3) and (2.5), we obtain

∥ξq
n∥ ≤ |R(∞)|∥ξq

n−1∥ + ρmηq
n ≤ |R(∞)|∥ξq

n−1∥ + ρmα1h
n−1∑
p=0

∥ξq
p∥ + ρmα2hηq−1.

Hence, by Lemma 3.3, we obtain for all n = 0, . . . , N − 1,

∥ξq
n∥ ≤ ∥ξq

0∥
R2 − R1

[(R2 − 1)Rn
2 + (1 − R1)Rn

1 ] + ρmα2hηq−1

R2 − R1
[Rn

2 − Rn
1 ]

≤ ∥ξq
0∥

R2 − R1

[
(R2 − 1)R

T
h
2 + 1

]
+ ρmα2hηq−1

R2 − R1

[
R

T
h
2

]
≤
( 1

R2 − R1

[
(R2 − 1)R

T
h
2 + 1

]
+ 1

R2 − R1

[
R

T
h
2

])
ρmα2hηq−1,(3.5)
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where R1 and R2 are defined by (3.1) such that A = |R(∞)|, B = ρmα1h, K =
ρmα2hηq−1. Since

lim
h→0

( 1
R2 − R1

[
(R2 − 1)R

T
h
2 + 1

]
+ 1

R2 − R1

[
R

T
h
2

])
=

exp( 2T ρmα1
1−|R(∞)|)

1 − |R(∞)| < +∞.

Then there exists γ > 0 such that for all h ∈ (0, h]
1

R2 − R1

[
(R2 − 1)R

T
h
2 + 1

]
+ 1

R2 − R1

[
R

T
h
2

]
≤ γ.

It follows, from (3.5), that for all n = 0, . . . , N − 1,
∥ξq

n∥ ≤ γρmα2hηq−1 ≤ γρmα2h∥ξq−1∥,

which implies, for all q ≥ 1, that
∥ξq∥ ≤ γρmα2h∥ξq−1∥ ≤ · · · ≤ (γρmα2)qhq∥ξ0∥.

Since, u0
−1(t0) = f(0), u0(tn,j) ∈ J (bounded interval), then by (2.3) the function u0 is

bounded. Hence, there exists d > 0 such that ∥ξ0∥ = ∥u0−u∥ ≤ ∥u0−x∥+∥x−u∥ < d.
Which implies that for all q ≥ 1

∥ξq∥ ≤ d(γρmα2︸ ︷︷ ︸
β

)qhq.

Hence, by Theorem 3.1, we deduce that
∥eq∥ ≤ ∥ξq∥ + ∥u − x∥ ≤ dβqhq + Chm+1.

Thus, the proof is completed. □

Remark 3.1. From the error estimate in Theorem 3.2 it follows that the optimal
number of iterations is q = m + 1. Actually, with m + 1 iterations the total error has
the order of O(hm+1), which will not be improved if more iterations are performed.

4. Numerical Examples

In order to test the applicability of the presented method, we consider the following
examples with T = 1. These examples have been solved with various values of N, m
and q. In each example, we calculate the error between x and the iterative collocation
solution uq.

The absolute errors at some particular points are given to compare our solutions
with the solutions obtained by [3, 9, 13,16,18].

These results of these numerical examples are in agreement with the theory pre-
sented in Section 3 and they confirm the advantages of our method in comparison
with those described in [3, 9, 13,16,18].

Example 4.1 ([9, 13]). Consider the following nonlinear Volterra integral equation

x(t) = 1 + (sin(t))2 −
∫ t

0
3 sin(t − s)(x(s))2ds, t ∈ [0, 1],
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where u(x) = cos(x) is the exact solution.
The absolute errors for N = 10, 20 and m = q = 3 at t = 0, 0.1, . . . , 1, are

displayed in Table 1. We used the collocation parameters ci = i
m+1 + 1

5 , i = 1, . . . , m,
and R(∞) = −0.02. The numerical results obtained by the present method are
considerably more accurate in comparison with the numerical results obtained in [9,13].

Table 1. Comparison of the absolute errors of Example 4.1

t Method in [9] Method in [13] Our method
N = 10 N = 20 N = 10 N = 20 N = 10 N = 20

0.1 1.01E−5 1.59E−6 1.24E−5 2.54E−8 3.32E−8 7.92E−9
0.2 2.48E−5 3.26E−6 1.62E−6 3.44E−7 1.84E−9 5.15E−9
0.3 3.65E−5 4.72E−6 2.03E−4 9.19E−7 3.58E−8 3.87E−9
0.4 4.61E−5 5.87E−6 2.07E−5 1.44E−6 5.29E−8 8.00E−9
0.5 5.26E−5 6.63E−6 3.84E−5 1.88E−6 9.91E−8 8.90E−10
0.6 5.59E−5 6.98E−6 5.11E−5 2.18E−6 1.48E−7 5.90E−9
0.7 5.58E−5 6.92E−6 7.22E−5 1.83E−6 1.77E−7 9.71E−9
0.8 5.28E−5 6.47E−6 6.43E−5 6.41E−6 2.00E−7 3.34E−9
0.9 4.65E−5 5.70E−6 1.96E−5 1.00E−4 2.04E−7 2.07E−8
1 3.97E−5 4.71E−6 6.36E−4 9.25E−4 1.95E−7 5.13E−9

Example 4.2 ([3, 18]). Consider the following linear Volterra integral equation with
exact solution x(t) = 1 − sinh(t):

x(t) = 1 − t − t2

2 +
∫ t

0
(t − s)x(s)ds, t ∈ [0, 1].

The absolute errors for m = q = 3 and N = 20 at t = 0, 0.1, . . . , 1, are displayed
in Table 2. We used the collocation parameters ci = i

m+1 + 1
5 , i = 1, . . . , m, and

R(∞) = −0.02. The numerical results obtained here are compared in Table 2 with
the numerical results obtained by using the methods in [3, 18].

It is seen from Table 2 that the results obtained by the present method are much
more accurate than those obtained in [3, 18].

The absolute errors for N = 5 and (q, m) ∈ {(2, 2), (3, 2), (3, 3), (3, 5), (4, 5)} at
t = 0, 0.1, . . . , 1, are presented in Table 3, we note that the absolute error reduces as
q or m increases.

We calculate the experimental order of convergence (EOC) at t = 1 for N = 2l,
l = 1, 2, 3, 4, 5, m = 1, 2, 3 and q = m+1 in Table 4, the result confirms the theoretical
result and suggests that the order of convergence with q = m + 1 is m + 1. As we
have remarked (see Remark 3.1) this is the maximal convergence order that can be
obtained with the present method.
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Moreover, we calculate the run time to solve the approximate solution u for N =
6, . . . , 10, m = 7, . . . , 10, and q = m + 1, the numerical results are solved by using
Maple version 16.

The computations were performed in a PC with a 2.16 GHz processor, running with
2.00 Go RAM. As it could be expected, the computing time increases with m and
N . However, we cannot see a simple relationship between the computing time and
the complexity of the algorithm, probably because this time depends on other factors
than the number of evaluations of the function K. This table shows that accurate
results can be obtained by our method in a small computer with a low computational
cost.

Table 2. Comparison of the absolute errors of Example 4.2

t Our method Method in Method in
N = 10 N = 20 [3] [18]

0.0 0 0 0 1.98E−14
0.1 1.30E−8 1.98E−9 5.38E−6 1.21E−7
0.2 3.35E−8 2.54E−9 2.20E−5 2.35E−7
0.3 3.14E−8 6.55E−9 4.82E−5 3.54E−7
0.4 5.98E−8 5.80E−9 8.33E−5 4.77E−7
0.5 6.94E−8 3.50E−9 1.26E−4 6.05E−7
0.6 8.01E−8 8.51E−10 1.77E−4 7.39E−7
0.7 1.00E−7 5.83E−9 2.34E−4 8.80E−7
0.8 1.15E−7 7.38E−9 2.97E−4 1.03E−6
0.9 1.37E−7 8.90E−9 3.65E−4 1.19E−6
1 1.62E−7 9.38E−9 4.38E−4 1.36E−6

Table 3. Absolute errors for Example 4.2

t q = 2 q = 3 q = 3 q = 3 q = 4
m = 2 m = 2 m = 3 m = 5 m = 5

0 0.0 0.0 0.0 0.0 0.0
0.1 8.231E−6 7.282E−6 3.015E−7 7.451E−8 3.701E−8
0.2 8.563E−5 8.373E−5 4.115E−7 1.147E−6 8.474E−7
0.3 1.053E−5 7.583E−6 6.394E−7 5.824E−8 4.007E−8
0.4 1.027E−4 9.863E−5 8.478E−7 8.031E−7 4.328E−7
0.5 1.064E−5 5.410E−6 1.017E−6 2.316E−8 1.897E−8
0.6 1.143E−4 1.070E−4 1.324E−6 1.058E−7 4.785E−8
0.7 1.033E−5 2.283E−6 1.470E−6 1.309E−8 3.040E−8
0.8 1.297E−4 1.175E−4 1.909E−6 1.114E−7 7.258E−8
0.9 9.861E−6 1.815E−6 2.021E−6 8.470E−9 8.137E−10
1 1.514E−4 1.314E−4 2.620E−6 1.156E−7 4.245E−8
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Table 4. EOC and the run-time/sec of Example 4.2

N m = 1 m = 2 m = 3
2
4 2.04 2.91 4.00
8 2.05 2.96 4.01
16 2.04 2.91 4.00
32 2.04 2.91 4.00

N m = 7 m = 8 m = 9 m = 10
6 3.9 5.6 9.9 14.8
7 5.8 9.9 17.9 31.1
8 8.9 16.7 24.3 56.6
9 13.3 32.7 43.9 118.4
10 17.4 35.9 126.3 232.3

Example 4.3 ([16]). We consider the following nonlinear Volterra integral equation

x(t) = t

et2 +
∫ t

0
2tse−x2(s)ds, t ∈ [0, 1],

where the exact solution is x(t) = t.
The absolute errors for N = 20 and m = 3, q = 5 at t = 0, 0.2, . . . , 1, are compared

with the absolute error of the method in [16] in Table 5, where the collocation
parameters ci = i

m+3 + 1
5 , i = 1, . . . , m, and R(∞) = −0.64.

Table 5. Comparison of the absolute errors of Example 4.3

t Method in [16] Our method
N = 20 N = 20

0 0 0
0.2 1.49E−8 8.9E−9
0.4 7.74E−7 2.69E−8
0.6 9.36E−6 8.90E−9
0.8 4.58E−5 3.39E−8
1 1.29E−4 2.49E−8

Example 4.4 ([16]). We consider the following nonlinear Volterra integral equation

x(t) = t cos(t) +
∫ t

0
t sin(x(s))ds, t ∈ [0, 1],

where the exact solution is x(t) = t.
The absolute errors for N = 25 and m = q = 4 at t = 0.001, 0.2, 0.4, 0.6, 0.8, 1 are

compared with the absolute error of the method in [16] in Table 6.
Where the collocation parameters ci = i

m+3 + 1
5 , i = 1, . . . , m, and R(∞) = 0.35.

It is seen from Table 6 that the results obtained by the present method is very
superior to that obtained by the method in [16].

5. Conclusion

In this paper, we have used an iterative collocation method based on the Lagrange
polynomials for the numerical solution of nonlinear Volterra integral equations (1.1)
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Table 6. Comparison of the absolute errors of Example 4.4

t Method in [16] Our method
N = 25 N = 25

0.001 1.25E−12 1.75E−11
0.2 3.53E−6 6.30E−8
0.4 5.81E−6 5.40E−8
0.6 7.74E−7 9.60E−8
0.8 1.20E−5 6.00E−9
1 3.98E−5 7.20E−8

in the spline space S(0)
m (ΠN). The main advantages of this method that, is easy to

implement, has high order of convergence and the coefficients of the approximation
solution are determined by using iterative formulas without the need to solve any
system of algebraic equations. Numerical examples showing that the method is
convergent with a good accuracy and the comparison of the results obtained by the
present method with the other methods reveals that the method is very effective and
convenient.
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