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HANKEL DETERMINANTS FOR A NEW SUBCLASSES OF
ANALYTIC FUNCTIONS INVOLVING A LINEAR OPERATOR

LAXMIPRIYA PARIDA1, TEODOR BULBOACĂ2, AND ASHOK KUMAR SAHOO3

Abstract. Using the operator L(a, c) defined by Carlson and Shaffer, we defined
a new subclass of analytic functions ML(λ, a, c). The well known Fekete-Szegö
problem, upper bound of Hankel determinant of order two, and coefficient bound
of the fourth coefficient is determined. Our investigation generalises some previous
results obtained in different articles.

1. Introduction

We denote by H(D) the class of functions which are analytic in the open unit disk
D := {z ∈ C : |z| < 1}, and let A be the subclass of H(D) consisting of the functions
of the form

(1.1) f(z) = z +
∞∑

k=2
ak z

k, z ∈ D.

Let P be the well-known class of Carathéodory functions, that is P ∈ H(D) with
the power series expansion

(1.2) P (z) = 1 + p1z + p2z
2 + · · · , z ∈ D,

and ReP (z) > 0 for all z ∈ D.
For two functions f, g ∈ H(D), the function f is called to be subordinate to the

function g, written f(z) ≺ g(z), if there exists a function ψ ∈ H(D), with |ψ(z)| < 1,
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z ∈ D and ψ(0) = 0, such that f(z) = g(ψ(z)) for all z ∈ D. In particular, if g is
univalent in D then the following equivalence relationship holds true:

f(z) ≺ g(z) ⇔ f(0) = g(0) and f(D) ⊂ g(D).
Let hs(z) = ∑∞

k=0 ak,s z
k, s = 1, 2, which are analytic in D, then the well-known

Hadamard (or convolution) product of h1 and h2 is given by

(h1 ∗ h2)(z) :=
∞∑

k=0
ak,1 ak,2 z

k, z ∈ D.

The Carlson-Shaffer operator [2] L(a, c) : A → A is defined by
(1.3) L(a, c)f(z) := φ̃(a, c; z) ∗ f(z), z ∈ D,
where

φ̃(a, c; z) :=
∞∑

k=0

(a)k

(c)k

zk+1, z ∈ D, a ∈ C, c ∈ C \ Z−
0 , Z−

0 := {. . . ,−2,−1, 0},

is the incomplete beta function and (t)k denotes the Pochhammer symbol (or the
shifted factorial) defined in terms of the Gamma function by

(t)k := Γ(t+ k)
Γ(t) =

{
t(t+ 1)(t+ 2) · · · (t+ k − 1), if k ∈ N := {1, 2, . . . },
1, if k = 0.

For f ∈ A is given by (1.1) one can see by using (1.3) that

L(a, c)f(z) = z +
∞∑

k=1

(a)k

(c)k

ak+1 z
k+1, z ∈ D,

and
zL′(a, c)f(z) = aL(a+ 1, c)f(z) − (a− 1)L(a, c)f(z), z ∈ D.

Remark 1.1. Next we will emphasize a few special cases of the operator L(a, c), as
follows:

(i) L(a, a)f(z) = f(z);
(ii) L(2, 1)f(z) = zf ′(z);
(iii) L(3, 1)f(z) = zf ′(z) + 1

2z
2f ′′(z);

(iv) L(m+1, 1)f(z) =: Dmf(z) = z
(1−z)m+1 ∗f(z), m ∈ Z, m > −1, is the well-known

Ruscheweyh derivative of f [22];
(v) L(2, 2 − µ)f(z) =: Ωµ

zf(z), 0 ≤ µ < 1, is the well-known Owa-Srivastava
fractional differential operator [18].

For the function f ∈ A of the form (1.1) Noonan and Thomas [16] defined q-th
Hankel determinant as

Hq,k(f) :=

∣∣∣∣∣∣∣∣∣∣
ak ak+1 . . . ak+q−1
ak+1 ak+2 . . . ak+q

... ... ... ...
ak+q−1 ak+q . . . ak+2q−2

∣∣∣∣∣∣∣∣∣∣
, a1 = 1, q, k ∈ N.
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The above determinant Hq,k(f) has been studied by several authors, for example,
Pommerenke [19], Noonan and Thomas [16], Ehrenborg [4] and Noor [17].

These authors studied the Hankel determinant in their own developed way: for
instance Noor [17] studied the rate of growth of Hq,k as k → ∞ for functions of
the form (1.1) with bounded boundary rotation. Unlike to Noor, Ehrenborg [4] has
studied different order Hankel determinants taking a family of exponential polynomials.
Layman’s article [11] gave some ideas on Hankel transform of an integer sequence,
and the article discusses some properties of the transform for integer sequences.

For k = 1, q = 2, a1 = 1 and k = q = 2 the Hankel determinant simplifies to the
functionals |a3 − a2

2| and |a2a4 − a2
3|, called Hankel determinants of order two, denoted

by ∧1 := H2,1(f) and ∧2 := H2,2(f), respectively. It is well-known (see Duren [3])
that if f is given by (1.1) and is univalent in D, then ∧1 ≤ 1 occurs, and this result is
sharp.

For T ⊂ A, to find a sharp (best possible) upper bound of ∧̃c := |a3 − c a2
2| for the

subclass T is generally called Fekete-Szegö problem for the subclass T, where c is a real
or a complex number. There are some subclasses of univalent functions, such that
the starlike functions, convex functions and close-to-convex functions, for which the
problem of finding sharp upper bounds for the functional ∧̃c was completely solved
(see [5, 8–10]). For the family of analytic functions R, such that for f ∈ R we have
Re f ′(z) > 0, z ∈ D, Janteng et al. [6, 7] have found the sharp upper bound to the
second Hankel determinant ∧2. For initial work on the class R one may refer to the
article of MacGregor [15].

In our paper we have defined a subclass of A using the concept of subordination
and the linear operator L(a, c).
Definition 1.1. Let ML(λ, a, c) denotes the subclass of A, members of which are of
the form (1.1) and satisfy the subordination condition

(1.4) zL′(a, c)f(z)
(1 − λ)L(a, c)f(z) + λz

≺
√

1 + z,

with
√

1 + z
∣∣∣∣
z=0

= 1 or equivalently∣∣∣∣∣∣
[

zL′(a, c)f(z)
(1 − λ)L(a, c)f(z) + λz

]2

− 1
∣∣∣∣∣∣ < 1, z ∈ D,

where a ∈ C, c ∈ C \ Z−
0 and 0 ≤ λ ≤ 1.

Remark 1.2. (i) We will discuss the geometrical significance of the class ML(λ, a, c).
If we set h(z) =

√
1 + z, z ∈ D, with h(0) = 1, and denote

ω := h(eiθ) =
√

1 + eiθ, θ ∈ [0, 2π] \ {π},
this yields ω2 − 1 = eiθ or |ω2 − 1| = 1. Letting ω = u+ iv, u, v ∈ R, we deduce that(

u2 + v2
)2

= 2
(
u2 − v2

)
.
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Thus, h(D) is the region bounded by the right-half of the Bernoulli’s lemniscate
given by

{
u+ iv ∈ C : (u2 + v2)2 = 2 (u2 − v2)

}
, which implies that the functions in

ML(λ, a, c) have a positive real part.
(ii) Using the point (i) of the Remark 1.1, for a = c we denoteML(λ) := ML(λ, a, a),

and member of this class satisfies the subordination condition
zf ′(z)

(1 − λ)f(z) + λz
≺

√
1 + z,

with
√

1 + z
∣∣∣∣
z=0

= 1 or equivalently∣∣∣∣∣∣
[

zf ′(z)
(1 − λ)f(z) + λz

]2

− 1
∣∣∣∣∣∣ < 1, z ∈ D.

(iii) Remark that the subclass

ML(0) = SL∗ :=
f ∈ A :

∣∣∣∣∣∣
[
zf ′(z)
f(z)

]2

− 1
∣∣∣∣∣∣ < 1, z ∈ D


was introduced and studied by Sokól and Stankiewicz [25], and Raza and Mallik [21]
determined the upper bound of third Hankel determinant for the class SL∗. Also,
the subclass ML(1) :=

{
f ∈ A :

∣∣∣[f ′(z)]2 − 1
∣∣∣ < 1, z ∈ D

}
was studied by Sahoo and

Patel [23].

In our work we have used the techniques of Libera and Zlotkiewicz [12] and Koepf
[9], combined with the help of MAPLE™ software to find an upper bound of ∧̃µ and
∧2, and of the coefficient a4 for the functions belonging to the class ML(λ, a, c).

2. Preliminaries

To establish our main results, we shall need the followings lemmas. The first lemma
is the well-known Carathéodory’s lemma (see also [20, Corollary 2.3.]).

Lemma 2.1 ([1]). If P ∈ P and given by (1.2), then |pk| ≤ 2 for all k ≥ 1 and the
result is best possible for the function P∗(z) = 1+ρz

1−ρz
, |ρ| = 1.

The next lemma gives us a majorant for the coefficients of the functions of the class
P, and more details may be found in [14, Lemma 1].

Lemma 2.2 ([13]). Let the function P given by (1.2) be a member of the class P.
Then
(2.1)

∣∣∣p2 − ν p2
1

∣∣∣ ≤ 2 max {1, |2ν − 1|} , where ν ∈ C.

The result is sharp for the functions given by

P ∗(z) = 1 + ρ2z2

1 − ρ2z2 and P∗(z) = 1 + ρz

1 − ρz
, |ρ| = 1.
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Lemma 2.3 ([13]). Let the function P given by (1.2) be a member of the class P.
Then

(2.2) p2 = 1
2
[
p2

1 +
(
4 − p2

1

)
x
]

and

(2.3) p3 = 1
4
[
p3

1 + 2
(
4 − p2

1

)
p1x−

(
4 − p2

1

)
p1x

2 + 2
(
4 − p2

1

)
(1 − |x|2)z

]
,

for some complex numbers x, z satisfying |x| ≤ 1 and |z| ≤ 1.

Other details regarding the above lemma my be found in [13], relations (3.9)
and (3.10).

3. Main Results

In our first result we will determine an upper bound for ∧̃µ, and this tends to solve
the Fekete-Szegö problem for the subclass ML(λ, a, c).

Theorem 3.1. For f ∈ ML(λ, a, c) and is in the form given by (1.1) then, for any
µ ∈ C we have∣∣∣a3 − µ a2

2

∣∣∣ ≤ |(c)2|
|(a)2|

· 1
2(2 + λ)(3.1)

× max
{

1, |(3λ− 1)(1 + λ)a(c+ 1) + 2µ(2 + λ)c(a+ 1)|
4(1 + λ)2|a(c+ 1)|

}
.

Proof. If f ∈ ML(λ, a, c), from (1.4) it follows that there exists a function ψ ∈ H(D)
satisfying the conditions ψ(0) = 0 and |ψ(z)| < 1, z ∈ D, such that

(3.2) zL′(a, c)f(z)
(1 − λ)L(a, c)f(z) + λz

=
√

1 + ψ(z), z ∈ D.

Setting

P (z) := 1 + ψ(z)
1 − ψ(z) = 1 + p1z + p2z

2 + · · · , z ∈ D,

then P ∈ P. From the above relation, we get

ψ(z) = P (z) − 1
P (z) + 1 , z ∈ D,

and from (3.2) it follows that

(3.3) zL′(a, c)f(z)
(1 − λ)L(a, c)f(z) + λz

=
(

2P (z)
1 + P (z)

) 1
2

, z ∈ D.
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It is easy to show that(
2P (z)

1 + P (z)

) 1
2

=1 + 1
4p1z +

(1
4p2 − 5

32p
2
1

)
z2

+
(1

4p3 − 5
16p1p2 + 13

128p
3
1

)
z3 + · · · , z ∈ D,

and identifying the coefficients of z, z2 and z3 in (3.3) we deduce that

a2 = c

a
· p1

4(1 + λ) ,(3.4)

a3 = (c)2

(a)2
· 1

4(2 + λ)

[
p2 − (7λ+ 3)

8(1 + λ)p
2
1

]
,(3.5)

a4 = (c)3

(a)3
· 1

4(3 + λ)

[
p3 − 7λ2 + 16λ+ 7

4(1 + λ)(2 + λ)p1p2 + 25λ2 + 40λ+ 13
32(1 + λ)(2 + λ)p

3
1

]
.(3.6)

Thus, from (3.4) and (3.5) we get∣∣∣a3 − µ a2
2

∣∣∣ = 1
4(2 + λ) · |(c)2|

|(a)2|

∣∣∣∣∣p2−
[

(7λ+ 3)(λ+ 1)a(c+ 1) + 2µ(2 + λ)c(a+ 1)
8(1 + λ)2a(c+ 1)

]
p2

1

∣∣∣∣∣ ,
which with the aid of the inequality (2.1) of Lemma 2.2 yields the required esti-
mate (3.1). □

For a = c the above theorem reduces to the following special case.

Corollary 3.1. If f ∈ ML(λ) and is given by (1.1), then for any µ ∈ C we have∣∣∣a3 − µ a2
2

∣∣∣ ≤ 1
2(2 + λ) max

{
1, |(3λ− 1)(1 + λ) + 2µ(2 + λ)|

4(1 + λ)2

}
.

If we take µ ∈ R in Theorem 3.1 we get the next special case.

Corollary 3.2. If the function f ∈ ML(λ, a, c) and is given by (1.1), with µ ∈ R and
a > c ≥ 0, then

∣∣∣a3 − µ a2
2

∣∣∣ ≤



a(c+ 1)(3λ− 1)(λ+ 1) + 2µc(a+ 1)(2 + λ)
8(λ+ 1)2a(c+ 1)(2 + λ) · (c)2

(a)2
, if µ < δ1,

1
2(2 + λ) · (c)2

(a)2
, if δ1 ≤ µ ≤ δ2,

−a(c+ 1)(3λ− 1)(λ+ 1) + 2µc(a+ 1)(2 + λ)
8(λ+ 1)2a(c+ 1)(2 + λ) · (c)2

(a)2
, if µ > δ2,

where

δ1 := −(7λ+ 3)(λ+ 1)
2(2 + λ) · a(c+ 1)

c(a+ 1) and δ2 := (λ+ 1)(λ+ 5)
2(2 + λ) · a(c+ 1)

c(a+ 1) .

Remark 3.1. (i) Putting λ = 1 in Corollary 3.1 and Corollary 3.2 we get the recent
results due to Sahoo and Patel [23, Theorem 2.1] and [23, Corollary 2.2], respectively.
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(ii) For λ = 0, Corollary 3.1 and Corollary 3.2 reduce to the results of Raza and
Malik [21, Theorem 2.1] and [21, Theorem 2.2], respectively.

The next result deals with an upper bound of ∧2 for the subclass ML(λ, a, c).

Theorem 3.2. For a ≥ c > 0, if the function f given by (1.1) belongs to the class
ML(λ, a, c), then

(3.7)
∣∣∣a2a4 − a2

3

∣∣∣ ≤
(

(c)2

(a)2

)2 1
4(2 + λ)2 .

Proof. If f ∈ ML(λ, a, c), using a similar proof like in the proof of Theorem 3.1, from
(3.4), (3.5) and (3.6) we get

a2a4 − a2
3 = k1p

4
1 + k2p

2
1p2 + k3p1p3 + k4p

2
2,

where

k1 = 25λ2 + 40λ+ 13
512(1 + λ)2(2 + λ)(3 + λ) · c

a
· (c)3

(a)3
−
(

(c)2

(a)2

)2 1
16(2 + λ)2

(
7λ+ 3

8(1 + λ)

)2

,

k2 = 7λ+ 3
64(2 + λ)2(1 + λ)

(
(c)2

(a)2

)2

− c

a
· (c)3

(a)3
· 7λ2 + 16λ+ 7

64(1 + λ)2(2 + λ)(3 + λ) ,

k3 = c

a
· (c)3

(a)3
· 1

16(1 + λ)(3 + λ) ,

k4 = −

( (c)2

(a)2

)2 1
16(2 + λ)2

 .
Using the relations (2.2) and (2.3) of Lemma 2.3, we get∣∣∣a2a4 − a2

3

∣∣∣(3.8)

=
∣∣∣∣∣Ap4

1 +B
(
4 − p2

1

)
xp2

1 +
[
k4

4
(
4 − p2

1

)
− k3

4 p
2
1

] (
4 − p2

1

)
x2

+k3

2 p1
(
4 − p2

1

) (
1 − |x|2

)
z

∣∣∣∣∣ ,(3.9)

with |x| ≤ 1, |z| ≤ 1 and

A :=1
4 (4k1 + 2k2 + k3 + k4) = c(c)2

a(a)2 [1024(a+ 1)(a+ 2)(2 + λ)2(1 + λ)2(3 + λ)]
×
[
(−4ac− 13c+ a− 8)λ3 + (−11ac− 11a− 40c− 22)λ2

+ (19ac+ 36c+ 21a+ 41)λ+ (3ac+ 3c+ 5a+ 9)
]
,

B :=1
2 (k2 + k3 + k4) =

c(c)2
[
3(c− a)λ2 + (ac− 6a+ 9c+ 2)λ− 5ac− 7a

]
a(a)2

[
128(1 + λ)(2 + λ)2(3 + λ)(a+ 1)(a+ 2)

] .
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Since P ∈ P it follows that P (e−i arg p1z) ∈ P, hence we may assume without loss
of generality that p := p1 ≥ 0, and according to Lemma 2.1 it follows that p ∈ [0, 2].
Now, using the triangle’s inequality in (3.8) and substituting |x| = t we get∣∣∣a2a4 − a2

3

∣∣∣ ≤ |A| p4 + |B|
(
4 − p2

)
p2t+ |k4|

4
(
4 − p2

)2
t2 + |k3|

4 p2
(
4 − p2

)
t2

+ |k3|
2 p

(
4 − p2

)
(1 − t2) =: G(p, t), 0 ≤ p ≤ 2, 0 ≤ t ≤ 1.

Next, we will find maximum of G(p, t) on the closed rectangle [0, 2] × [0, 1]. Using
the MAPLE™ software for the following code, where we denoted C := k4 and D =
E := k3,
[> G:= abs(A)*p^4+abs(B)*(-p^2+4)*p^2*t+(1/4)*abs(C)*(-p^2+4)^2*t^2
+(1/4)*abs(D)*p^2*(-p^2+4)*t^2+(1/2)*abs(\mathbb{D})*p
*(-p^2+4)*(-t^2+1);
[> maximize(G, p = 0 .. 2, t = 0 .. 1, location);

we get
max(16 |A|, 4 |C|), {[{p = 2}, 16 |A|], [{p = 0, t = 1}, 4 |C|]}

that is
max {G(p, t) : (p, t) ∈ [0, 2] × [0, 1]} = max{16|A|, 4|C|}

and
16|A| = G(2, t), 4|C| = G(0, 1).

We will prove that under our assumption we have 4|C| ≥ 16|A| and therefore
(3.10) max {G(p, t) : (p, t) ∈ [0, 2] × [0, 1]} = 4|C| = 4 |k4| = G(0, 1).

Letting α := c
a

· (c)3
(a)3

and β :=
(

(c)2
(a)2

)2
, since a ≥ c > 0 it follows that α ≥ β > 0,

and first we will show that A > 0. A simple computation shows that

4A = 4k1 + 2k2 + k3 + k4 = α
5λ2 + 1

128(1 + λ)2(2 + λ)(3 + λ) − β
9λ2 − 6λ+ 1

256(1 + λ)2(2 + λ)2 ,

and using the fact that
5λ2 + 1

128(1 + λ)2(2 + λ)(3 + λ) − 9λ2 − 6λ+ 1
256(1 + λ)2(2 + λ)2

= λ3 + 19λ+ (1 − λ2)
256(1 + λ)2(2 + λ)2(3 + λ) > 0, 0 ≤ λ ≤ 1,

it follows that A > 0. Hence,

16|A| − 4|C| =α
[

5λ2 + 1
32(1 + λ)2(2 + λ)(3 + λ)

]
− β

[
9λ2 − 6λ+ 1

64(1 + λ)2(2 + λ)2 + 1
4(2 + λ)2

]

=λ
3(10α− 25β) + λ2(20α− 101β) + λ(2α− 95β) + (4α− 51β)

64(1 + λ)2(2 + λ)2(3 + λ) ,
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and since 0 ≤ λ ≤ 1, each term of the numerator is not positive if

α

β
≤ min

{25
10 ,

101
20 ,

95
2 ,

51
4

}
= 25

10 ,

which is equivalent to 3ac + a + 8c + 6 ≥ 0. This last inequality holds for all a > 0
and c ≥ 0, and therefore 16|A| ≤ 4|C|. Since (3.10) was proved, the upper bound
of G(p, t) on the closed rectangle [0, 2] × [0, 1] is attained at p = 0 and t = 1, which
implies the inequality (3.7). □

For a = c Theorem 3.2 reduces to the next special case.

Corollary 3.3. If the function f given by (1.1) belongs to the class ML(λ), then
∣∣∣a2a4 − a2

3

∣∣∣ ≤ 1
4(2 + λ)2 .

Remark 3.2. (i) For λ = 1, Corollary 3.3 reduces to the result due to Sahoo and Patel
[23, Theorem 2.2].

(ii) Taking λ = 0 in Corollary 3.3 we obtain the recent result of Raza and Malik
[21, Theorem 2.4].

In our last result we found an upper bound of the fourth coefficient for the functions
of ML(λ, a, c).

Theorem 3.3. If a ≥ c > 0 and the function f given by (1.1) belongs to the class
ML(λ, a, c), then

|a4| ≤ (c)3

(a)3
· 1

2(3 + λ) .

Proof. If f ∈ ML(λ, a, c), using a similar proof like in the proof of Theorem 3.1, from
(3.6) we obtain

(3.11) a4 = (c)3

(a)3
· 1

4(3 + λ)

[
p3 − 7λ2 + 16λ+ 7

4(1 + λ)(2 + λ)p1p2 + 25λ2 + 40λ+ 13
32(1 + λ)(2 + λ)p

3
1

]
.

Replacing in (3.11) the values of p2 and p3 with those given by the relations (2.2) and
(2.3), respectively, and denoting p := p1 we get

a4 = (c)3

(a)3
· 1

4(3 + λ)

 5λ2 + 1
32(1 + λ)(2 + λ)p

3 − 3λ2 + 4λ− 1
8(1 + λ)(2 + λ)

(
4 − p2

)
px

− 1
4
(
4 − p2

)
px2 + 1

2
(
4 − p2

)
(1 − |x|2)z

,
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for some complex numbers x and z, with |x| < 1 and |z| ≤ 1. Using the triangle’s
inequality and substituting |x| = y we get

|a4| ≤ (c)3

(a)3
· 1

4(3 + λ) ×

 5λ2 + 1
32(1 + λ)(2 + λ)p

3 + |3λ2 + 4λ− 1|
8(1 + λ)(2 + λ)

(
4 − p2

)
py

+ 1
4
(
4 − p2

)
py2 + 1

2
(
4 − p2

) (
1 − y2

)  =: T(p, y), 0 ≤ p ≤ 2, 0 ≤ y ≤ 1.

Now we will find the maximum of the function T(p, y) on the closed rectangle [0, 2] ×
[0, 1]. Denoting

H(p, y) := 5λ2 + 1
32(1 + λ)(2 + λ)p

3 + |3λ2 + 4λ− 1|
8(1 + λ)(2 + λ)

(
4 − p2

)
py

+ 1
4
(
4 − p2

)
py2 + 1

2
(
4 − p2

) (
1 − y2

)
,

and using the MAPLE™ software for the following code

[> H := (5*l^2+1)*p^3/((32*(1+l))*(2+l))
+abs(3*l^2+4*l-1)*(-p^2+4)*p*y/((8*(1+l))*(2+l))
+(1/4*(-p^2+4))*p*y^2+(1/2*(-p^2+4))*(-y^2+1);
[> maximize(H, p = 0 .. 2, y = 0 .. 1, location);

we get

max(2, (1/4)*(5*l^2+1)/((1+l)*(2+l))),
{[{p = 2}, (1/4)*(5*l^2+1)/((1+l)*(2+l))], [{p = 0, y = 0}, 2]}

that is

max {H(p, y) : (p, y) ∈ [0, 2] × [0, 1]} = max
{

2, 5λ2 + 1
4(1 + λ)(2 + λ)

}
,

and
2 = H(0, 0), 5λ2 + 1

4(1 + λ)(2 + λ) = H(2, y).

A simple computation shows that 2 > 5λ2+1
4(1+λ)(2+λ) , whenever λ ≥ 0, therefore

max {H(p, t) : (p, t) ∈ [0, 2] × [0, 1]} = 2 = H(0, 0),

which implies that

max {T(p, y) : (p, y) ∈ [0, 2] × [0, 1]} = (c)3

(a)3
· 1

2(3 + λ) = T(0, 0),

and the proof of our theorem is complete. □

Putting a = c in Theorem 3.3 we get the next special case.
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Corollary 3.4. If the function f given by (1.1) belongs to the class ML(λ), then

|a4| ≤ 1
2(3 + λ) .

Remark 3.3. (i) For λ = 1, Corollary 3.4 reduces to the recent result due to Sahoo
and Patel [23, Theorem 2.3].

(ii) Taking λ = 0 in Corollary 3.4 we get the result due to Sokół [24, Theorem 2].
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