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ON DISTANCE IRREGULAR LABELING OF DISCONNECTED
GRAPHS

FAISAL SUSANTO1∗, KRISTIANA WIJAYA1, PRASANTI MIA PURNAMA1, AND SLAMIN2

Abstract. A distance irregular k-labeling of a graph G is a function f : V (G) →
{1, 2, . . . , k} such that the weights of all vertices are distinct. The weight of a vertex v,
denoted by wt(v), is the sum of labels of all vertices adjacent to v (distance 1 from v),
that is, wt(v) =

∑
u∈N(v) f(u). If the graph G admits a distance irregular labeling

then G is called a distance irregular graph. The distance irregularity strength of G
is the minimum k for which G has a distance irregular k-labeling and is denoted by
dis(G). In this paper, we derive a new lower bound of distance irregularity strength
for graphs with t pendant vertices. We also determine the distance irregularity
strength of some families of disconnected graphs namely disjoint union of paths,
suns, helms and friendships.

1. Introduction

Let G = (V, E) be a simple, finite and undirected graph with vertex set V (G) and
edge set E(G). For a vertex v ∈ V (G), the set of neighbors of v is denoted by N(v).
We write deg(v) to represent the degree of v. The vertex v is called an isolated vertex
if deg(v) = 0. Meanwhile, if deg(v) = 1, we then call such a vertex as a pendant.
Other basic definitions and terminologies about graph theory not mentioned here, we
refer the reader to a book [4]. By notation [a, b] with integers a, b we mean the set of
all integers x such that a ⩽ x ⩽ b.

A graph labeling is a mapping that carries some sets of graph elements to a set of
positive integers, called labels, such that satisfies certain conditions. If the domain
is vertex-set or edge-set, the labelings are called vertex labelings or edge labelings,
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respectively. If the domain is V (G) ∪ E(G), then it is called a total labeling. More
details about recent results of graph labelings can be found in a great survey by
Gallian [5].

One of interesting topics in graph labelings is a distance irregular labeling. This
labeling is motivated by three concepts in graph labelings, namely a distance magic
labeling [6], an (a, d)-distance antimagic labeling [1] and an irregular labeling [3]. For a
graph G, a vertex labeling f : V (G) → {1, 2, . . . , k} is said to be a distance irregular
k-labeling of G if the weights of all vertices are distinct. The weight of a vertex v,
denoted by wt(v), is the sum of labels of all vertices adjacent to v (distance 1 from
v), that is, wt(v) = ∑

u∈N(v) f(u). If the graph G admits a distance irregular labeling
then G is called a distance irregular graph. The distance irregularity strength of G
is the minimum k for which G has a distance irregular k-labeling and is denoted by
dis(G).

The notion of distance irregular labeling was firstly introduced by Slamin in 2017 [8].
In his paper, he showed some particular graphs that admit a distance irregular labeling,
such as paths with dis(Pn) = ⌈n/2⌉ for n ⩾ 4, complete graphs with dis(Kn) = n
for n ⩾ 3, cycles with dis(Cn) = ⌈(n + 1)/2⌉ for n ≡ 0, 1, 2, 5 (mod 8), and wheels
with dis(Wn) = ⌈(n + 1)/2⌉ for n ≡ 0, 1, 2, 5 (mod 8). He also proved that for any
two different vertices u and v of a graph G, if u and v have the same neighbors, then
G has no distance irregular labeling. As a consequence of this property, he showed
that some classes of graphs such as complete bipartite graphs, complete multipartite
graphs, stars and trees containing vertex with at least two leaves, have no distance
irregular labeling. Novindasari, Marjono and Abusini in [7] determined the distance
irregularity strength of ladder graph and triangular ladder graph. Recently, in [2],
Bong et al. completed the results for the distance irregularity strength of Cn and
Wn, for n ≡ 3, 4, 6, 7 (mod 8). In the same paper, they also determined the distance
irregularity strength of m-book graphs Bm and G + K1 for any connected graph G
admitting a distance irregular labeling.

So far, all papers concerning distance irregular labeling have presented the results
only for connected graphs. Meanwhile, determining the distance irregularity strength
for disconnected graphs has still never been studied. Motivated by this, in this paper,
we study the distance irregular labeling for disconnected graphs. We derive a new
lower bound of distance irregularity strength for graphs with t pendant vertices. Also,
the distance irregularity strength for some classes of disconnected graphs especially
disjoint union of paths, suns, helms and friendships will be determined through this
paper.

The following lemma gives the general lower bound for distance irregularity strength
of graphs found by Slamin [8].
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Lemma 1.1 ([8]). Let G be a graph on p vertices with minimum degree δ and maximum
degree ∆ containing no isolated vertex and no vertices with identical neighbors. Then

dis(G) ⩾
⌈

δ + p − 1
∆

⌉
.

2. Main Results

Our first result gives a lower bound of distance irregularity strength for a graph
having t pendant vertices. We note that the graph is not necessarily connected.

Lemma 2.1. Let G be a graph on p vertices with maximum degree ∆ containing no
isolated vertex and no vertices with identical neighbors. If G has t pendant vertices,
then

dis(G) ⩾ max
{

t,
⌈

p

∆

⌉}
.

Proof. Let G be a graph on p vertices with maximum degree ∆ containing no iso-
lated vertex and no vertices with identical neighbors. For a positive integer t, let
x1, x2, . . . , xt be the pendant vertices of G. Since the weight of every vertex of G
must be distinct, then the labels of neighbor of all xis must be distinct, that is,
f(N(x1)) ̸= f(N(x2)) ̸= . . . ̸= f(N(xt)). So, dis(G) ⩾ t. Combining with the
lower bound for δ = 1 (since the minimum degree of G is 1) in Lemma 1.1, we have
dis(G) ⩾ max{t, ⌈p/∆⌉}. □

The lower bound in Lemma 2.1 is tight as can be seen from Theorem 2.1, 2.2 and
2.3, which present the exact value of distance irregularity strength for disconnected
paths, suns and helms, respectively.

2.1. Disjoint union of paths. In this subsection, we deal with a distance irregular
labeling of disconnected paths. Let mPn be a disjoint union of m identical copies of
paths with vertex set V (mPn) = {vj

i : i ∈ [1, n], j ∈ [1, m]} and edge set E(mPn) =
{vj

i vj
i+1 : i ∈ [1, n − 1], j ∈ [1, m]}. For m ⩾ 2 and n = 3, there exist vertices having

the same neighbors. Consequently, the graph mP3 has no distance irregular labeling.
However, for m ⩾ 2 and n ⩾ 4, the graph mPn admits a distance irregular labeling
and its distance irregularity strength will be determined by the following theorem.

Theorem 2.1. For each m ⩾ 2 and n ⩾ 4, dis(mPn) = ⌈mn/2⌉.

Proof. As n ⩾ 4, it follows from Lemma 2.1 that dis(mPn) ⩾ ⌈mn/2⌉. To prove
the reverse inequality, define a vertex labeling f : V (mPn) → {1, 2, . . . , ⌈mn/2⌉} as
follows.

Case 1. Let n ≡ 0 (mod 4).
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For j ∈ [1, m], label each vertex in the following way:

f(vj
i ) = 1

2(n + 1 − i)m, for i = 1, 5, . . . , n − 3,

f(vj
i ) = 1

2(i − 2)m + j, for i = 2, 6, . . . , n − 2,

f(vj
i ) = 1

2(n + 1 − i)m + j, for i = 3, 7, . . . , n − 1,

f(vj
i ) = mi

2 , for i = 4, 8, . . . , n.

Hence, for j ∈ [1, m], the labeling gives the vertex weights as follows:

wt(vj
i ) = (i − 1)m + j, for i = 1, 3, . . . , n − 1,

wt(vj
i ) = (n + 1 − i)m + j, for i = 2, 4, . . . , n.

Case 2. Let n ≡ 1 (mod 4).
For n = 5, first, label all vertices except vj

1, j ∈ [1, m], in the following way:

f(vj
2) = 5j

2 − 2, for j ≡ 2t (mod 2t+1), t is even, t ⩾ 2,

f(vj
2) =

⌊5j

2

⌋
− 1, for other j,

f(vj
3) =

⌊
5(m + j)

2

⌋
−
⌈5m

2

⌉
, for j ∈ [1, m],

f(vj
4) =

⌊5j

2

⌋
, for j ∈ [1, m],

f(vj
5) =

⌈5m

2

⌉
, for j ∈ [1, m].

Then, we obtain all vertex weights except wt(vj
2), j ∈ [1, m]:

wt(vj
1) = 5j

2 − 2, for j ≡ 2t (mod 2t+1), t is even, t ⩾ 2,

wt(vj
1) =

⌊5j

2

⌋
− 1, for other j,

wt(vj
3) = 5j − 2, for j ≡ 2t (mod 2t+1), t is even, t ⩾ 2,

wt(vj
3) = 2

⌊5j

2

⌋
− 1, for other j,

wt(vj
4) =

⌊
5(m + j)

2

⌋
, for j ∈ [1, m],

wt(vj
5) =

⌊5j

2

⌋
, for j ∈ [1, m].

Next, for j ∈ [1, m], the label of vj
1 and the weight of vj

2 will be determined by using
the following algorithm.
1. Let W =

{
wt(vj

3) : j ∈
[⌈

m+1
2

⌉
, m
]}

.



ON DISTANCE IRREGULAR LABELING OF DISCONNECTED GRAPHS 511

2. For j from 1 up to m, do
a. p = f(vj

3) =
⌊

5(m+j)
2

⌋
−
⌈

5m
2

⌉
;

b. q = wt(vj
4) =

⌊
5(m+j)

2

⌋
.

c. If (q − 1) is contained in W , then
1) f(vj

1) = q − p − 2 =
⌈

5m
2

⌉
− 2;

2) wt(vj
2) = q − 2 =

⌊
5(m+j)

2

⌋
− 2;

3) W = W\{q − 1}.
d. Else

1) f(vj
1) = q − p − 1 =

⌈
5m
2

⌉
− 1;

2) wt(vj
2) = q − 1 =

⌊
5(m+j)

2

⌋
− 1.

For n ⩾ 9 and j ∈ [1, m], label each vertex in the following way:

f(vj
i ) =1

4(3n − 4 + i)m −
⌊

mn

2

⌋
+ j − 1,

for i = 1, 5, . . . ,
n − 7

2 (if n ≡ 1 (mod 8)),

f(vj
i ) =1

4(3n + i)m −
⌊

mn

2

⌋
− j + 1,

for i = 1, 5, . . . ,
n − 11

2 (if n ≡ 5 (mod 8)),

f(vj
i ) =1

4(i − 2)m + j, for i = 2, 6, . . . , n − 3,

f(vj
i ) =

⌊
mn

2

⌋
− 1

4(n + 2 − i)m + 1,

for i = 3, 7, . . . ,
n − 11

2 (if n ≡ 1 (mod 8)),

f(vj
i ) =

⌊
mn

2

⌋
− 1

4(n + 6 − i)m + 2j − 1,

for i = 3, 7, . . . ,
n − 7

2 (if n ≡ 5 (mod 8)),

f(vj
i ) =mi

4 , for i = 4, 8, . . . , n − 5,

f(vj
i ) =

⌊
mn

2

⌋
− 1

4(n + 2 − i)m + j,

for i = n − 3
2 ,

n + 5
2 , . . . , n − 2 (if n ≡ 1 (mod 8)) or

for i = n + 1
2 ,

n + 9
2 , . . . , n − 2 (if n ≡ 5 (mod 8)),
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f(vj
i ) =1

4(3n + i)m −
⌊

mn

2

⌋
,

for i = n + 1
2 ,

n + 9
2 , . . . , n − 4 (if n ≡ 1 (mod 8)) or

for i = n − 3
2 ,

n + 5
2 , . . . , n − 4 (if n ≡ 5 (mod 8)),

f(vj
n−1) =1

2(n − 3)m + j,

f(vj
n) =

⌈
mn

2

⌉
.

Thus, for j ∈ [1, m], the labeling provides the following vertex weights:

wt(vj
i ) =1

2(i − 1)m + j, for i = 1, 3, . . . , n − 4,

wt(vj
i ) =1

2(n − 3 + i)m + j, for i = 2, 4, . . . ,
n − 9

2 ,

wt
(

vj
n−5

2

)
= 1

4(3n − 11)m + 2j − 1,

wt(vj
i ) =1

2(n − 1 + i)m + j, for i = n − 1
2 ,

n + 3
2 , . . . , n − 1,

wt(vj
n−2) =1

4(3n − 11)m + 2j,

wt(vj
n) =1

2(n − 3)m + j.

Case 3. Let n ≡ 2 (mod 4).
For j ∈ [1, m], label each vertex in the following way:

f(vj
1) = 1

2(n − 2)m + j,

f(vj
i ) = 1

2(i − 2)m + j, for i = 2, 6, . . . , n − 4,

f(vj
3) = mn

2 ,

f(vj
i ) = mi

2 , for i = 4, 8, . . . , n − 2,

f(vj
i ) = 1

2(n + 1 − i)m + j, for i = 5, 9, . . . , n − 1,

f(vj
i ) = 1

2(n + 1 − i)m, for i = 7, 11, . . . , n − 3,

f(vj
n) = 1

2(n − 4)m + j.
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Hence, for j ∈ [1, m], the labeling provides the following vertex weights:

wt(vj
i ) = (i − 1)m + j, for i = 1, 3, . . . , n − 3,

wt(vj
i ) = 1

2(2n − i)m + j, for i = 2, 4,

wt(vj
i ) = (n + 1 − i)m + j, for i = 6, 8, . . . , n,

wt(vj
n−1) = (n − 3)m + j.

Case 4. Let n ≡ 3 (mod 4).
For n = 7 and j ∈ [1, m], label each vertex in the following way:

f(vj
i ) = 1

4(i + 23)m −
⌈7m

2

⌉
, for i = 1, 5,

f(vj
i ) = 1

4(i − 2)m + j, for i = 2, 6,

f(vj
i ) = 1

4(i − 11)m +
⌈7m

2

⌉
+ j, for i = 3, 7,

f(vj
4) = 2m.

Then, for j ∈ [1, m], the labeling yields the following vertex weights:

wt(vj
1) = j,

wt(vj
i ) = 1

2(i + 6)m + j, for i = 2, 4, 6,

wt(vj
i ) = 1

2(i + 1)m + j, for i = 3, 5,

wt(vj
7) = m + j.

For n = 11 and j ∈ [1, m], label each vertex in the following way:

f(vj
1) =

⌊11m

2

⌋
− 5m,

f(vj
i ) = 1

2(i − 2)m + j, for i = 2, 6,

f(vj
i ) = 1

4(i − 15)m +
⌈11m

2

⌉
+ j, for i = 3, 7, 11,

f(vj
i ) = mi

2 , for i = 4, 8,

f(vj
i ) = 1

4(i − 9)m +
⌊11m

2

⌋
, for i = 5, 9,

f(vj
10) = m + j.
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So, for j ∈ [1, m], the labeling gives the following vertex weights:

wt(vj
i ) = (i − 1)m + j, for i = 1, 3, 5, 7,

wt(vj
2) = 3m + j,

wt(vj
i ) = 1

2(i + 10)m + j, for i = 4, 6, 8, 10,

wt(vj
i ) = (23 − 2i)m + j, for i = 9, 11.

For n ⩾ 15 and j ∈ [1, m], label each vertex in the following way:

f(vj
i ) =

⌈
mn

2

⌉
− 1

4(i − 1)m,

for i = 1, 5, . . . , n − 2 (if n ≡ 3 (mod 8)) or

for i = 1, 5, . . . ,
n + 11

2 (if n ≡ 7 (mod 8)),

f(vj
i ) = 1

4(i − 2)m + j, for i = 2, 6, . . . , n − 5,

f(vj
i ) =

⌊
mn

2

⌋
− 1

4(i + 1)m + j,

for i = 3, 7, . . . ,
n + 11

2 (if n ≡ 3 (mod 8)) or

for i = 3, 7, . . . , n (if n ≡ 7 (mod 8)),

f(vj
i ) = 1

4(i + 4)m, for i = 4, 8, . . . , n − 7,

f(vj
i ) = 1

4(4n − 5 − i)m −
⌈

mn

2

⌉
+ j,

for i = n + 19
2 ,

n + 27
2 , . . . , n (if n ≡ 3 (mod 8)),

f(vj
i ) = 1

4(4n − 3 − i)m −
⌊

mn

2

⌋
,

for i = n + 19
2 ,

n + 27
2 , . . . , n − 2 (if n ≡ 7 (mod 8)),

f(vj
n−3) = 1

2(n − 5)m,

f(vj
n−1) = m + j.
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Thus, for j ∈ [1, m], the labeling yields the following vertex weights:

wt(vj
1) = j,

wt(vj
i ) = 1

2(2n − i)m + j, for i = 2, 4, . . . ,
n + 13

2 ,

wt(vj
i ) = 1

2(i + 1)m + j, for i = 3, 5, . . . , n − 6,

wt(vj
i ) = 1

2(2n − 2 − i)m + j, for i = n + 17
2 ,

n + 21
2 , . . . , n − 1,

wt(vj
n−4) = 1

4(3n − 17)m + j,

wt(vj
n−2) = 1

2(n − 3)m + j,

wt(vj
n) = m + j.

From all cases, it can be checked that the vertex weights form the set {1, 2, . . . , mn}
and the labels used in the labelings are at most ⌈mn/2⌉. Thus, dis(mPn) ⩽ ⌈mn/2⌉.
As ⌈mn/2⌉ ⩽ dis(mPn) ⩽ ⌈mn/2⌉, we can conclude that dis(mPn) = ⌈mn/2⌉. □

As an illustration, a distance irregular labeling of 6P5 is given in Figure 1, where
red numbers show the vertex weights and black numbers represent the label of the
vertices.
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15

15
15

Figure 1. A distance irregular 15-labeling of 6P5.

2.2. Disjoint union of suns. A sun, denoted by Sn, is a graph with 2n vertices
obtained from a cycle by attaching a pendant vertex to each cycle’s vertex. We then
call all vertices adjacent to such pendant vertices as the rim vertices of Sn. Now, let
us denote by mSn a disjoint union of m identical copies of sun graphs with vertex
set V (mSn) = {uj

i : i ∈ [1, n], j ∈ [1, m]} ∪ {vj
i : i ∈ [1, n], j ∈ [1, m]} and edge set

E(mSn) = {uj
i v

j
i : i ∈ [1, n], j ∈ [1, m]} ∪ {uj

i u
j
i+1 : i ∈ [1, n], j ∈ [1, m]} where the

index i is taken modulo n. Next, we will determine the distance irregularity strength
of mSn in the following theorem.
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Theorem 2.2. For each m ⩾ 2 and n ⩾ 3, dis(mSn) = mn.

Proof. Consider the graph mSn, with 2mn vertices. Since mSn has mn pendant
vertices, according to Lemma 2.1, we have dis(mSn) ⩾ mn. To prove that mn is the
upper bound of dis(mSn), it is sufficient to show the existence of a distance irregular
mn-labeling of mSn. To do that, let us define f : V (mSn) → {1, 2, . . . , mn} as follows.

For n = 3 and j ∈ [1, m], label every vertex in the following way:

f(uj
i ) = j + (i − 1)m, for i ∈ [1, 3],

f(vj
i ) = 2m − j, for i ∈ [1, 3].

Hence, for j ∈ [1, m], we obtain the following vertex weights:

wt(uj
i ) = j − (i − 6)m, for i ∈ [1, 3],

wt(vj
i ) = j + (i − 1)m, for i ∈ [1, 3].

For n = 4 and j ∈ [1, m], label every vertex in the following way:

f(uj
i ) = j + (i − 1)m, for i ∈ [1, 4],

f(vj
i ) = 3m − j, for i = 1, 4,

f(vj
i ) = 2m − j, for i = 2, 3.

So, for j ∈ [1, m], we can get the weight of each vertex as follows:

wt(uj
i ) = 1

2(15 − i)m + j, for i = 1, 3,

wt(uj
i ) = 1

2(i + 6)m + j, for i = 2, 4,

wt(vj
i ) = j + (i − 1)m, for i ∈ [1, 4].

For n ⩾ 5 and j ∈ [1, m], label each vertex as follows:

f(uj
i ) = j + (i − 1)m, for i ∈ [1, n],

f(vj
i ) = m

⌊
n + 1

2

⌋
− j, for i = 1, n,

f(vj
i ) = (n − i)m − j, for i ∈

[
2,
⌊

n + 1
2

⌋
− 1

]
,

f
(

vj

⌊n+1
2 ⌋

)
=
(

n + 1 −
⌊

n + 1
2

⌋)
m − j,

f(vj
i ) = (n + 2 − i)m − j, for i ∈

[⌊
n + 1

2

⌋
+ 1, n − 1

]
.



ON DISTANCE IRREGULAR LABELING OF DISCONNECTED GRAPHS 517

Then, for j ∈ [1, m], we obtain the weight of each vertex as follows:

wt(uj
i ) =

(
n − 2(i − 1)

n − 1 +
⌊

n + 1
2

⌋)
m + j, for i = 1, n,

wt(uj
i ) = (n − 2 + i)m + j, for i ∈

[
2,
⌊

n + 1
2

⌋
− 1

]
,

wt
(

uj

⌊n+1
2 ⌋

)
=
(

n − 1 +
⌊

n + 1
2

⌋)
m + j,

wt(uj
i ) = (n + i)m + j, for i ∈

[⌊
n + 1

2

⌋
+ 1, n − 1

]
,

wt(vj
i ) = j + (i − 1)m, for i ∈ [1, n].

Clearly, the largest label appearing on the vertices is mn for each n ⩾ 3. Moreover, it
can be checked that vertex weights of the pendant vertices and the rim vertices of mSn

constitute the set {1, 2, . . . , mn} and the set {mn + 1, mn + 2, . . . , 2mn}, respectively.
It means that f is a distance irregular mn-labeling of mSn. The proof is complete. □

In Figure 2, as an illustralion, a distance irregular labeling of 3S5 is shown.
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5

811

14

3

27

1821

30 24

615

12 9

6

6

66

6

3

6

912

15

Figure 2. A distance irregular 15-labeling of 3S5.

2.3. Disjoint union of helms. A helm, denoted by Hn, is a graph constructed from a
sun Sn by joining a new vertex, called center vertex, to all the rim vertices of Sn. Next,
we focus on a disjoint union of m identical copies of helm graphs mHn with vertex set
V (mHn) = {cj : j ∈ [1, m]} ∪ {uj

i : i ∈ [1, n], j ∈ [1, m]} ∪ {vj
i : i ∈ [1, n], j ∈ [1, m]}

and edge set E(mHn) = {cjuj
i : i ∈ [1, n], j ∈ [1, m]} ∪ {uj

i v
j
i : i ∈ [1, n], j ∈

[1, m]} ∪ {uj
i u

j
i+1 : i ∈ [1, n], j ∈ [1, m]} where the index i is taken modulo n.

Let us recall the labeling formula of the rim vertices of mSn defined in the previous
theorem, that is, for m ⩾ 2, n ⩾ 3, i ∈ [1, n] and j ∈ [1, m],

f(ui) = j + (i − 1)m.

The sum of labels of such rim vertices is

(2.1)
n∑

i=1
f(ui) =

n∑
i=1

(j + (i − 1)m) = n

2 (2j + (n − 1)m).
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Next, consider the set of vertex weights of mSn obtained from Theorem 2.2, namely
{1, 2, . . . , 2mn}. We want to find all possible n such that the Equation (2.1) is different
from all such vertex weights for every m ⩾ 2 and j ∈ [1, m]. Therefore,

(2.2) n

2 (2j + (n − 1)m) > 2mn.

It is not difficult to show that (2.2) happens if and only if n ⩾ 5. Thus, we can use this
characteristic to construct a distance irregular labeling of mHn from the described
distance irregular labeling of mSn for case n ⩾ 5.

Next, we will present the distance irregularity strength of mHn in the following
theorem.

Theorem 2.3. For each m ⩾ 2 and n ⩾ 3, dis(mHn) = mn.

Proof. Consider the graph mHn on (2n + 1)m vertices. Since mHn has mn pendant
vertices, by Lemma 2.1, we get dis(mHn) ⩾ mn. To prove that mn is the upper bound
of dis(mHn), it is sufficient to show the existence of an optimal distance irregular
mn-labeling of mHn. Let f : V (mHn) → {1, 2, . . . , mn} be a vertex labeling defined
as follows.

For n = 3 and j ∈ [1, m], label each vertex in the following way:

f(cj) = 1,

f(uj
i ) = j + (i − 1)m, for i ∈ [1, 3],

f(vj
1) = 3m − j − 1,

f(vj
2) = 1

2(5m − 3) −
⌈

j

2

⌉
, if m is odd,

f(vj
2) = 1

2(5m − 4) −
⌊

j

2

⌋
, if m is even,

f(vj
3) = 2m − 2 −

⌈
j − 1

2

⌉
.

Therefore, for j ∈ [1, m], we obtain the following vertex weights:

wt(cj) = 3(m + j),

wt(uj
1) = 6m + j,

wt(uj
2) = 1

2(9m − 1) +
⌊3j

2

⌋
, if m is odd,

wt(uj
2) = 1

2(9m − 2) +
⌈3j

2

⌉
, if m is even,

wt(uj
3) = 3m − 1 +

⌊3j + 1
2

⌋
,

wt(vj
i ) = j + (i − 1)m, for i ∈ [1, 3].
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For n = 4 and j ∈ [1, m], label every vertex in the following way:

f(cj) = 1,

f(uj
i ) = j + (i − 1)m, for i ∈ [1, 4],

f(vj
1) = 1

3(10m − 6) −
⌈2j − 2

3

⌉
, if m ≡ 0 (mod 3),

f(vj
1) = 1

3(10m − 4) −
⌈2j

3

⌉
, if m ≡ 1 (mod 3),

f(vj
1) = 1

3(10m − 5) −
⌈2j − 1

3

⌉
, if m ≡ 2 (mod 3),

f(vj
2) = 2m − j − 1,

f(vj
3) = 2m −

⌈2j + 4
3

⌉
,

f(vj
4) = 3m − j − 1.

So, for j ∈ [1, m], we get the vertex weights as follows:

wt(cj) = 6m + 4j,

wt(uj
1) = 1

3(22m − 3) +
⌊4j + 2

3

⌋
, if m ≡ 0 (mod 3),

wt(uj
1) = 1

3(22m − 1) +
⌊4j

3

⌋
, if m ≡ 1 (mod 3),

wt(uj
1) = 1

3(22m − 2) +
⌊4j + 1

3

⌋
, if m ≡ 2 (mod 3),

wt(uj
2) = 4m + j,

wt(uj
3) = 6m +

⌊4j − 1
3

⌋
,

wt(uj
4) = 5m + j,

wt(vj
i ) = j + (i − 1)m, for i ∈ [1, 4].

Now, let n ⩾ 5. For the proof purpose only, first, let us denote the described vertex
labelings and vertex weights formula of mSn, n ⩾ 5, by f ∗ and by wt∗, respectively.
Next, for j ∈ [1, m], label every vertex of mHn such that

f(cj) = 1,

f(uj
i ) = f ∗(uj

i ),

f(vj
i ) = f ∗(vj

i ) − 1.
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Then, for j ∈ [1, m], we obtain the vertex weights as follows:

wt(cj) = n

2 ((n − 1)m + 2j),

wt(uj
i ) = wt∗(uj

i ),

wt(vj
i ) = wt∗(vj

i ).

It can be verified that all the vertex weights are distinct for all pairs of distinct vertices
and the largest label is mn, which lead to dis(mHn) ⩽ mn. Combining with the lower
bound, we have dis(mHn) = mn. □

We show in Figure 3 a distance irregular labeling of 3H5 as an illustration.
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Figure 3. A distance irregular 15-labeling of 3H5.

2.4. Disjoint union of friendships. A friendship fn is a graph obtained by iden-
tifying a vertex from n copies of triangles K3. The vertex of degree 2n is called
the center vertex and the remaining vertices are called the rim vertices. Now, we
focus on a disjoint union of m identical copies of friendships mfn with vertex set
V (mfn) = {cj : j ∈ [1, m]}∪{uj

i : i ∈ [1, n], j ∈ [1, m]}∪{vj
i : i ∈ [1, n], j ∈ [1, m]} and

edge set E(mfn) = {cjuj
i , cjvj

i : i ∈ [1, n], j ∈ [1, m]} ∪ {uj
i v

j
i : i ∈ [1, n], j ∈ [1, m]}.

First, let us consider a single copy of friendship fn. In the following lemma, we give
a necessary condition for fn to be a distance irregular graph.

Lemma 2.2. If fn is a distance irregular graph, then the labels of all rim vertices of
fn must be distinct.

Proof. Let f be a distance irregular labeling of fn. Let x, y be any two rim vertices
of fn. We show that f(x) ̸= f(y). Let c be the center vertex and let x′, y′ be rim
vertices adjacent to x and y, respectively. We know that wt(x) = f(c) + f(x′) and
wt(y) = f(c) + f(y′). Since wt(x) and wt(y) must be distinct, we get f(x′) ̸= f(y′).
Since x, y are arbitrarily two rim vertices in the graph fn and x′, y′ are also the rim
vertices of fn, it naturally implies that f(x) ̸= f(y). □
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It is coherent to say that the property in Lemma 2.2 holds also for disconnected
version of friendships. Thus, in any distance irregular labeling of mfn, the labels of all
rim vertices in the jth-copy of fn are distinct for j ∈ [1, m]. Next, we will determine
the distance irregularity strength of mfn in the following theorem.

Theorem 2.4. For each n ⩾ 2 and m ∈ [2, n], dis(mfn) = mn + 1.

Proof. Firstly, we determine the lower bound of dis(mfn). Let k be the largest label
of the graph mfn. The optimal weights of the vertices of mfn are 2, 3, . . . , 2mn +
1, wt(c1), wt(c2), . . . , wt(cm). Next, for some i ∈ [1, n] and some s ∈ [1, m], let wt(cs)
and wt(vs

i ), be the largest weight of the center vertices of mfn and the largest weight
of the rim vertices of mfn, respectively. Furthermore, it follows from Lemma 2.2
that the labels of every rim vertex in the jth-copy of fn, j ∈ [1, m], must be distinct.
Since the center vertex cs is adjacent to all rim vertices in the sth-copy of fn, then
the largest label used in the computation of wt(cs) is at most k. On the other
hand, we have wt(vs

i ) ⩾ 2mn + 1. Since deg(vs
i ) = 2, we obtain dis(mfn) = k ⩾

⌈(2mn + 1)/2⌉ = mn + 1. Next, for the upper bound of dis(mfn), construct a vertex
labeling f : V (mfn) → {1, 2, , . . . , mn + 1} as follows:

f(cj) = (2n − 1)(j − 1) + 1, for j ∈ [1, 2],

f(cj) = nj, for j ∈ [3, m],

f(uj
i ) = 2i + j − 1, for i ∈ [1, n] and j ∈ [1, 2],

f(uj
i ) = 2i + 1 + (j − 2)n, for i ∈ [1, n] and j ∈ [3, m],

f(vj
i ) = 2i + j − 2, for i ∈ [1, n] and j ∈ [1, 2],

f(vj
i ) = 2i + (j − 2)n, for i ∈ [1, n] and j ∈ [3, m].

Therefore, we get the vertex weights as follows:

wt(cj) = 2n2 + (2j − 1)n, for j ∈ [1, 2],

wt(cj) = 2n2(j − 1) + 3n, for j ∈ [3, m],

wt(uj
i ) = 2n(j − 1) + 2i, for i ∈ [1, n] and j ∈ [1, m],

wt(vj
i ) = 2n(j − 1) + 2i + 1, for i ∈ [1, n] and j ∈ [1, m].

It can be verified that f is a distance irregular (mn + 1)-labeling of mfn as the vertex
weights are unique and the labels appearing on the vertices are at most mn + 1. Thus
dis(mfn) ⩽ mn + 1. This concludes the proof. □

An example of distance irregular labeling of mfn is described in Figure 4.

3. Conclusion

In this paper we initiated to study the distance irregular labeling of disconnected
graphs. A new lower bound of the distance irregularity strength for a graph G having
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Figure 4. A distance irregular 10-labeling of 3f3.

t pendant vertices was introduced and we proved that dis(G) ⩾ max{t, ⌈p/∆⌉}. We
also showed that this lower bound is sharp for disconnected paths, suns and helms.

Because of the limitation of results we found related to this parameter for discon-
nected graphs, we propose the open problem below.

Open Problem 1. Determine the distance irregularity strength of other classes of
disconnected graphs.

In relation with our lower bound in Lemma 2.1 which works for graphs containing
t pendant vertices (δ = 1), the following open problems are also interesting to be
studied.

Open Problem 2. Characterize all graphs containing t pendant vertices having distance
irregularity strength t. Particularly, characterize all trees with t leaves having distance
irregularity strength t.

Open Problem 3. Characterize all graphs containing t pendant vertices having distance
irregularity strength ⌈p/∆⌉. Specifically, characterize all trees with t leaves having
distance irregularity strength ⌈p/∆⌉.

In Theorem 2.4, we determined the distance irregularity strength of disconnected
friendships mfn only for m ⩽ n. Meanwhile, this parameter is still unsolved for the
remaining case of mfn. Therefore, we also give the following open problem.

Open Problem 4. Determine the distance irregularity strength of mfn for m > n.

Acknowledgements. This work was supported by Hibah KeRis Batch 1, Universitas
Jember, year 2019 Contract No. 1387/UN25.3.1/LT/2019 and by DRPM, Directorate
General of Strengthening for Research and Development, Ministry of Research, Tech-
nology and Higher Education through World Class Research grant year 2019 Decree
No. 7/E/KPT/2019 and Contract No. 175/SP2H/LT/DRPM/2019.

The authors are thankful to the anonymous referee for his/her valuable comments
and suggestions that improved this paper.



ON DISTANCE IRREGULAR LABELING OF DISCONNECTED GRAPHS 523

References
[1] S. Arumugam and N. Kamatchi, On (a, d)-distance antimagic graphs, Australas. J. Combin. 54

(2012), 279–288.
[2] N. H. Bong, Y. Lin and Slamin, On distance-irregular labelings of cycles and wheels, Australas.

J. Combin. 69 (2017), 315–322.
[3] G. Chartrand, M. S. Jacobson, J. Lehel, O. R. Oellermann, S. Ruiz and F. Saba, Irregular

networks, Congr. Numer. 64 (1988), 197–210.
[4] G. Chartrand and P. Zhang, Graphs & digraphs, Sixth Ed., Taylor & Francis Group, 2016.
[5] J. A. Gallian, A dynamic survey of graph labeling, Electron. J. Combin. (2018), #DS6.
[6] M. Miller, C. Rodger and R. Simanjuntak, Distance magic labelings of graphs, Australas. J.

Combin. 28 (2003), 305–315.
[7] S. Novindasari, Marjono and S. Abusini, On distance irregular labeling of ladder graph and

triangular ladder graph, Pure Math. Sci. 5 (2016), 75–81.
[8] Slamin, On distance irregular labelling of graphs, Far East J. Math. Sci. 102 (2017), 919–932.

1Graph, Combinatorics and Algebra Research Group
Department of Mathematics, FMIPA Universitas Jember, Indonesia
Email address: faisal.susanto@students.unej.ac.id
Email address: kristiana.fmipa@unej.ac.id
Email address: prasantimia@students.unej.ac.id

2Department of Informatics, Faculty of Computer Sciences
Universitas Jember, Indonesia
Email address: slamin@unej.ac.id

∗Corresponding Author


	1. Introduction
	2. Main Results
	2.1. Disjoint union of paths
	2.2. Disjoint union of suns
	2.3. Disjoint union of helms
	2.4. Disjoint union of friendships

	3. Conclusion
	Acknowledgements.

	References

