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ON THE LIE CENTRALIZERS OF QUATERNION RINGS

MOHAMMAD ALI BAHMANI1 AND FATEME GHOMANJANI2

Abstract. In this paper, we investigate the problem of describing the form of Lie
centralizers on quaternion rings. We provide some conditions under which a Lie
centralizer on a quaternion ring is the sum of a centralizer and a center valued map.

1. Introduction and Preliminaries

Let R be a ring with the center Z(R). For a, b ∈ R denote the Lie product of a, b
by [a, b] = ab − ba and the Jordan product of a, b by a ◦ b = ab + ba. Let ϕ : R → R
be an additive map. Recall that ϕ is said to be a right (left) centralizer map if
ϕ(ab) = aϕ(b)(ϕ(ab) = ϕ(a)b) for all a, b ∈ R. It is called a centralizer if ϕ is both
a right centralizer and a left centralizer. We say that ϕ is a Jordan centralizer if
ϕ(a ◦ b) = a ◦ ϕ(b) for all a, b ∈ R. An additive map ϕ : R → R is called a Lie
centralizer if

ϕ[a, b] = [ϕ(a), b] (or ϕ[a, b] = [a, ϕ(b)]),
for each a, b ∈ R. We say that ϕ : R → R is a center valued map if ϕ(R) ⊆ Z(R).

In the recently years, the structure of Lie centralizers on rings has been studied by
some authors. An important question that naturally arises in this setting is under
what conditions on a quaternion ring, a Lie centralizer can be decomposed into the
sum of a centralizer and a center valued map. Jing [9] was the first one who introduced
the concept of Lie centralizer and showed that every Lie centralizer on some triangular
algebras is the sum of a centralizer and a center valued map. The authors [6] proved
that a Lie centralizer under some conditions on some trivial extention algebras is the
sum of a centralizer and a center valued map. Fošner and Jing [3] studied this result
on triangular rings and nest algebras.
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Let S be a ring with identity. Set
H(S) = {s0 + s1i + s2j + s3k : si ∈ S} = S ⊕ Si ⊕ Sj ⊕ Sk,

where i2 = j2 = k2 = ijk = −1 and ij = −ji. Then, with the componentwise
addition and multiplication subject to the given relations and the conventions that
i, j, k commute with S elementwise, H(S) is a ring called the quaternion ring over S.

In this paper, we suppose that S be an unital ring in which 2 is invertible. We
describe the Lie centralizers on H(S), we show that if S is commutative or semiprime,
then every Lie centralizer on H(S) decomposes into the sum of a centralizer and
a center valued map. Among the reasons for studying the mappings on quternion
rings, we cite the recently published books and papers ([1,2,8]), in which the authors
have considered the important roles of quaternion algebras in other branches of
mathematics, such as differential geometry, analysis and quantum fields.

2. Lie Centralizers of Quaternion Rings

Our aim is to study a Lie centralizer map on a quaternion ring. We give conditions
under which it is a sum of a centralizer and a center valued map. In the following,
we establish a theorem which will be used to prove the fundamental results. From
now on, we assume that S is a 2-torsion free ring with identity such that 1

2 ∈ S and
R = H(S).

Theorem 2.1. Let f : R → R be a Lie centralizer. Then there exists a Lie centralizer
α on S and a Jordan centralizer β on S such that f(t) = α(x)+β(y)i+β(z)j +β(w)k
for every element t = x + yi + zj + wk ∈ R.

Proof. Assume that f(i) = a + bi + cj + dk and f(j) = a′ + b′i + c′j + d′k for some
suitable coefficients in S. Since f is a Lie centralizer, we have

f(k) = 1
2f [i, j] = 1

2[f(i), j] = bk − di.

Furthermore,

a + bi + cj + dk = f(i) = 1
2f [j, k] = 1

2[f(j), k] = −b′j + c′i.

Therefore, we get a = d = 0, b′ = −c and c′ = b. Hence, f(i) = bi + cj and f(k) = bk.
Since f is a Lie centralizer, we have

f(j) = 1
2f [k, i] = 1

2[f(k), i] = bj.

After renaming the constants, we obtain

f(i) = ai + bj, f(j) = aj, f(k) = ak,(2.1)

for suitable a, b, c ∈ S. Now, assume that f(1) = t = x + yi + zj + wk. We have

0 = f [1, i] = ti − it = 2wj − 2zk.
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Thus, w = z = 0. On the other hand, we have
0 = f [1, j] = tj − jt = 2yk − 2wi.

Hence, y = w = 0. Therefore, we have f(1) = x ∈ S. Let s ∈ S, we have
0 = f [1, si] = (xs − sx)i.

Therefore, we get xs = sx. Hence, f(1) ∈ Z(S). Let s ∈ S and set f(si) =
x+yi+zj +wk. Applying f on [si, i] = 0, we get w = z = 0 and hence f(si) = x+yi.
Now, applying f on the identities sk = 1

2 [si, j], sj = 1
2 [sk, i] and si = 1

2 [sj, k], and
putting y = β(s), we obtain

f(si) = β(s)i, f(sj) = β(s)j, f(sk) = β(s)k,(2.2)
where β : S → S is an additive map uniquely determined by f .

Our next aim is to find f(s) for arbitrary s ∈ S. Set f(s) = x + yi + zj + wk.
Applying f on [s, i] = 0, we obtain −2zk + 2wj = 0. So, z = w = 0. Now, applying
f on [s, j] = 0, we obtain that y = 0. Therefore, we have f(s) = x. Putting x = α(s),
we have

f(s) = α(s),(2.3)
where α : S → S is a map determined by f . Since f is a Lie centralizer, (2.3) implies
that α is a Lie centralizer on S.

Let s1, s2 ∈ S. It is obvious that [s1i, s2j] = (s1 ◦ s2)k, [s1i, s2i] = [s2, s1] and
[s1, s2i] = [s1, s2]i. Now, applying f on this identities and using (2.2) and (2.3), we
find, respectively, that

β(s1 ◦ s2) =β(s1) ◦ s2,(2.4)
α[s1, s2] =[β(s1), s2],(2.5)
β[s1, s2] =[α(s1), s2].(2.6)

(2.4) shows that β is a Jordan centralizer on S. Now, let t = x + yi + zj + wk be an
arbitrary element in R. By (2.2) and (2.3), we get f(t) = α(x)+β(y)i+β(z)j +β(w)k,
as desired. □

As a consequence of Theorem 2.1, we have the following results.

Corollary 2.1. Let S be a 2-torsion free commutative ring with identity such that
1
2 ∈ S. If f : H(S) → H(S) be a Lie centralizer, then f is the sum of a centralizer
and a center valued map.

Proof. Since S is 2-torsion free and commutative, the Jordan centralizer β is a cen-
tralizer on S. Let t = x + yi + zj + wk ∈ H(S). Define Γ : H(S) → H(S) by
Γ(t) = β(x) + β(y)i + β(z)j + β(w)k. It is easily verified that Γ is a centralizer. By
Theorem 2.1, we have f(t) = Γ(t)+α(x)−β(x). It remains to show that the mapping
τ : H(S) → H(S) given by τ(t) = α(x) − β(x) is a center valued map. Obviously,
τ is a well-defined additive map such that τ(H(S)) ⊆ S. By [4, Lemma 2.1], we
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have Z(H(S)) = S. Therefore, we have τ(H(S)) ⊆ Z(H(S)). This completes the
proof. □

Corollary 2.2. Let S be a 2-torsion free semiprime ring with identity such that 1
2 ∈ S.

If f : H(S) → H(S) be a Lie centralizer, then f is the sum of a centralizer and a
center valued map.

Proof. Since S is a 2-torsion free semiprime ring, the Jordan centralizer β is a cen-
tralizer on S by [10]. Now, let Γ and τ be the mappings defined in Corollary 2.1. It
is easily verified that Γ is a centralizer. It remains to show that the mapping τ is a
center valued map. Let s1, s2 ∈ S. Since β is a centralizer on S, from (2.6), we obtain

[τ(s1), s2] = [α(s1) − β(s1), s2] = 0.(2.7)

Let t = x + yi + zj + wk, t′ = x′ + y′i + z′j + w′k ∈ H(S). Using (2.7), we have

[τ(t), t′] =[α(x) − β(x), t′]
=[τ(x), x′] + [τ(x), y′]i + [τ(x), z′]j + [τ(x), w′]k
=0.

Therefore, we have τ(H(S)) ⊆ Z(H(S)). This completes the proof. □
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