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LIST COLORING UNDER SOME GRAPH OPERATIONS

KINKAR CHANDRA DAS1, SAMANE BAKAEIN2, MOSTAFA TAVAKOLI2∗,
FREYDOON RAHBARNIA2, AND ALIREZA ASHRAFI3

Abstract. The list coloring of a graph G = G(V, E) is to color each vertex v ∈
V (G) from its color set L(v). If any two adjacent vertices have different colors, then
G is properly colored. The aim of this paper is to study the list coloring of some
graph operations.

1. Introduction

Throughout this paper, our notations are standard and can be taken from the
famous book of West [16]. The set of all positive integers is denoted by N, and for a
set X, the power set of X is denoted by P (X). All graphs are assumed to be simple
and finite, and if G is such a graph, then its vertex and edge sets are denoted by V (G)
and E(G), respectively.

The graph coloring is an important concept in modern graph theory with many
applications in computer science. A function α : V (G) → N is called a coloring for
G. The coloring α is said to be proper, if for each edge uv ∈ E(G), α(u) ̸= α(v). If
the coloring α uses only the colors [k] = {1, 2, . . . , k}, then α is called a k-coloring for
G, and if such a proper k-coloring exists, then the graph G is said to be k-colorable.
The smallest possible number k for which the graph G is k-colorable is the chromatic
number of G and is denoted by χ(G).

The list coloring of graphs is a generalization of the classical notion of graph
coloring, which was introduced independently by Erdős, Rubin and Taylor [7] and
Vizing [15]. In the list coloring of a graph G, a list L(v) of colors is assigned to
each vertex v ∈ V (G), and we have to find a proper coloring c for G in such a
way that c(v) ∈ L(v), for any vertex v in G. Concretely, we assume that there is a
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function L : V (G) → P (N) that assigns a set of colors to each vertex of G. A coloring
c : V (G) → N is called an L-coloring if for all v ∈ V (G), c(v) ∈ L(v). This coloring is
said to be proper if c(u) ̸= c(v), when uv ∈ E(G). The graph G is called L-colorable
if such an L-coloring exists. This graph is k-choosable if it is L-colorable for every
assignment L that satisfies |L(v)| ≥ k, for all v ∈ V (G). The list chromatic number
χL(G) of G is the smallest k such that G is k-choosable. In [9], Isaak showed that
the list chromatic number of the Cartesian product K2 and Kn is equal to n2 +

⌈
5n
3

⌉
.

One year later, Axenovich [2] proved that if each vertex x ∈ V (G) \ P is assigned a
list of colors of size ∆ and each vertex x ∈ P is assigned a list of colors of size 1, then
it is possible to color V (G) such that adjacent vertices receive different colors and
each vertex has a color from its list, where G is a non-complete graph with maximum
degree ∆ ≥ 3 and P is a subset of vertices with pairwise distance d(P ) between them
at least 8. After that, in 2009, Rackham [12] studied on the list coloring of K∆-free
graphs. We encourage potential readers to consult the interesting thesis of Lastrina
[10] and Tuza’s survey [14] for more information on this topic.

By a well-known result of Nordhaus and Gaddum [11], if G is an n-vertex graph,
then χ(G) + χ(G) ≤ n + 1, where G is the complement of a graph G.

Erdös, Rubin and Taylor [7] extended this inequality to the list coloring of graphs
and proved that for every n-vertex graph G, χL(G) + χL(G) ≤ n + 1. Thus, it is
natural to study the list coloring of graphs under some other graph operations, which
is the main topic of this paper.

Suppose {Gi = (Vi, Ei)}N
i=1 is a family of graphs having a root vertex 0. Following

Barrière, Comellas, Dalfó, Fiol, and Mitjana [3, 4], the hierarchical product H =
GN ⊓ · · · ⊓ G2 ⊓ G1 is the graph with vertices as N -tuples xN . . . x3x2x1, for xi ∈ Vi,
and edges defined as follows:

xN . . . x3x2x1 ∼



xN . . . x3x2y1 if y1 ∼ x1 in G1,
xN . . . x3y2x1, if y2 ∼ x2 in G2 and x1 = 0,
xN . . . y3x2x1, if y3 ∼ x3 in G3 and x1 = x2 = 0,

...
...

yN . . . x3x2x1, if yN ∼ xN in GN and x1 = x2 = · · · = xN−1 = 0.
In [13], Tavakoli, Rahbarnia and Ashrafi obtained exact formulas for some graph

invariants under the hierarchical product, and some applications in chemistry were
presented by Arezoomand and Taeri in [1].

Suppose G is a connected graph. Following Cvetković, Doob, Sachs, Yan, Yang and
Yeh [6,17], we define four types of graphs resulting from edge subdivision.

(a) S(G) is the graph obtained by inserting an additional vertex in each edge of
G. Equivalently, each edge of G is replaced by a path of length 2.

(b) R(G) is obtained from G by adding a new vertex corresponding to each edge
of G, then joining each new vertex to the end vertices of the corresponding
edge. Another way to describe R(G) is to replace each edge of G by a triangle.

(c) Q(G) is obtained from G by inserting a new vertex into each edge of G, then
joining with edges those pairs of new vertices on adjacent edges of G.
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(d) The graph T (G) of a graph G has a vertex for each edge and vertex of G and
an edge in T (G) for every edge-edge, vertex-edge, and vertex-vertex adjacency
in G.

The graphs S(G) and T (G) are called the subdivision and total graphs of G, respec-
tively.

Q(G) T (G)

G S(G) R(G)

Figure 1. Subdivision graphs of G.

Let G and H be two graphs. The corona product GoH is obtained by taking one
copy of G and |V (G)| copies of H, and by joining each vertex of the i-th copy of H to
the i-th vertex of G, where 1 ≤ i ≤ |V (G)|, see Yeh and Gutman [19]. In Yarahmadi
and Ashrafi [18], the authors obtained exact formulas for some graph invariant under
the corona product of graphs. The edge corona product of two graphs G and H,
G♢H, is obtained in a similar way by taking one copy of G and |E(G)| copies of H
and joining each end vertices of the i-th edge of G to every vertex in the i-th copy
of H, see Chithra, Germina, Sudev, Hou and Shiu [5, 8]. If the graphs G and H
have disjoint vertex sets, then G + H will be the graph obtained from G and H by
connecting all vertices of G with all vertices of H.

2. Main Results

Suppose G is a simple graph. The suspension of a graph G is another graph G′

constructed from G by adding a new vertex u and connecting u to all vertices of G.

2.1. Relationship between the coloring and the list coloring of graphs. It
is clear that the list chromatic number χL(G) of a graph G is at least its chromatic
number χ(G), but it can be strictly larger, in other words χ(G) < χL(G). We consider
the following cases for showing the difference between the list coloring and the coloring
of a given graph G.
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o =

P3 P2 P3oP2

♢ =

P3 P2 P3♢P2

Figure 2. The corona and edge corona products of two graphs P3 and
P2.

• Suppose χL(G) − χ(G) = 1. In this case, if we color the graph with lists of
length χ(G), then in each coloring of this graph there will be at least one vertex
x such that all adjacent vertices of x can be colored, and there is no edge that
its end vertices cannot be colored.

• Suppose χL(G) − χ(G) = 2. In this case, if we color the graph with lists of
length χ(G), then in each coloring of this graph there will be at least two
vertices x and y such that xy ∈ E(G), all adjacent vertices of x, y can be
colored, and there is no triangle in G that its vertices cannot be colored.

Note that the above statements cannot be generalized to the case that χL(G) −
χ(G) > 2. To show this, we define r =

(
2k−1

k

)
. Then, the complete bipartite graph

Kr,r is not k-choosable and so χL(Kr,r) > k. If G has a list coloring of length m in
such a way that we can find a coloring in which there is a k-vertex graph without a
possible color, then χL(G) = m + k. Finally, if the graph G can be colored with lists
of length χL(G) − 1 then there will be lists of length χL(G) − 1, in which for every
coloring of these lists there exists a vertex that all its adjacent vertices are colored
and there is no edge that its end vertices cannot be colored.

2.2. List chromatic numbers of the suspension graph and the corona prod-
uct. The aim of this section is to compute the list chromatic number of the suspension
graph and the corona product of graphs. We start this section by the following crucial
result:

Theorem 2.1. Let G be a graph with G′ = G + K1. Then χL(G′) = χL(G) or
χL(G) + 1.
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Proof. Let V (K1) = {u}. It is clear that χ(G′) = χ(G) + 1. Suppose χL(G) = χ(G).
Then, χL(G) + 1 = χ(G) + 1 = χ(G′) ≤ χL(G′). We claim that χL(G′) = χL(G) + 1.
To prove it, we assign lists of length χL(G) + 1 to the vertices of G′. We color u with
a color t in L(u). In the worst case, t ∈ ⋂

v∈V (G′) L(v) and since G has a coloring with
lists of length χL(G), we will find an appropriate coloring for G′.

We now assume that χL(G) = χ(G)+1. Since χ(G′) ≤ χL(G′), χ(G)+1 = χL(G) ≤
χL(G′). For the list coloring of G′ we have the following two cases.

(a) After coloring of G with lists of length χL(G) − 1, we will have at most two
vertices without a possible color: χL(G′) = χL(G). We assign lists of length χL(G) to
all vertices of G′. We first consider the case that we cannot color only one vertex of
G′. There are two cases for L(u) as follows.

a.1 There is a color a ∈ L(u) such that for each v ̸= a ∈ V (G′), a ̸∈ L(v). In this
case, we assign a to the vertex u. By our hypothesis, the problem is changed to the
list coloring of G by χL(G) colors, which is possible by definition.

a.2 For each color a ∈ L(u), there exists a vertex u ≠ v ∈ V (G′) such that a ∈ L(v).
Suppose V (G) = {v1, . . . , vn} and assign a list Li to each vertex vi for 1 ≤ i ≤ n. We
consider the following two cases.

(i) L(u) ⊆ ⋂n
i=1 Li. In this case, all vertices have the same list of colors. Since

χL(G) = χ(G) + 1 = χ(G′), the vertices of G can be colored with χ(G) colors and it
remains a color for u. Hence, χL(G′) = χL(G).

(ii) L(u) ̸⊆ ⋂n
i=1 Li. In this case, there exist a color a ∈ L(u) and an integer i for

1 ≤ i ≤ n, such that a ∈ Li and a ̸∈ ⋂n
j=1 Lj. We assign the color a to the vertex u

and remove a from the list of other vertices. This shows that there exists a list Lj

such that a ̸∈ Lj. Therefore, the length of some lists is χ(G) or χ(G) + 1. By the
hypothesis, there is only one vertex without a feasible color when a list has length
χL(G) − 1. It is clear that, in all cases, we will have an appropriate coloring for the
graph.

We now assume that after the coloring of the graph with lists of length χL(G) − 1
there are two vertices without assigning a color. If we have a color a ∈ L(u) such
that a ̸∈ ∪v ̸=uL(v), then by a similar argument as above, we will have an appropriate
coloring for the graph. So, we can assume that every color in L(u) will appear in at
least one list of colors. We have again the following two cases.

(i) L(u) ⊆ ⋂n
i=1 Li. A similar argument as above shows that we have an appropriate

coloring of the graph.
(ii) L(u) ̸⊆ ⋂n

i=1 Li. In this case, there exist a color a ∈ L(u) and an integer i, for
1 ≤ i ≤ n, such that a ∈ Li and a ̸∈ ⋂n

j=1 Lj. We prove that it is possible to find
an appropriate coloring with lists of length χL(G). To do this, we show that there
exists at least one color c in L(u), such that c is outside of at least two other lists.
On the contrary, we assume that there is at most one list L(v) with c ̸∈ L(v). If c is
outside of all the other lists, then clearly we will find an appropriate coloring for the
graph. Hence, we can assume that there is a unique v such that c ̸∈ L(v). Therefore,
all lists except one of them are equal and we have an appropriate coloring with lists
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of length χL(G) − 1, which is impossible. Therefore, G′ can be colored with lists of
length χL(G).

(b) After the coloring of G with lists of length χL(G) − 1, we will have more than
two vertices without a possible color: In this case, we will prove χL(G′) = χL(G) + 1.
Suppose χL(G) − χ(G) = m. We prove that the graph G′ does not have a list coloring
with lists of length χL(G) − 1. We assign lists of length χL(G) − 1 in such a way
that there is no appropriate coloring for the graph. Consider the χL(G) copies of the
graph G with the same lists and add a1 to all lists of the first copy of G, a2 to all
lists of the second copy of G, . . . , aχL(G) to all lists of the χL(G)-copy of G. We also
assign the list {1, 2, . . . , χL(G)} to the vertex u. Note that by assigning each of ai to
the vertex u, we will not have an appropriate coloring for the i-th copy of G. Thus,
we cannot find a feasible coloring for the graph. Therefore, an appropriate coloring
of G′ needs lists of length χL(G) + 1, see Figure 3.

This completes the proof. □

Lemma 2.1. Suppose G is a graph containing disjoint subgraphs G1, . . . , GχL(G) such
that for each subgraph we can find lists of length χL(G)−1 in which at least one vertex
does not have a color. If u is an isolated vertex, then χL(G′) = χL(G) + 1.

Proof. On the contrary, we assume that χL(G′) = χL(G). We define the lists of the
graph G′ as follows:

• assign lists of length χL(G) − 1 to the vertices of G1 from the set {2, 3, . . . ,
χL(G) + 1};

• assign lists of length χL(G) − 1 to the vertices of G2 from the set {1, 3, . . . ,
χL(G) + 1};

• assign lists of length χL(G) − 1 to the vertices of Gi from the set {1, 2, . . . , i −
1, i + 1, . . . , χL(G) + 1};

• assign lists of length χL(G) − 1 to the vertices of GχL(G) from the set {1, 2,
. . . , χL(G) − 1, χL(G) + 1}.

We now add the color i to all lists corresponding to the subgraph Gi for 1 ≤ i ≤
χL(G), and assign the set {1, 2, . . . , χL(G)} to the vertex u. If we assign a color, say
i, to the vertex u, then the subgraph Gi cannot be colored, and so G does not have
an appropriate coloring, a contradiction. Thus, χL(G′) = χL(G) + 1. □

Corollary 2.1. Suppose G and H are two graphs. Then,

χL(GoH)


= max{χL(G), χL(H)}, χL(H) ̸= χ(H) and in the coloring of H

with lists of length χL(H) − 1 at most
two vertices cannot be colored,

≤ max{χL(G), χL(H) + 1}, otherwise.

2.3. List chromatic number of the edge corona product. Suppose G is a
simple graph, e = uv and u, v ̸∈ V (G). Let G′′ = G + K2, where V (K2) = {u, v}
and E(K2) = {e}. It is easy to see that G′′ = G′ + K1, where V (K1) = {v} with
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{1, 2, a3} {1, 3, a3} {2, 3, a3}

{1, 2, a3} {1, 3, a3} {2, 3, a3}

{1, 2, a2} {1, 3, a2} {2, 3, a2}

{1, 2, a2} {1, 3, a2} {2, 3, a2}

{2, 3, a1} {1, 3, a1} {1, 2, a1}

{1, 2, a1} {1, 3, a1} {2, 3, a1}

Three copies of G

{a1, a2, a3}
u

+

Figure 3. Adding the vertex u to a graph G that after coloring with
lists of length χL(G)−1, the vertex u will be without an assigned color.

G′ = G + K1, where V (K1) = {u}. It is clear that χ(G′′) = χ(G) + 2. By Corollary
2.1,

χL(G′′)


= χL(G′), χL(G′) ̸= χ(G′) and in the coloring of the graph with

llists of ength χL(G′) − 1 at most two vertices cannot
be colored,

≤ χL(G′′) + 1, otherwise.

We now apply this inequality to prove the following lemma.
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Lemma 2.2. The list chromatic number of G′′ is given by the following formula:

χL(G′′) =



χL(G), χL(G) ̸= χ(G) and in the coloring of the graph with lists
length χL(G) − 1 of exactly one vertex cannot be colored,

χL(G) + 1, χL(G) ̸= χ(G) and in the coloring of the graph with lists
length χL(G) − 1 of exactly two vertices cannot be
colored,

χL(G) + 2, otherwise.

Theorem 2.2. Suppose G and H are two graphs. The list chromatic number of G♢H
is given by the following formula:

χL(G♢H)



= max{χ(G), χ(H)}, χL(G) ̸= χ(G) and in the coloring of the
graph with lists of length χL(G) − 1exactly
one vertex cannot be colored,

≤ max{χ(G), χ(H) + 1}, χL(G) ̸= χ(G) and in the coloring of the
graph with lists of length χL(G) − 1
exactly two vertices cannot be colored,

≤ max{χ(G), χ(H) + 2}, otherwise.

2.4. List chromatic number of the join of two graphs. The aim of this subsection
is to investigate under which conditions χL(G+H) = χL(G)+χL(H). If χL(G) = χ(G)
and χL(H) = χ(H), then χ(G + H) = χ(G) + χ(H), and so χL(G + H) = χL(G) +
χL(H). On the other hand, if one of G or H is a complete graph, then by Corollary
2.1, χL(G + H) = χL(G) + χL(H). In Figures 4 and 5, some examples are given,
which show that the quantities χL(G + H) and χL(G) + χL(H) can be non-equal.

G

Figure 4. Graphs G and H ∼= G that χL(G + H) ̸= χL(G) + χL(H).

Theorem 2.3. Suppose G and H are graphs such that the following holds.
• χL(H) ≤ χL(G) (or χL(G) ≤ χL(H)).
• The graph G (H) has subgraphs G1, . . . , GχL(G)+1 (H1, . . . , HχL(H)+1) such that

for each subgraph Gi for 1 ≤ i ≤ χL(G) + 1, (or Hi for 1 ≤ i ≤ χL(H) + 1)
there exist lists of length χL(G) + 1 (or χL(H) + 1) in such a way that in each
subgraph there exists at least one vertex that cannot be colored.
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G G + H

Figure 5. Graphs G and H ∼= K1 with χL(G + H) ̸= χL(G) + χL(H).

Then, χL(G + H) = χL(G) + χL(H).

Proof. On the contrary, we assume that χL(G + H) = χL(G) + χL(H) − 1. We assign
lists of length χL(H) − 1 to the graph H in such a way that H does not have an
appropriate coloring related to these lists. Similarly to Lemma 2.1, we assign lists to
the subgraphs G1, . . . , GχL(G)+1 as follows:

• assign lists of length χL(G) − 1 to the vertices of G1 from the set {2, 3, . . . ,
χL(G) + 1};

• assign lists of length χL(G) − 1 to the vertices of G2 from the set {1, 3, . . . ,
χL(G) + 1};

• assign lists of length χL(G) − 1 to the vertices of Gi from the set {1, 2, . . . , i −
1, i + 1, . . . , χL(G) + 1};

• assign lists of length χL(G) − 1 to the vertices of GχL(G)+1 from the set
{1, 2, . . . , χL(G) − 1, χL(G) + 1}.

By our hypothesis, there exists a vertex xi ∈ V (Gi), for 1 ≤ i ≤ χL(G) + 1, such
that in the process of the coloring for vertices of Hi, xi cannot be colored. We now
add the color i to all lists corresponding to the subgraph Gi, for 1 ≤ i ≤ χL(G) + 1.
We also assign the lists of the graph H to the subgraphs of G in such a way that we
assign different lists to at least two vertices of a given subgraph, and at least three
lists of each subgraphs are different. Note that the smallest subgraph with these
properties has at least six vertices. Next, we assign lists of length χL(G) from the set
{1, 2, . . . , χL(G) + 1} to the vertices of H such that at least two vertices of the graph
have different lists and if |V (H)| ≥ 3, then at least three lists of vertices in H are
different. We assign numbers to the lists of G and letters to the lists of H. Our main
proof will consider the following three separate cases.
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(a) In the coloring of H we use only letters. By our hypothesis, there will be one
vertex that cannot be colored, and we assign the number i to this vertex. So, the
subgraph Gi cannot be colored, as desired.

(b) In the coloring of H we use only numbers. In this case, we will have a list
of letters for a subgraph (vertices of G which are colored with numbers) and since
χL(H) − 1 ≤ χL(H) ≤ χL(G), the graph cannot be colored.

(c) In the coloring of H we use a combination of letters and numbers. By our
hypothesis, there will be one vertex that cannot be colored, and we assign the number
i to this vertex. So, the subgraph Gi cannot be colored, as desired. In this case, we
use numbers instead of letters. For example, we use 1 as a. Again, we will have a
vertex that cannot be colored by letters and the number 1. We assign the number
i to this vertex. Consider a list L in Gi containing number 1. If a ̸∈ L, then the
graph obviously cannot be colored. If a ∈ L, then we lead to a contradiction with
our substitution. So, the graph cannot be colored. In the case that more than one
letter is substituted by a number, we lead to a similar contradiction, and so the graph
cannot be colored.

This proves that χL(G + H) = χL(G) + χL(H). □

2.5. List chromatic number of the subdivision graphs. In this subsection, the
list chromatic number of four types of edge subdivision of a graph G containing
R(G), S(G), Q(G) and T (G) are computed.

Theorem 2.4. χL(R(G)) = max{χL(G), 3}.

Proof. The subdivision graph R(G) is isomorphic to the edge corona product of G
and H, where H = K1. Since χL(H) = χ(H) = 1, by Theorem 2.2, χL(R(G)) =
max{χL(G), 3}. □

Theorem 2.5. Suppose G has at least one edge. Then χL(S(G)) = 2 or 3 and all
cases can occur.

Proof. Suppose |V (G)| = n, |E(G)| = m and V (G) = {v1, . . . , vn}. In the graph
S(G), the additional vertices of each edge of G are labeled by u1, . . . , um. It is
clear that all cycles of S(G) have even length and so S(G) is a bipartite graph
with bipartite classes (U1, U2), where U1 = V (G) and U2 = {u1, . . . , um}. Therefore,
χL(S(G)) ≥ χ(S(G)) = 2. In Figures 6 and 7, two graphs G1 and G2 are presented,
such that χL(S(G1)) = 2 and χL(S(G2)) = 2.

To complete the proof, we assign a color to all vertices of V (G) and the other
vertices can be colored with two other colors. This proves that χL(S(G)) ≤ 3, which
completes the proof. □

Theorem 2.6. χL(Q(G)) = ∆(G) + 1.

Proof. We use the labeling of the vertices in S(G) given in the proof of Theorem 2.5
for the graph Q(G). By definition of Q(G), each vertex vi together with all vertices
uj adjacent to vi constitutes a complete graph of order deg(vi) + 1 and each ui is a
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G1

Figure 6. The graph G1 with χL(S(G1)) = 2.

{2, 3} {1, 2} {1, 3} {1, 2} {2, 3}

{1, 3} {1, 3} {1, 3}

{1, 2} {1, 2} {1, 3} {2, 3} {2, 3}

G2

Figure 7. The graph G2 with χL(S(G2)) = 3.

common vertex of exactly two complete subgraphs. So, the graph Q(G) has |V (G)|
such complete graphs. It is obvious that for each triangle in G, some of the vertices
in A = {ui | 1 ≤ i ≤ m} induces a triangle in Q(G) and in the other case, the vertices
in A can not construct a triangle in Q(G). Since G has a vertex of degree ∆(G),
Q(G) has a complete subgraph of order ∆(G) + 1, and so χ(Q(G)) ≥ ∆(G) + 1. We
will prove that it is possible to color the graph Q(G) by lists of length ∆(G) + 1. To
prove it, we assign lists of length ∆(G) + 1 to all vertices of Q(G). Since Q(G) can be
constructed from complete graphs of minimum order 3 and maximum order ∆(G) + 1,
each vertex of V (G) is a vertex of exactly one complete graph, each vertex ui is a
common vertex of exactly two complete subgraphs, and each complete graph of order
n has n distinct colorings with lists of length n, the graph Q(G) has an appropriate
coloring. This proves the theorem. □

Theorem 2.7. ∆(G) + 1 ≤ χL(T (G)) ≤ ∆(G) + 2.
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Proof. Since the graphs G and Q(G) are subgraphs of T (G), max{χL(G), χL(Q(G))}
≤ χL(T (G)). On the other hand, χL(G) ≥ ∆(G)+1 and so ∆(G)+1 ≤ χL(T (G)). To
prove χL(T (G)) ≤ ∆(G) + 2, we assign the lists of length ∆(G) + 2 to each vertex of
the graph. We first color all vertices of G. Since each vertex of A = {ui | 1 ≤ i ≤ m}
are adjacent to two vertices of G, which are adjacent in T (G), the length of lists
corresponding to vertices in A is at least ∆(G). Therefore, χL(T (G)) ≤ ∆(G)+2. □

2.6. List chromatic number of the hierarchical product of graphs. In this
section, the list chromatic number of the hierarchical product of graphs is computed.
We first compute this number for the case of two graphs.

Theorem 2.8. The list chromatic number of the hierarchical product of two graphs
G and H is given by the following formula:

χL(G⊓H) =



3, χL(G) = χL(H) = 2, G has a cycle of even
length and the root is a vertex of an even
cycle,

2, χL(G) = χL(H) = 2, G does not have an
even cycle or G has an even cycle but
the root is not a vertex of an even cycle,

max{χL(G), χL(H)}, otherwise.

Proof. It is easy to see that χ(G ⊓ H) = max{χ(G), χ(H)}. Moreover, if χL(G) =
χL(H) = 2, G has a cycle of even length and the root is a vertex of an even cycle,
then χL(G ⊓ H) = 3, see Figure 8. If χL(G) = χL(H) = 2, G does not have an
even cycle or G has an even cycle, but the root is not a vertex of an even cycle, then
χL(G ⊓ H) = 2. On the other hand, if χL(G) > χL(H), then clearly the graph G ⊓ H
can be colored by lists of length χL(G) and if χL(G) < χL(H), then the graph G ⊓ H
can be colored by lists of length χL(H). So, it is enough to consider the case that
χL(G) = χL(H). In this case, we first color the graph G by χL(G) colors. In this
coloring, for the coloring of each vertex in G, a vertex in H will be colored and if
χL(H) ≥ 3, then the graph will have an appropriate coloring. □

Corollary 2.2. Suppose G1, G2, . . . , Gk are k simple graphs. Then,

χL(Gk ⊓· · ·⊓G2 ⊓G1) =



3, χL(G1) = · · · = χL(Gk) = 2, Gk

has an even cycle and the root
is a vertex of an even cycle,

2, χL(G1) = · · · = χL(Gk) = 2,
the root is not a vertex of an
even cycle or Gk does not have
a cycle of even length,

max{χL(G1), . . . , χL(Gk)}, otherwise.
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{1, 3} {2, 3}

{2, 3} {1, 2} {1, 3}
{1, 2} {2, 3}

{1, 3} {1, 2}

{2, 3}
{1, 2}

{2, 3} {1, 3}

{1, 3}

{2, 3} {1, 2}

C4 ⊓ C4

Figure 8. The hierarchical product of C4 and C4 with the list chro-
matic number 3.

Proof. We proceed by induction. In Theorem 2.8, we proved the case of k = 2.
Suppose k = m − 1 and H = Gk ⊓ · · · ⊓ G2 ⊓ G1. To prove the case of k = m, we first
assume that χL(G1) = · · · = χL(Gk) = 2. Then, the following four cases can occur.

(a) Let Gm be a tree and there are no even cycles in other graphs. Since the other
m − 1 graphs do not have even cycles, the graph H does not have an even cycle, and
so χL(Gm ⊓ H) = 2.

(b) Let Gm be a tree and there exists at least one even cycle in the other graphs.
Since in the other m − 1 graphs we have at least one even cycle, the graph H has an
even cycle. If χL(H) ≥ 3, then χL(Gm ⊓ H) = max{2, 3} = 3. If χL(H) = 2, then
χL(Gm ⊓ H) = 2, as desired.

(c) Gm has an even cycle and there are no even cycles in other graphs. A similar
argument as in the first case shows that χL(Gm ⊓ H) = 2.

(d) Gm has an even cycle and there exists at least one even cycle in the other
graphs. In this case, the graph H has at least one even cycle. If χL(H) ≥ 3, then
χL(Gm ⊓ H) = max{2, 3} = 3. Suppose χL(H) = 2. If the root vertex is in a cycle,
then χL(H) = 3, and otherwise χL(H) = 2.

Next we assume that there exists i such that χL(Gi) > 2. Then

max
1≤i≤m

{χL(Gi)} = max
{

χL(Gm), max
1≤i≤m−1

{χL(Gi)}
}

= max{χL(Gm), χL(H)}.

This shows that the problem for the case of k = m can be reduced to the case of
k = 2 such that one of the graphs has the list chromatic number greater than 2. By
induction hypothesis, this is feasible, and so the proof is complete. □
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