KRAGUJEVAC JOURNAL OF MATHEMATICS VOLUME 46(3) (2022), PAGES 395–406.

COEFFICIENT ESTIMATES FOR SUBCLASS OF *m*-FOLD SYMMETRIC BI-UNIVALENT FUNCTIONS

A. MOTAMEDNEZHAD¹, S. SALEHIAN², AND N. MAGESH³

ABSTRACT. In the present paper, a general subclass $\mathcal{M}_{\Sigma_m}^{h,p}(\lambda,\gamma)$ of the *m*-Fold symmetric bi-univalent functions is defined. Also, the estimates of the Taylor-Maclaurin coefficients $|a_{m+1}|$, $|a_{2m+1}|$ and Fekete-Szegö problems are obtained for functions in this new subclass. The results presented in this paper would generalize and improve some recent works of several earlier authors.

1. INTRODUCTION

Let \mathcal{A} be a class of analytic functions in the open unit disk $\mathbb{U} = \{z \in \mathbb{C} : |z| < 1\}$ of the form

(1.1)
$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n.$$

Denote by S the class of all functions in the normalized analytic function class \mathcal{A} which are univalent in \mathbb{U} (see details in [2,3]).

Since univalent functions are one-to-one, they are invertible and the inverse functions need not be defined on the entire unit disk U. In fact, the Koebe one-quarter theorem [3] ensures that the image of U under every univalent function $f \in S$ contains a disk of radius 1/4. Therefore, every function $f \in S$ has an inverse f^{-1} satisfying $f^{-1}(f(z)) = z \ (z \in \mathbb{U})$ and

$$f(f^{-1}(w)) = w \quad \left(|w| < r_0(f), \, r_0(f) \ge \frac{1}{4} \right).$$

Key words and phrases. Bi-univalent functions, *m*-fold symmetric univalent functions, *m*-fold symmetric bi-univalent functions, coefficient estimates, Fekete-Szegö problem.

²⁰¹⁰ Mathematics Subject Classification. Primary: 30C45. Secondary: 30C50.

DOI 10.46793/KgJMat2203.395M

Received: March 30, 2019.

Accepted: January 03, 2020.

In fact, the inverse function f^{-1} is given by

(1.2)
$$f^{-1}(w) = w - a_2 w^2 + (2a_2^2 - a_3)w^3 - (5a_2^3 - 5a_2a_3 + a_4)w^4 + \cdots$$

A function $f \in \mathcal{A}$ is said to be bi-univalent in \mathbb{U} , if both f and f^{-1} are univalent in \mathbb{U} (see [10]). We denote $\sigma_{\mathcal{B}}$ the class of bi-univalent functions in \mathbb{U} given by (1.1). For examples the functions $\frac{z}{1-z}$ and $-\log(1-z)$ belong to the class $\sigma_{\mathcal{B}}$.

The first time in 1967, Lewin [4] introduced the class $\sigma_{\mathcal{B}}$ and proved that the bound for the second coefficients of every $f \in \sigma_{\mathcal{B}}$ satisfies the inequality $|a_2| < 1.51$. Also, Smith [5] showed that $|a_2| < 2/\sqrt{27}$ and $|a_3| < 4/27$ for bi-univalent polynomial $f(z) = z + a_2 z^2 + a_3 z^3$ with real coefficients.

Recently many researchers introduced subclasses of bi-univalent functions and obtain non-sharp estimates on the first two Taylor-Maclaurin coefficients $|a_2|$ and $|a_3|$. For example, we refer the reader to Srivastava et al. [6,8,10] and others [13,14]. The coefficient estimate problem, i.e., bound of $|a_n|$ $(n \in \mathbb{N} - \{2,3\})$ for each $f \in \sigma_{\mathcal{B}}$, is still an open problem.

Let *m* be a positive integer. A domain *E* is known as *m*-Fold symmetric if a rotation of *E* around origin with an angle $2\pi/$ maps *E* on itself. A function f(z) analytic in \mathbb{U} is said to be *m*-Fold symmetric if

$$f\left(e^{i\frac{2\pi}{m}}z\right) = e^{i\frac{2\pi}{m}}f(z).$$

For each function $f \in S$, function

(1.3)
$$h(z) = \sqrt[m]{f(z^m)}$$

is univalent and maps unit disk \mathbb{U} into a region with *m*-Fold symmetry.

We denote by S_m the class of *m*-Fold symmetric univalent functions in \mathbb{U} and clearly $S_1 = S$. Every $f \in S_m$ has a series expansion of the form

(1.4)
$$f(z) = z + \sum_{k=1}^{\infty} a_{mk+1} z^{mk+1} \quad (z \in \mathbb{U}, m \in \mathbb{N}).$$

Srivastava et al. [11], introduced a natural extensions of *m*-Fold symmetric univalent functions and defined the class Σ_m of symmetric bi-univalent functions. They obtained the series expansion for $g = f^{-1}$ as:

$$f^{-1}(w) = w - a_{m+1}w^{m+1} + [(m+1)a_{m+1}^2 - a_{2m+1}]w^{2m+1}$$

(1.5)
$$- \left[\frac{1}{2}(m+1)(3m+2)a_{m+1}^3 - (3m+2)a_{m+1}a_{2m+1} + a_{3m+1}\right]w^{3m+1} + \cdots$$

For m = 1 formula (1.5) coincides with formula (1.2) of the class $\sigma_{\mathcal{B}}$.

In fact, this widely-cited work by Srivastava et al. [7] actually revived the study of m-Fold bi-univalent functions in recent years and that it has led to a flood of papers on the subject by (for example) Srivastava et al. [7,9,11,12].

The aim of the this paper is to introduce new subclass $\mathcal{M}_{\Sigma_m}^{h,p}(\lambda,\gamma)$ of the *m*-Fold symmetric bi-univalent functions class Σ_m . Moreover, we obtain estimates on initial coefficients $|a_{m+1}|$, $|a_{2m+1}|$ and Fekete-Szegö problems for functions in this subclass.

396

The results presented in this paper would generalize and improve some recent works of Altinkaya et al. [1] and Li et al. [13].

2. SUBCLASS
$$\mathcal{M}^{h,p}_{\Sigma_m}(\lambda,\gamma)$$

In this section, we introduce and consider the subclass $\mathcal{M}_{\Sigma_m}^{h,p}(\lambda,\gamma)$.

Definition 2.1. Assume that $h : \mathbb{U} \to \mathbb{C}$ and $p : \mathbb{U} \to \mathbb{C}$, are analytic functions of the form

$$h(z) = 1 + h_m z^m + h_{2m} z^{2m} + h_{3m} z^{3m} + \cdots,$$

$$p(w) = 1 + p_m w^m + p_{2m} w^{2m} + p_{3m} w^{3m} + \cdots,$$

such that

$$\min\{\operatorname{Re}((h(z)),\operatorname{Re}(p(z))\}>0\quad (z\in\mathbb{U}).$$

Let $\lambda \geq 0$ and $\gamma \in \mathbb{C} - \{0\}$. We say that a function f given by (1.4) is in the subclass $\mathcal{M}^{h,p}_{\Sigma_m}(\lambda,\gamma)$, if the following conditions are satisfied:

(2.1)
$$1 + \frac{1}{\gamma} \left[(1-\lambda) \frac{zf'(z)}{f(z)} + \lambda \left(1 + \frac{zf''(z)}{f'(z)} \right) - 1 \right] \in h(\mathbb{U}) \quad (z \in \mathbb{U})$$

and

(2.2)
$$1 + \frac{1}{\gamma} \Big[(1-\lambda) \frac{wg'(w)}{g(w)} + \lambda \Big(1 + \frac{wg''(w)}{g'(w)} \Big) - 1 \Big] \in p(\mathbb{U}) \quad (w \in \mathbb{U}),$$

where g is the extension of f^{-1} to \mathbb{U} .

Definition 2.2. A function $f \in \Sigma_m$ given by (1.4) is said to be in the subclass $C_{\Sigma_m}(\beta)$ $(0 \le \beta < 1)$, if two following conditions are satisfied:

$$\operatorname{Re}\left(1+\frac{zf''(z)}{f'(z)}\right) > \beta \quad \text{and} \quad \operatorname{Re}\left(1+\frac{wg''(w)}{g'(w)}\right) > \beta \quad (z, w \in \mathbb{U}),$$

where g is the extension of f^{-1} to \mathbb{U} .

Remark 2.1. There are many selections of the functions h(z) and p(z) which would provide interesting classes of *m*-Fold symmetric bi-univalent functions Σ_m . For example, if we let

$$h(z) = p(z) = \left(\frac{1+z^m}{1-z^m}\right)^{\alpha} = 1 + 2\alpha z^m + 2\alpha^2 z^{2m} + \cdots \quad (0 < \alpha \le 1),$$

it is easy to verify that the functions h(z) and p(z) satisfy the hypotheses of Definition 2.1. If $f \in \mathcal{M}_{\Sigma_m}^{h,p}(\lambda, \gamma)$, then

$$\arg\left(1+\frac{1}{\gamma}\left[(1-\lambda)\frac{zf'(z)}{f(z)}+\lambda\left(1+\frac{zf''(z)}{f'(z)}\right)-1\right]\right)\right|<\frac{\alpha\pi}{2}$$

and

$$\left|\arg\left(1+\frac{1}{\gamma}\left[(1-\lambda)\frac{wg'(w)}{g(w)}+\lambda\left(1+\frac{wg''(w)}{g'(w)}\right)-1\right]\right)\right|<\frac{\alpha\pi}{2}$$

In this case we say that f belongs to the subclass $\mathcal{M}_{\Sigma_m}(\alpha, \lambda, \gamma)$.

Also, for $h(z) = p(z) = \left(\frac{1+z^m}{1-z^m}\right)^{\alpha}$, $\gamma = 1$ and $\lambda = 0$, the subclass $\mathcal{M}_{\Sigma_m}^{h,p}(\lambda,\gamma)$ reduces to the subclass $\mathcal{S}_{\Sigma_m}^{\alpha}$ which was considered by Altinkaya and Yalcin [1].

If we let

$$h(z) = p(z) = \frac{1 + (1 - 2\beta)z^m}{1 - z^m} = 1 + 2(1 - \beta)z^m + 2(1 - \beta)z^{2m} + \dots \quad (0 \le \beta < 1),$$

it is easy to verify that the functions h(z) and p(z) satisfy the hypotheses of Definition 2.1. If $f \in \mathcal{M}_{\Sigma_m}^{h,p}(\lambda,\gamma)$, then

$$\operatorname{Re}\left(1+\frac{1}{\gamma}\left[(1-\lambda)\frac{zf'(z)}{f(z)}+\lambda\left(1+\frac{zf''(z)}{f'(z)}\right)-1\right]\right)>\beta$$

and

$$\operatorname{Re}\left(1+\frac{1}{\gamma}\left[(1-\lambda)\frac{wg'(w)}{g(w)}+\lambda\left(1+\frac{wg''(w)}{g'(w)}\right)-1\right]\right)>\beta$$

In this case we say that f belongs to the subclass $\mathcal{M}_{\Sigma_m}(\beta, \lambda, \gamma)$. Also, for $h(z) = p(z) = \frac{1+(1-2\beta)z^m}{1-z^m}$, $\gamma = 1$ and $\lambda = 0$, the subclass $\mathcal{M}_{\Sigma_m}^{h,p}(\lambda, \gamma)$. reduces to the subclass $\mathcal{S}_{\Sigma_m}^{\beta}$ considered by Altinkaya and Yalcin [1]. Furthermore, for $h(z) = p(z) = \frac{1+(1-2\beta)z^m}{1-z^m}$, $\gamma = 1$ and $\lambda = 1$, the subclass $\mathcal{M}_{\Sigma_m}^{h,p}(\lambda,\gamma)$

reduces to Definition 2.2.

Remark 2.2. For one-fold symmetric bi-univalent functions, we denote the subclass $\mathfrak{M}^{h,p}_{\Sigma_1}(\lambda,\gamma) = \mathfrak{M}^{h,p}_{\Sigma}(\lambda,\gamma).$ Special cases of this subclass are illustrated below.

- (i) By putting $h(z) = p(z) = \left(\frac{1+z}{1-z}\right)^{\alpha}$ and $\gamma = 1$, the subclass $\mathcal{M}_{\Sigma}^{h,p}(\lambda,\gamma)$ reduces to the subclass $M_{\Sigma}(\alpha,\lambda)$ studied by Li and Wang [13].
- (ii) By putting $h(z) = p(z) = \left(\frac{1+z}{1-z}\right)^{\alpha}$, $\gamma = 1$ and $\lambda = 0$, the subclass $\mathcal{M}_{\Sigma}^{h,p}(\lambda,\gamma)$ reduces to the subclass $\mathcal{S}_{\sigma_{\mathsf{B}}}^{\alpha}$ of strongly bi-starlike functions of order α (0 < $\alpha \leq 1$).
- (iii) By putting $h(z) = p(z) = \frac{1+(1-2\beta)z}{1-z}$ and $\gamma = 1$, the subclass $\mathcal{M}_{\Sigma}^{h,p}(\lambda,\gamma)$ reduces to the subclass $B_{\Sigma}(\beta,\lambda)$ studied by Li and Wang [13].
- (iv) By putting $h(z) = p(z) = \frac{1+(1-2\beta)z}{1-z}$, $\gamma = 1$ and $\lambda = 0$, the subclass $\mathcal{M}_{\Sigma}^{h,p}(\lambda,\gamma)$ reduces to the subclass $S_{\sigma_{\mathsf{B}}}(\beta)$ of bi-starlike functions of order β $(0 \leq \beta < 1)$.
- (v) By putting $h(z) = p(z) = \frac{1+(1-2\beta)z}{1-z}$ and $\lambda = \gamma = 1$, the subclass $\mathcal{M}_{\Sigma}^{h,p}(\lambda,\gamma)$ reduces to the subclass $\mathcal{C}_{\sigma_{\mathsf{B}}}(\beta)$ of bi-convev functions of order β ($0 \leq \beta < 1$).

Theorem 2.1. Let f given by (1.4) be in the subclass $\mathfrak{M}_{\Sigma_m}^{h,p}(\lambda,\gamma)$ $(\lambda \geq 0, \gamma \in \mathbb{C} - \{0\})$. Then

$$|a_{m+1}| \le \min\left\{\frac{|\gamma||h_m|}{m(1+\lambda m)}, \sqrt{\frac{|\gamma|(|h_{2m}|+|p_{2m}|)}{2m^2(1+\lambda m)}}\right\}$$

and

$$\begin{aligned} |a_{2m+1}| &\leq \min\left\{\frac{|\gamma|(|h_{2m}|+|p_{2m}|)}{4m(1+2\lambda m)} + \frac{(m+1)|\gamma|^2(|h_m|^2+|p_m|^2)}{4m^2(1+\lambda m)^2}, \\ \frac{(3\lambda m^2 + 2\lambda m + 2m + 1)|\gamma||h_{2m}| + (\lambda m^2 + 2\lambda m + 1)|\gamma||p_{2m}|}{4m^2(1+2\lambda m)(1+\lambda m)}\right\}. \end{aligned}$$

Proof. The main idea in the proof of Theorem 2.1 is to get the desired bounds for the coefficient $|a_{m+1}|$ and $|a_{2m+1}|$. Indeed, by considering the relations (2.1) and (2.2), we have

(2.3)
$$1 + \frac{1}{\gamma} \left[(1-\lambda) \frac{zf'(z)}{f(z)} + \lambda \left(1 + \frac{zf''(z)}{f'(z)} \right) - 1 \right] = h(z) \quad (z \in \mathbb{U})$$

and

(2.4)
$$1 + \frac{1}{\gamma} \left[(1 - \lambda) \frac{wg'(w)}{g(w)} + \lambda \left(1 + \frac{wg''(w)}{g'(w)} \right) - 1 \right] = p(w) \quad (w \in \mathbb{U}),$$

where each of the functions h and p satisfies the conditions of Definition 2.1. For precise comparison of the coefficients of the above equations, in the following we obtain Taylor-Maclaurin series expansions each side of the equations

$$1 + \frac{1}{\gamma} \left[(1 - \lambda) \frac{zf'(z)}{f(z)} + \lambda \left(1 + \frac{zf''(z)}{f'(z)} \right) - 1 \right]$$

= $1 + \frac{m(1 + \lambda m)}{\gamma} a_{m+1} z^m + \left\{ \frac{2m(1 + 2\lambda m)}{\gamma} a_{2m+1} - \frac{m(1 + 2\lambda m + \lambda m^2)}{\gamma} a_{m+1}^2 \right\} z^{2m}$
+ \cdots ,

and

(2.6)
$$1 + \frac{1}{\gamma} \left[(1 - \lambda) \frac{wg'(w)}{g(w)} + \lambda \left(1 + \frac{wg''(w)}{g'(w)} \right) - 1 \right] \\ = 1 - \frac{m(1 + \lambda m)}{\gamma} a_{m+1} w^m + \left\{ -\frac{2m(1 + 2\lambda m)}{\gamma} a_{2m+1} + \frac{m(1 + 2m + 2\lambda m + 3\lambda m^2)}{\gamma} a_{m+1}^2 \right\} w^{2m} + \cdots$$

Also from the Definition 2.1, the analytic functions h and p have the following Taylor-Maclaurin series expansions

(2.7)
$$h(z) = 1 + h_m z^m + h_{2m} z^{2m} + h_{3m} z^{3m} + \cdots$$

and

(2.8)
$$p(w) = 1 + p_m w^m + p_{2m} w^{2m} + p_{3m} w^{3m} + \cdots$$

By comparing the coefficients of the equations (2.5), (2.7), (2.6) and (2.8), respectively, we get

(2.9)
$$\frac{m(1+\lambda m)}{\gamma}a_{m+1} = h_m,$$

(2.10)
$$\frac{2m(1+2\lambda m)}{\gamma}a_{2m+1} - \frac{m(1+2\lambda m+\lambda m^2)}{\gamma}a_{m+1}^2 = h_{2m},$$

(2.11)
$$-\frac{m(1+\lambda m)}{\gamma}a_{m+1} = p_m$$

and

(2.12)
$$-\frac{2m(1+2\lambda m)}{\gamma}a_{2m+1} + \frac{m(1+2m+2\lambda m+3\lambda m^2)}{\gamma}a_{m+1}^2 = p_{2m}.$$

From (2.9) and (2.11), we get

$$(2.13) h_m = -p_m$$

and

(2.14)
$$a_{m+1}^2 = \frac{\gamma^2 (h_m^2 + p_m^2)}{2m^2 (1 + \lambda m)^2}.$$

Adding (2.10) and (2.12), we get

(2.15)
$$a_{m+1}^2 = \frac{\gamma(h_{2m} + p_{2m})}{2m^2(1 + \lambda m)}.$$

Therefore, we find from the equations (2.13), (2.14) and (2.15) that

$$|a_{m+1}| \le \frac{|\gamma||h_m|}{m(1+\lambda m)}$$
 and $|a_{m+1}| \le \sqrt{\frac{|\gamma|(|h_{2m}|+|p_{2m}|)}{2m^2(1+\lambda m)}},$

respectively. So, we get the desired estimate on the coefficient $|a_{m+1}|$.

The proof is completed by finding the bound on the coefficient $|a_{2m+1}|$. Upon subtracting (2.12) from (2.10), we get

(2.16)
$$a_{2m+1} = \frac{\gamma(h_{2m} - p_{2m})}{4m(1+2\lambda m)} + \frac{(m+1)}{2}a_{m+1}^2.$$

Putting the value of a_{m+1}^2 from (2.14) into (2.16), it follows that

(2.17)
$$a_{2m+1} = \frac{\gamma(h_{2m} - p_{2m})}{4m(1+2\lambda m)} + \frac{(m+1)\gamma^2(h_m^2 + p_m^2)}{4m^2(1+\lambda m)^2}$$

By substituting the value of a_{m+1}^2 from (2.15) into (2.16), we obtain

(2.18)
$$a_{2m+1} = \frac{\gamma(h_{2m} - p_{2m})}{4m(1+2\lambda m)} + \frac{(m+1)\gamma(h_{2m} + p_{2m})}{4m^2(1+\lambda m)}.$$

Therefore, from the equations (2.17) and (2.18), we get

$$|a_{2m+1}| \le \frac{|\gamma|(|h_{2m}| + |p_{2m}|)}{4m(1+2\lambda m)} + \frac{(m+1)|\gamma|^2(|h_m|^2 + |p_m|^2)}{4m^2(1+\lambda m)^2}$$

and

$$|a_{2m+1}| \le \frac{(3\lambda m^2 + 2\lambda m + 2m + 1)|\gamma||h_{2m}| + (\lambda m^2 + 2\lambda m + 1)|\gamma||p_{2m}|}{4m^2(1 + 2\lambda m)(1 + \lambda m)}. \qquad \Box$$

Theorem 2.2. Let f given by (1.4) be in the subclass $\mathfrak{M}_{\Sigma_m}^{h,p}(\lambda,\gamma)$ $(\lambda \geq 0, \gamma \in \mathbb{C} - \{0\})$. Also let ρ be real number. Then

$$|a_{2m+1} - \rho a_{m+1}^2| \le \begin{cases} \frac{|\gamma|}{4m(1+2\lambda m)} \left\{ (1+T(\rho)) |h_{2m}| + (1-T(\rho)) |p_{2m}| \right\}, & |T(\rho)| \le 1, \\ \frac{|\gamma|}{4m(1+2\lambda m)} \left\{ \left| 1+T(\rho) \right| |h_{2m}| + \left| T(\rho) - 1 \right| |p_{2m}| \right\}, & |T(\rho)| \ge 1, \end{cases}$$

where

$$T(\rho) = \frac{(m - 2\rho + 1)(1 + 2\lambda m)}{m(1 + \lambda m)}.$$

Proof. From the equation (2.16), we get

(2.19)
$$a_{2m+1} - \rho a_{m+1}^2 = \frac{\gamma(h_{2m} - p_{2m})}{4m(1 + 2\lambda m)} + \frac{m - 2\rho + 1}{2}a_{m+1}^2.$$

From the equation (2.15) and (2.19), we have

$$a_{2m+1} - \rho a_{m+1}^2 = \frac{|\gamma|}{4m(1+2\lambda m)} \left\{ \left[1 + \frac{(m-2\rho+1)(1+2\lambda m)}{m(1+\lambda m)} \right] h_{2m} + \left[\frac{(m-2\rho+1)(1+2\lambda m)}{m(1+\lambda m)} - 1 \right] p_{2m} \right\}.$$

Next, taking the absolute values we obtain

$$|a_{2m+1} - \rho a_{m+1}^2| \leq \frac{|\gamma|}{4m(1+2\lambda m)} \left\{ \left| 1 + \frac{(m-2\rho+1)(1+2\lambda m)}{m(1+\lambda m)} \right| |h_{2m}| + \left| \frac{(m-2\rho+1)(1+2\lambda m)}{m(1+\lambda m)} - 1 \right| |p_{2m}| \right\}.$$

Then, we conclude that

$$|a_{2m+1} - \rho a_{m+1}^2| \leq \begin{cases} \frac{|\gamma|}{4m(1+2\lambda m)} \left\{ (1+T(\rho)) |h_{2m}| + (1-T(\rho)) |p_{2m}| \right\}, & |T(\rho)| \leq 1, \\ \frac{|\gamma|}{4m(1+2\lambda m)} \left\{ \left| 1+T(\rho) \right| |h_{2m}| + \left| T(\rho) - 1 \right| |p_{2m}| \right\}, & |T(\rho)| \geq 1. \end{cases}$$

3. Corollaries and Consequences

By setting

$$h(z) = p(z) = \left(\frac{1+z^m}{1-z^m}\right)^{\alpha} = 1 + 2\alpha z^m + 2\alpha^2 z^{2m} + \cdots \quad (0 < \alpha \le 1, \ z \in \mathbb{U}),$$

in Theorem 2.1, we conclude the following result.

Corollary 3.1. Let f given by (1.4) be in the subclass $\mathfrak{M}_{\Sigma_m}(\alpha, \lambda, \gamma)$ ($0 < \alpha \leq 1$, $\lambda \geq 0, \gamma \in \mathbb{C} - \{0\}$). Then

$$|a_{m+1}| \le \min\left\{\frac{2\alpha|\gamma|}{m(1+\lambda m)}, \frac{\alpha}{m}\sqrt{\frac{2|\gamma|}{1+\lambda m}}\right\}$$

and

$$|a_{2m+1}| \le \min\left\{\frac{\alpha^2 |\gamma|}{m(1+2\lambda m)} + \frac{2\alpha^2(m+1)|\gamma|^2}{m^2(1+\lambda m)^2}, \frac{\alpha^2 |\gamma|(m+1)}{m^2(1+\lambda m)}\right\}.$$

By setting $h(z) = p(z) = \left(\frac{1+z^m}{1-z^m}\right)^{\alpha} (0 < \alpha \le 1)$ in Theorem 2.2, we conclude the following result.

Corollary 3.2. Let f given by (1.4) be in the subclass $\mathfrak{M}_{\Sigma_m}(\alpha, \lambda, \gamma)$ ($0 < \alpha \leq 1$, $\lambda \geq 0, \gamma \in \mathbb{C} - \{0\}$). Also let ρ be real number. Then

$$|a_{2m+1} - \rho a_{m+1}^2| \le \begin{cases} \frac{\alpha^2 |\gamma|}{m(1+2\lambda m)}, & |T(\rho)| \le 1, \\ \frac{\alpha^2 |T(\rho)| |\gamma|}{m(1+2\lambda m)}, & |T(\rho)| \ge 1, \end{cases}$$

where

$$T(\rho) = \frac{(m-2\rho+1)(1+2\lambda m)}{m(1+\lambda m)}$$

By setting $\gamma = 1$ and $\lambda = 0$ in Corollary 3.1, we conclude the following result.

Corollary 3.3. Let f given by (1.4) be in the subclass $S^{\alpha}_{\Sigma_m}$ ($0 < \alpha \leq 1$). Then

$$|a_{m+1}| \le \frac{\sqrt{2\alpha}}{m}$$

and

$$|a_{2m+1}| \le \min\left\{\frac{\alpha^2}{m} + \frac{2(m+1)\alpha^2}{m^2}, \frac{(m+1)\alpha^2}{m^2}\right\} = \frac{(m+1)\alpha^2}{m^2}$$

Remark 3.1. The bounds on $|a_{m+1}|$ and $|a_{2m+1}|$ given in Corollary 3.3 are better than those given in [1, Corolary 6], because of

$$\frac{\sqrt{2}\alpha}{m} \le \frac{2\alpha}{m\sqrt{\alpha+1}}$$

and

$$\frac{(m+1)\alpha^2}{m^2} \le \frac{\alpha^2}{m} + \frac{2(m+1)\alpha^2}{m^2} \le \frac{\alpha}{m} + \frac{2(m+1)\alpha^2}{m^2}$$

By setting m = 1 and $\gamma = 1$ in Corollary 3.1, we conclude the following result.

Corollary 3.4. Let f given by (1.1) be in the subclass $M_{\Sigma}(\alpha, \lambda)$ $(0 < \alpha \leq 1, \lambda \geq 0)$. Then

$$|a_2| \le \begin{cases} \alpha \sqrt{\frac{2}{1+\lambda}}, & 0 \le \lambda \le 1, \\ \frac{2\alpha}{1+\lambda}, & \lambda \ge 1, \end{cases}$$

and

$$|a_3| \leq \begin{cases} \frac{2\alpha^2}{1+\lambda}, & 0 \leq \lambda \leq \frac{2+\sqrt{13}}{3}, \\ \frac{\alpha^2}{1+2\lambda} + \frac{4\alpha^2}{(1+\lambda)^2}, & \lambda \geq \frac{2+\sqrt{13}}{3}. \end{cases}$$

Remark 3.2. The bounds on $|a_2|$ and $|a_3|$ given in Corollary 3.4 are better than those given in [13, Theorem 2.2].

By setting m = 1 in Corollary 3.3, we conclude the following result.

Corollary 3.5. Let f given by (1.1) be in the subclass $S^{\alpha}_{\sigma_{B}}$ of strongly bi-starlike functions of order α ($0 < \alpha \leq 1$). Then

$$|a_2| \leq \sqrt{2}\alpha$$
 and $|a_3| \leq 2\alpha^2$.

By setting

$$h(z) = p(z) = \frac{1 + (1 - 2\beta)z^m}{1 - z^m}$$

= 1 + 2(1 - \beta)z^m + 2(1 - \beta)z^{2m} + \cdots (0 \le \beta < 1, z \in \mathbf{U}),

in Theorem 2.1, we conclude the following result.

Corollary 3.6. Let f given by (1.4) be in the subclass $\mathfrak{M}_{\Sigma_m}(\beta, \lambda, \gamma)$ $(0 \leq \beta < 1, \lambda \geq 0, \gamma \in \mathbb{C} - \{0\})$. Then

$$|a_{m+1}| \le \min\left\{\frac{2(1-\beta)|\gamma|}{m(1+\lambda m)}, \sqrt{\frac{2(1-\beta)|\gamma|}{m^2(1+\lambda m)}}\right\}$$

and

$$|a_{2m+1}| \le \min\left\{\frac{(1-\beta)|\gamma|}{m(1+2\lambda m)} + \frac{2(1-\beta)^2(m+1)|\gamma|^2}{m^2(1+\lambda m)^2}, \frac{(1-\beta)(m+1)|\gamma|}{m^2(1+\lambda m)}\right\}.$$

By setting $h(z) = p(z) = \frac{1+(1-2\beta)z^m}{1-z^m}$ $(0 \le \beta < 1)$ in Theorem 2.2, we conclude the following result.

Corollary 3.7. Let f given by (1.4) be in the subclass $\mathfrak{M}_{\Sigma_m}(\beta, \lambda, \gamma)$ ($0 \leq \beta < 1$, $\lambda \geq 0, \gamma \in \mathbb{C} - \{0\}$). Also let ρ be real number. Then

$$|a_{2m+1} - \rho a_{m+1}^2| \le \begin{cases} \frac{(1-\beta)|\gamma|}{m(1+2\lambda m)}, & |T(\rho)| \le 1, \\ \frac{(1-\beta)|\gamma||T(\rho)|}{m(1+2\lambda m)}, & |T(\rho)| \ge 1, \end{cases}$$

where

$$T(\rho) = \frac{(m - 2\rho + 1)(1 + 2\lambda m)}{m(1 + \lambda m)}.$$

By setting $\gamma = 1$ and $\lambda = 0$ in Corollary 3.6, we conclude the following result.

Corollary 3.8. Let f given by (1.4) be in the subclass $S^{\beta}_{\Sigma_m}$ $(0 \leq \beta < 1)$. Then

$$|a_{m+1}| \le \begin{cases} \frac{\sqrt{2(1-\beta)}}{m}, & 0 \le \beta \le \frac{1}{2}, \\ \frac{2(1-\beta)}{m}, & \frac{1}{2} \le \beta < 1, \end{cases}$$

and

$$|a_{2m+1}| \le \begin{cases} \frac{(m+1)(1-\beta)}{m^2}, & 0 \le \beta \le \frac{1+2m}{2(1+m)}, \\ \frac{2(m+1)(1-\beta)^2}{m^2} + \frac{1-\beta}{m}, & \frac{1+2m}{2(1+m)} \le \beta < 1. \end{cases}$$

Remark 3.3. The bounds on $|a_{m+1}|$ and $|a_{2m+1}|$ given in Corollary 3.8 are better than those given in [1, Corolary 7].

By setting $\gamma = 1$ and $\lambda = 1$ in Corollary 3.6, we conclude the following result.

Corollary 3.9. Let f given by (1.4) be in the subclass $\mathcal{C}_{\Sigma_m}(\beta)$ $(0 \leq \beta < 1)$. Then

$$|a_{m+1}| \le \begin{cases} \frac{1}{m} \sqrt{\frac{2(1-\beta)}{(1+m)}}, & 2\beta + m \le 1, \\ \frac{2(1-\beta)}{m(1+m)}, & 2\beta + m \ge 1, \end{cases}$$

and

$$|a_{2m+1}| \le \begin{cases} \frac{1-\beta}{m^2}, & 0 \le \beta \le \frac{1+2m-m^2}{2(1+2m)}, \\ \frac{1-\beta}{m(1+2m)} + \frac{2(1-\beta)^2}{m^2(1+m)}, & \frac{1+2m-m^2}{2(1+2m)} \le \beta < 1. \end{cases}$$

By setting m = 1 and $\gamma = 1$ in Corollary 3.6, we conclude the following result.

Corollary 3.10. Let f given by (1.1) be in the subclass $B_{\Sigma}(\beta, \lambda)$ $(0 \le \beta < 1, \lambda \ge 0)$. Then

$$|a_2| \le \begin{cases} \sqrt{\frac{2(1-\beta)}{1+\lambda}}, & \lambda+2\beta \le 1, \\ \frac{2(1-\beta)}{1+\lambda}, & \lambda+2\beta \ge 1, \end{cases}$$

and

$$|a_3| \le \begin{cases} \frac{2(1-\beta)}{1+\lambda}, & 0 \le \beta \le \frac{3+4\lambda-3\lambda^2}{4(1+2\lambda)}, \\ \frac{1-\beta}{1+2\lambda} + \frac{4(1-\beta)^2}{(1+\lambda)^2}, & \frac{3+4\lambda-3\lambda^2}{4(1+2\lambda)} \le \beta < 1. \end{cases}$$

Remark 3.4. The bounds on $|a_2|$ and $|a_3|$ given in Corollary 3.10 are better than those given in [13, Theorem 3.2].

By setting m = 1 in Corollary 3.8, we conclude the following result.

Corollary 3.11. Let f given by (1.1) be in the subclass $S_{\sigma_{\mathsf{B}}}(\beta)$ of bi-starlike functions of order β ($0 \leq \beta < 1$). Then

$$|a_2| \le \begin{cases} \sqrt{2(1-\beta)}, & 0 \le \beta \le \frac{1}{2}, \\ 2(1-\beta), & \frac{1}{2} \le \beta < 1, \end{cases}$$

and

$$|a_3| \le \begin{cases} 2(1-\beta), & 0 \le \beta \le \frac{3}{4}, \\ 4(1-\beta)^2 + (1-\beta), & \frac{3}{4} \le \beta < 1. \end{cases}$$

By setting m = 1 in Corollary 3.9, we conclude the following result.

Corollary 3.12. Let f given by (1.1) be in the subclass $C_{\sigma_{\mathsf{B}}}(\beta)$ of bi-convex functions of order β ($0 \leq \beta < 1$). Then

$$|a_2| \le 1 - \beta$$
 and $|a_3| \le \begin{cases} 1 - \beta, & 0 \le \beta \le \frac{1}{3}, \\ \frac{1 - \beta}{3} + (1 - \beta)^2, & \frac{1}{3} \le \beta < 1. \end{cases}$

References

- S. Altinkaya and S. Yalçin, Coefficient bounds for certain subclasses of m-fold symmetric biunivalent functions, J. Math.2015 (2015), Article ID 241683, 5 pages.
- [2] D. Breaz, N. Breaz and H. M. Sirvastava, An extention of the univalent conditions for a family of integral operators, Appl. Math. Lett. 22 (2009), 41–44.
- [3] P. L. Duren, Univalent Functions, Grundlehren der Mathematischen Wissenschaften, Band 259, Springer-Verlag, New York, Berlin, Heidelberg. Tokyo, 1983.

- [4] M. Lewin, On a coefficient problem for bi-univalent functions, Proc. Amer. Math. Soc. 18 (1967), 63–68.
- [5] H. V. Smith, *Bi-univalent polynomials*, Simon Stevin **50**(2) (1976/77), 115–122.
- [6] H. M. Srivastava, S. Bulut, M. Çağlar and N. Yağmur, Coefficient estimates for a general subclass of analytic and bi-univalent functions, Filomat 27(5) (2013), 831–842.
- [7] H. M. Srivastava, S. Gaboury and F. Ghanim, Initial coefficient estimates for some subclasses of m-fold symmetric bi-univalent functions, Acta Math. Sci. Ser. B 36(3) (2016), 863–871.
- [8] H. M. Srivastava, S. Gaboury and F. Ghanim, Coefficient estimates for some general subclasses of analytic and bi-univalent functions, Afr. Mat. 28 (2017), 693–706.
- H. M. Srivastava, S. Gaboury and F. Ghanim, Coefficient estimates for some subclasses of m-fold symmetric bi-univalent functions, Acta Univ. Apulensis Math. Inform. 41 (2015), 153–164.
- [10] H. M. Srivastava, A. K. Mishra and P. Gochhayat, Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett. 23 (2010), 1188–1192.
- [11] H. M. Srivastava, S. Sivasubramanian and R. Sivakumar, *Initial coefficient bounds for a subclass of m-fold symmetric bi-univalent functions*, Tbilisi Math. J. 7(2) (2014), 1–10.
- [12] H. M. Srivastava, A. Zireh and S. Hajiparvaneh, Coefficient estimates for some subclasses of m-fold symmetric bi-univalent functions, Filomat 32(9) (2018), 3143–3153.
- [13] X. -F. Li and A. -P. Wang, Two new subclasses of bi-univalent functions, International Mathematical Forum 7(30) (2012), 1495–1504.
- [14] A. Zireh and S. Salehian, On the certain subclass of analytic and bi-univalent functions defined by convolution, Acta Univ. Apulensis Math. Inform. 44 (2015), 9–19.

¹FACULTY OF MATHEMATICAL SCIENCES, SHAHROOD UNIVERSITY OF TECHNOLOGY, P. O. BOX 316-36155, SHAHROOD, IRAN *Email address*: a.motamedne@gmail.com

²DEPARTMENT OF MATHEMATICS, DEPARTMENT OF MATHEMATICS, GORGAN BRANCH, ISLAMIC AZAD UNIVERSITY, GORGAN, IRAN *Email address*: s.salehian840gmail.com

³Post-Graduate and Research Department of Mathematics Government Arts College for Men, Krishnagiri 635001, Tamilnadu, India *Email address*: nmagi_2000@yahoo.co.in

406