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SPECTRA OF THE LOWER TRIANGULAR MATRIX
B(r1, . . . , rl; s1, . . . , sl′) OVER c0

SANJAY KUMAR MAHTO1,2, ARNAB PATRA1, AND P. D. SRIVASTAVA3

Abstract. The infinite lower triangular matrix B(r1, . . . , rl; s1, . . . , sl′) is consid-
ered over the sequence space c0, where l and l′ are positive integers. The diag-
onal and sub-diagonal entries of the matrix consist of the oscillatory sequences
r = (rk(mod l)+1) and s = (sk(mod l′)+1), respectively. The rest of the entries of the
matrix are zero. It is shown that the matrix represents a bounded linear operator.
Then the spectrum of the matrix is evaluated and partitioned into its fine structures:
point spectrum, continuous spectrum, residual spectrum, etc. In particular, the
spectra of the matrix B(r1, . . . , r4; s1, . . . , s6) are determined. Finally, an example
is taken in support of the results.

1. Introduction

The study of the spectrum of a bounded linear operator has received much attention
in recent years due to its wide application in functional analysis, classical quantum
mechanics, etc. Let A be an infinite matrix that is bounded and linear in a Banach
space U . Then many dynamical systems can be reformulated as the system of linear
equations Ax = λx, where λ is a complex number and x is a nonzero vector in U .
The stability of this system can be explained by the spectrum of A. In this course,
spectrum localization of an infinite matrix over a sequence space is viewed as an
important problem by many authors [10,14–16,23,26]. An extensive study of most of
the research done in this direction can be found in the review articles [25] and [17].
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For a sequence x = (xk), the backward difference operator ∆ is defined by ∆x =
xk − xk−1, where x−1 = 0. The matrix representation of this operator is as follows:

∆ =


1 0 0 0 · · ·

−1 1 0 0 · · ·
0 −1 1 0 · · ·
... ... ... ... . . .

 .

In short, ∆ is an infinite matrix whose diagonal entries and subdiagonal entries are the
constant sequences (1, 1, . . . ) and (−1, −1, . . . ), respectively. Akhmedov and Başar
[1] determined the spectral decompositions of this operator over bvp (1 ≤ p < ∞),
whereas Altay and Başar [3] evaluated the spectra of the same operator over the spaces
c and c0. Altay and Başar [4] then considered the difference operator B(r, s) over c0
and c, which is a generalization of the operator ∆. The diagonal and subdiagonal
entries of B(r, s) contain the sequences (r, r, . . . ) and (s, s, . . . ), where r and s ̸= 0 are
real numbers. Furkan and Bilgiç studied B(r, s) in the same direction over ℓp and bvp

in [6]. For more study, we refer [2, 7, 8,12,13,18,19,22,24] etc. Now if one considers
the more generalized difference matrix whose diagonal and subdiagonal entries are
the oscillatry sequences (r1, r2, . . . , rl, r1, . . . ) and (s1, s2, . . . , sl′ , s1, . . . ), where l and
l′ are some positive integers, then the number of limit points of both the sequences
will be different and it will be interesting to study the spectral property of the matrix.

In this paper, we have determined the spectra and fine spectra of the generalized
difference matrix B(r1, . . . , rl; s1, . . . , sl′) in which the diagonal entries consist of a
sequence whose terms are oscillating between the points r1, r2, . . . , rl and the sub-
diagonal entries consist of an oscillatory sequence whose terms are oscillating between
the points s1, s2, . . . , sl′ . Furthermore, the spectra and fine spectra of the matrix
B(r1, . . . , r4; s1, . . . , s6) are also discussed.

2. Preliminaries

Let U and V be Banach spaces. Then the space of all bounded linear operators
from U into V is denoted by B(U, V ). If U = V , then the space is denoted by B(U).
Let L ∈ B(U) and U∗ be dual of U . Then the adjoint L∗ ∈ B(U∗) of L is defined by
(L∗f)(t) = f(Lt) for all f ∈ U∗. Let J : D(J) → U be a linear operator defined over
a subset D(J) of U . Then the operator (J − λI)−1 is called the resolvent operator of
J , where λ is a complex number and I is the identity operator.

A complex number λ is said to be a regular value [11] of a linear operator J :
D(J) → U if and only if the operator (J − λI)−1 exists, bounded and is defined on a
set which is dense in U . The set of all regular values of the linear operator J is called
resolvent set and is denoted by ρ(J). The complement σ(J) = C − ρ(J) is called
the spectrum of J . The spectrum σ(J) is further partitioned into the following three
disjoint sets.
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(a) σp(J) = {λ ∈ C : (J − λI)−1 does not exist}. This set is called the point
spectrum (discrete spectrum) of the operator J . The members of this set are
called eigenvalues of J .

(b) σc(T ), which is defined as the set of all complex numbers λ for which (J −λI)−1

exists and defined on a set which is dense in U, but it is not a bounded operator
in U. This set is called continuous spectrum of J .

(c) σr(T ), which contains all those complex numbers for which (J − λI)−1 exists,
defined on a set which is not dense in U . This set is called the residual spectrum
of J .

Let R(J − λI) denotes the range of the operator J − λI. Goldberg [9] has classified
the spectrum using the following six properties of R(J − λI) and (J − λI)−1:

(I) R(J − λI) = U ;
(II) R(J − λI) ̸= U but R(J − λI) = U ;

(III) R(J − λI) ̸= U

and
(1) (J − λI)−1 exists and it is bounded;
(2) (J − λI)−1 exists but it is not bounded;
(3) (J − λI)−1 does not exist.
Based on the above six properties, the Goldberg’s classification of the spectrum can
be given as shown in the Table 1.

Table 1. Subdivisions of spectrum of a bounded linear operator

(I) (II) (III)
1 ρ(J, U) — σr(J, U)
2 σc(J, U) σc(J, U) σr(J, U)
3 σp(J, U) σp(J, U) σp(J, U)

Theorem 2.1 ([21]). Let L be a bounded linear operator on a normed linear space U .
Then L has a bounded inverse if and only if L∗ is onto.

Lemma 2.1 ([20]). An infinite matrix A = (ank) ∈ B(c0) if and only if
(a) (ank)k ∈ ℓ1 for all n and supn

∑
k |ank| < ∞;

(b) (ank)n ∈ c0 for all k.
Moreover, the norm ∥A∥ = supn

∑
k |ank|.

Throughout the paper, we denote the set of natural numbers by N, the set of
complex numbers by C and N0 = N ∪ {0}. We assume that x−n = 0 for all n ∈ N.

3. Main Results

Let l and l′ be two natural numbers. Suppose that H is the least common multiple
of l and l′. Let ri, i = 1, . . . , l, and si ≠ 0, i = 1, . . . , l′, be complex numbers. Then
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the matrix B(r1, . . . , rl; s1, . . . , sl′) is defined as B = (bij)i,j≥0, where

(3.1) bij =


rj(mod l)+1, when i = j,

sj(mod l′)+1, when i = j + 1,

0, otherwise.

That is

B =



r1

s1
. . . 0
. . . rl

sl′
. . .

0 . . .


.

If the matrix B transforms a sequence x = (xk) into y = (yk), then

yk =
∞∑

j=0
bkjxj = bk,k−1xk−1 + bkkxk = s(k−1)(mod l′)+1xk−1 + rk(mod l)+1xk,(3.2)

for all k ∈ N0.

Theorem 3.1. B ∈ B(c0) and ∥B∥c0 ≤ max
i,j

{|ri| + |sj|: 1 ≤ i ≤ l, 1 ≤ j ≤ l′}.

Suppose that a is an integer and n is a natural number. We denote, by [an], the set
of all non-negative integers x for which n divides x − a. Then a(mod n) is the least
member of [an]. Let α and β be the mappings which are defined on the set of integers
as follows:

α(k) = k(mod l) + 1
and

β(k) = k(mod l′) + 1.

Without loss of generality, we assume that sβ(k)sβ(k+1) · · · sβ(k+j) = 1 and (rα(k) −
λ)(rα(k+1) − λ) · · · (rα(k+j) − λ) = 1, when k + j < k. If λ is a complex number such
that (B − λI)−1 exists, then the entries of the matrix (B − λI)−1 = (znk), n ≥ 0, and
k ≥ 0, are given by

znk =



(−1)n−ksβ(k) · · · sβ(k+ζ′′−1)

(rα(k) − λ) · · · (rα(k+ζ′) − λ) · (s1 . . . sl′)m′′

{(r1 − λ) · · · (rl − λ)}m′

×

 (s1 · · · sl′)
H
l′

{(r1 − λ) · · · (rl − λ)}H
l


m

, when n > k,

1
rα(k) − λ

, when n = k,

0, otherwise,

(3.3)

where ζ, ζ ′ and ζ ′′ are the least non-negative integers such that
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
n − k = mH + ζ,

ζ = m′l + ζ ′,

ζ = m′′l′ + ζ ′′,

(3.4)

for some non-negative integers m, m′ and m′′.

Lemma 3.1. If (|λ − r1| · · · |λ − rl|)1/l > (|s1| · · · |sl′ |)1/l′, then (B − λI)−1 ∈ B(c0).

Proof. Since (|λ − r1| · · · |λ − rl|)1/l > (|s1| · · · |sl′|)1/l′ and s1, s2, . . . , sl′ are non-zero,
therefore λ ̸= ri for all i = 1, 2, . . . , l. Then the matrix B − λI is a triangle and
hence (B − λI)−1 = (znk) exists, which is given by (3.3). We first consider a row
of (B − λI)−1 which is a multiple of H, that is n = m̃H for some m̃ ∈ N0. Now,
let k = m̂H for m̂ = 0, 1, . . . , m̃. Then (3.4) implies that n − k = (m̃ − m̂)H and
m′ = m′′ = ζ = ζ ′ = ζ ′′ = 0. Thus, from (3.3), we have

znk = (−1)n−k

rα(k) − λ

 (s1 · · · sl′)
H
l′

{(r1 − λ) · · · (rl − λ)}H
l


m̃−m̂

,

for all m̂ = 0, 1, . . . , m̃. Therefore,

∑
k∈[0H ]

|znk| = 1
|rα(k) − λ|

m̃∑
j=0

 (|s1| · · · |sl′ |)
H
l′

{|r1 − λ| · · · |rl − λ|}H
l


j

,

where [0H ] denotes the set of all non-negative integers which are multiple of H. For
the same row, if we consider k = m̂H + 1 for m̂ = 0, 1, . . . , m̃ − 1, then n − k =
(m̃ − m̂ − 1)H + H − 1. Let m′

1 and m′′
1 be quotients and ζ ′

1 and ζ ′′
1 be remainders

when H − 1 is divided by l and l′ respectively, that is
H − 1 = m′

1l + ζ ′
1,

H − 1 = m′′
1l′ + ζ ′′

1 .

Then, from (3.3), we obtain that

znk =
(−1)n−ksβ(k) · · · sβ(k+ζ′′

1 −1)

(rα(k) − λ) · · · (rα(k+ζ′
1) − λ) · (s1 · · · sl′)m′′

1

{(r1 − λ) · · · (rl − λ)}m′
1

×

 (s1 · · · sl′)
H
l′

{(r1 − λ) · · · (rl − λ)}H
l


m̃−m̂−1

,

for all m̂ = 0, 1, . . . , m̃ − 1. Hence,∑
k∈[1H ]

|znk| =
|sβ(k)| · · · |sβ(k+ζ′′

1 −1)|
|rα(k) − λ| · · · |rα(k+ζ′

1) − λ|
· (|s1| · · · |sl′|)m′′

1

{|r1 − λ| · · · |rl − λ|}m′
1

×
m̃−1∑
j=0

 (|s1| · · · |sl′|)
H
l′

{|r1 − λ| · · · |rl − λ|}H
l


j

,
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where [1H ] denotes the set of all nonnegative integers x such that H divides x − 1.
Similarly, for k = m̂H + 2, . . . , m̂H + H − 1, we have∑

k∈[2L]
|znk| =

|sβ(k)| · · · |sβ(k+ζ′′
2 −1)|

|rα(k) − λ| · · · |rα(k+ζ′
2) − λ|

· (|s1| . . . |sl′|)m′′
2

{|r1 − λ| · · · |rl − λ|}m′
2

×
m̃−1∑
j=0

 (|s1| · · · |sl′|)
H
l′

{|r1 − λ| · · · |rl − λ|}H
l


j

,

...∑
k∈[(H−1)L]

|znk| =
|sβ(k)| · · · |sβ(k+ζ′′

H−1−1)|
|rα(k) − λ| · · · |rα(k+ζ′

H−1) − λ|
· (|s1| · · · |sl′|)m′′

H−1

{|r1 − λ| · · · |rl − λ|}m′
H−1

×
m̃−1∑
j=0

 (|s1| · · · |sl′|)
H
l′

{|r1 − λ| · · · |rl − λ|}H
l


j

,

for some integers ζ ′
i, ζ ′′

i , m′
i and m′′

i for all i ∈ {2, 3, . . . , H − 1}. Thus,

∞∑
k=0

|znk| = 1
|rα(k) − λ|

m̃∑
j=0

 (|s1| · · · |sl′ |)
H
l′

{|r1 − λ| · · · |rl − λ|}H
l


j

+ M
m̃−1∑
j=0

 (|s1| · · · |sl′ |)
H
l′

{|r1 − λ| · · · |rl − λ|}H
l


j

,(3.5)

where

M =
|sβ(k)| · · · |sβ(k+ζ′′

1 −1)|
|rα(k) − λ| · · · |rα(k+ζ′

1) − λ|
· (|s1| · · · |sl′ |)m′′

1

{|r1 − λ| · · · |rl − λ|}m′
1

+ · · · +
|sβ(k)| · · · |sβ(k+ζ′′

L−1−1)|
|rα(k) − λ| · · · |rα(k+ζ′

L−1) − λ|
· (|s1| · · · |sl′ |)m′′

H−1

{|r1 − λ| · · · |rl − λ|}m′
H−1

.

Let M0 = max
{

1
|rα(k)−λ| , M

}
. Then

∞∑
k=0

|znk| ≤ 2M0(|r1 − λ||r2 − λ| · · · |rl − λ|)H
l

(|r1 − λ||r2 − λ| · · · |rl − λ|)H
l − (|s1||s2| · · · |sl′|)

H
l′

.

Therefore, supn∈[0H ]
∑∞

k=0 |znk| < ∞. Similarly, we prove that

sup
n∈[1H ]

∞∑
k=0

|znk| <∞,

sup
n∈[2H ]

∞∑
k=0

|znk| <∞,

...
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sup
n∈[(H−1)H ]

∞∑
k=0

|znk| <∞.

Thus,

sup
n

∞∑
k=0

|znk| = max
{

sup
n∈[0H ]

∞∑
k=0

|znk|, sup
n∈[1H ]

∞∑
k=0

|znk|, . . . , sup
n∈[(H−1)H ]

∞∑
k=0

|znk|
}

.

This implies that supn

∑∞
k=0 |znk| < ∞. Likewise, for an arbitrary column of (B −

λI)−1, adding the entries separately whose rows n belong to [0H ], [1H ], . . . , [(H − 1)H ]
respectively, we get ∑∞

n=0 |znk| < ∞. Therefore, limn→∞ |znk| = 0 for all k ∈ N0.
Hence, by Lemma 2.1, the matrix (B − λI)−1 ∈ B(c0). □

Consider the set S =
{
λ ∈ C : (|λ − r1| · · · |λ − rl|)

1
l ≤ (|s1| · · · |sl′|)

1
l′

}
. Then we

have the following theorem.

Theorem 3.2. σ(B, c0) = S.

Proof. First, we prove that σ(B, c0) ⊆ S. Let λ be a complex number that does not
belong to S. Then (|λ−r1| · · · |λ−rl|)1/l > (|s1| · · · |sl′ |)1/l′ . In that case, from Lemma
3.1, it follows that (B − λI)−1 ∈ B(c0). That is, λ /∈ σ(B, c0). Hence, σ(B, c0) ⊆ S.

Next, we show that S ⊆ σ(B, c0). Let λ ∈ S. Then, (|λ − r1| · · · |λ − rl|)1/l ≤
(|s1| · · · |sl′ |)1/l′ . If λ equals any of the ri for all i ∈ {1, 2, . . . , l}, then the range of the
operator B− λI is not dense in c0, and hence λ ∈ σ(B, c0). Therefore, we assume that
λ ̸= ri for all i ∈ {1, 2, . . . , l}. In that case, B−λI is a triangle and (B−λI)−1 = (znk)
exists, which is given by (3.3). Let y = (1, 0, 0, . . . ) ∈ c0 and let x = (xk) be the
sequence such that (B − λI)−1y = x. It follows, from (3.3), that

(3.6) xnH = znH,0 = (−1)nH

r1 − λ

 (s1s2 · · · sl′)
H
l′

{(r1 − λ) · · · (rl − λ)}H
l


n

,

for all n ∈ N0. Since {(r1 − λ) · · · (rl − λ)}1/l ≤ (s1 · · · sl′)
1
l′ , the subsequence (xnH)

of x does not converge to 0. Consequently, the sequence x = (xk) /∈ c0. Therefore,
(B − λI)−1 /∈ B(c0). Thus, λ ∈ σ(B, c0) and hence S ⊆ σ(B, c0). This proves the
theorem. □

Theorem 3.3. σp(B, c0) = ∅.

Proof. Let λ ∈ σp(B, c0). Then there exists a nonzero sequence x = (xk) such that
Bx = λx. This implies that

(3.7) s(k−1)(mod l′)+1xk−1 + rk(mod l)+1xk = λxk.

Let xk0 be the first non-zero term of the sequence x = (xk). Then from the relation
(3.7), we find that λ = rk0(mod l)+1. Next, for k = k0 + l, (3.7) becomes

s(k0+l−1)(mod l′)+1xk0+l−1 + r(k0+l)(mod l)+1xk0+l = λxk0+l.
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That is,

(3.8) s(k0+l−1)(mod l′)+1xk0+l−1 + rk0(mod l)+1xk0+l = λxk0+l.

Putting λ = rk0(mod l)+1 in (3.8), we find that

s(k0+l−1)(mod l′)+1xk0+l−1 = 0.

As s(k0+l−1)(mod l′)+1 ̸= 0, therefore xk0+l−1 = 0. Similarly, using (3.7) for k = k0 + l−1
and putting the value xk0+l−1 = 0, we obtain xk0+l−2 = 0. Repeating the same step for
k = k0 + l − 2, k0 + l − 3, . . . , k0 + 1, we deduce that xk0 = 0, which is a contradiction.
Hence, σp(B, c0) = ∅. □

Let B∗ = (b∗
ij) denote the adjoint of the operator B. Then the matrix representation

of B∗ is equal to the transpose of the matrix B. It follows that

(3.9) b∗
ij =


ri(mod l)+1, when i = j,

si(mod l′)+1, when i + 1 = j,

0, otherwise.

That is,

B∗ =



r1 s1

r2
. . . 0
. . . sl′

r1
. . .

0 . . . . . .


.

The next theorem gives the point spectrum of the operator B∗.

Theorem 3.4. σp(B∗, c∗
0) =

{
λ ∈ C : (|λ − r1| · · · |λ − rl|)

1
l < (|s1| · · · |sl′|)

1
l′

}
.

Proof. Let λ ∈ σp(B∗, c∗
0

∼= ℓ1). Then there exists a nonzero sequence x = (xk) ∈
ℓ1 such that B∗x = λx. From this relation, the subsequences (xkH), (xkH+1), . . . ,
(xkH+H−1) of x = (xk) are given by

xkH =

((λ − r1) · · · (λ − rl))
H
l

(s1 · · · sl′)
H
l′


k

x0

xkH+1 =(λ − r1)
s1

((λ − r1) · · · (λ − rl))
H
l

(s1 · · · sl′)
H
l′


k

x0

...

xkH+H−1 =(λ − r1)
H
l · · · (λ − rl−1)

H
l (λ − rl)

H
l

−1

s
H
l′
1 · · · s

H
l′
l′−1s

H
l′ −1
l′
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×

((λ − r1) · · · (λ − rl))
H
l

(s1 · · · sl′)
H
l′


k

x0.

Thus,
∞∑

k=0
|xk| =

∞∑
k=0

|xkH | +
∞∑

k=0
|xkH+1| + · · · +

∞∑
n=0

|xkH+H−1|

=

1 +
∣∣∣∣∣λ − r1

s1

∣∣∣∣∣ + · · · +

∣∣∣∣∣∣∣
(λ − r1)

H
l · · · (λ − rl−1)

H
l (λ − rl)

H
l

−1

s
H
l′
1 · · · s

H
l′
l′−1s

H
l′ −1
l′

∣∣∣∣∣∣∣


×
∞∑

k=0

∣∣∣∣∣∣((λ − r1) · · · (λ − rl))
H
l

(s1 · · · sl′)
H
l′

∣∣∣∣∣∣
k

|x0|.

Clearly, the sequence x = (xk) ∈ ℓ1 if and only if (|λ−r1| · · · |λ−rl|)
1
l < (|s1| · · · |sl′ |)

1
l′ .

This proves the theorem. □

Theorem 3.5. σr(B, c0) =
{
λ ∈ C : (|λ − r1| · · · |λ − rl|)

1
l < (|s1| · · · |sl′ |)

1
l′

}
.

Proof. The residual spectrum of a bounded linear operator L on a Banach space
U is given by the relation σr(L, U) = σp(L∗, U∗) \ σp(L, U). Therefore, σr(B, c0) =
σp(B∗, c∗

0) \ σp(B, c0). Then the proof of this theorem is an easy consequence of the
Theorems 3.3 and 3.4. □

Theorem 3.6. σc(B, c0) =
{
λ ∈ C : (|λ − r1| · · · |λ − rl|)

1
l = (|s1| · · · |sl′|)

1
l′

}
.

Proof. Since spectrum of an operator on a Banach space is disjoint union of point,
residual and continuous spectrum, therefore from Theorems 3.2, 3.3 and 3.5, we deduce
that

σc(B, c0) =
{
λ ∈ C : (|λ − r1| · · · |λ − rl|)

1
l = (|s1| · · · |sl′ |)

1
l′

}
. □

Theorem 3.7. {r1, r2, . . . , rl} ⊆ III1(B, c0).

Proof. Theorem 3.5 shows that r1 ∈ σr(B, c0). However, σr(B, c0) = III1(B, c0) ∪
III2(B, c0). Therefore, to prove r1 ∈ III1σ(B, c0), we shall show that the matrix
B − r1I has bounded inverse and from Theorem 2.1, it will be sufficient to show that
(B − r1I)∗ is onto. For this, let y = (yk) ∈ ℓ1. Then (B − r1I)∗x = y implies that
(3.10) (ri(mod l)+1 − r1)xi + si(mod l′)+1xi+1 = yi,

for all i ∈ N0. Solving (3.10) for x = (xi), we obtain that

(3.11) xmH+k =
k−2∑
j=0

1
sj(mod l′)+1

k−1∏
i=j+1

r1 − ri(mod l)+1

si(mod l′)+1
ymH+j + ymH+k−1

s(k−1)(mod l′)+1
,

for k = 1, . . . , H, and m = 0, . . . , ∞. Let

Cj = 1
sj(mod l′)+1

k−1∏
i=j+1

r1 − ri(mod l)+1

si(mod l′)+1
,
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for j = 0, . . . , k − 2, and

Ck−1 = 1
s(k−1)(mod l′)+1

.

Then (3.11) can be written as

(3.12) xmH+k = C0ymH + C1ymH+1 + · · · + Ck−1ymH+k−1.

Taking summation from m = 0 to ∞ of the absolute values of xmH+k, we obtain

(3.13)
∞∑

m=0
|xmH+k| ≤ |C0|

∞∑
m=0

|ymH | + |C1|
∞∑

m=0
|ymH+1| + · · · + |Ck−1|

∞∑
m=0

|ymH+k−1|.

Since y = (yk) ∈ ℓ1, therefore the right hand side of the inequality (3.13) is a sum of
k finite terms. Thus, ∑∞

m=0 |xmH+k| < ∞ for k ∈ {1, 2, . . . , H}. This implies that the
series

(3.14)
∑

i

|xi| = |x0| +
∞∑

m=0
|xmH+1| +

∞∑
m=0

|xmH+2| + · · · +
∞∑

m=0
|xmH+H |

is a sum of H + 1 finite terms. Hence, x = (xi) ∈ ℓ1. We have shown that for every
y = (yi) ∈ ℓ1 there exists a sequence x = (xi) ∈ ℓ1 such that (B− r1I)∗x = y. That is,
(B − r1I)∗ is onto. Similarly, we can show that ri ∈ III1(B, c0) for i = 2, . . . , l. This
proves the theorem. □

Theorem 3.8. σr(B, c0) \ {r1, r2, . . . , rl} ⊆ III2(B, c0).

Proof. Let λ belongs to the set σr(B, c0)\{r1, r2, . . . , rl}. Then (|λ−r1| · · · |λ−rl|)
1
l <

(|s1| . . . |sl′ |)
1
l′ and λ /∈ ri for all i ∈ {1, 2, . . . , l}. This inequality shows that the series∑∞

k=0 |znk| in (3.5) is not convergent when n goes to infinity. In that case, B− λI does
not have bounded inverse. Then from Table 1, we find that λ ∈ III2(B, c0). Hence
σr(B, c0) \ {r1, r2, . . . , rl} ⊆ III2(B, c0). □

Theorem 3.9. III1(B, c0) = {r1, r2, . . . , rl}.

Proof. From Table 1, we have σr(B, c0) = III1(B, c0) ∪ III2(, c0) and the union is
disjoint. Then taking complement of the inclusion of Theorem 3.8 in σr(B, c0),
we obtain that σr(B, c0) \ III2(B, c0) ⊆ {r1, r2, . . . , rl}. That is, III1(B, c0) ⊆
{r1, r2, . . . , rl}. This inclusion together with Theorem 3.7 implies that III1(B, c0) =
{r1, r2, . . . , rl}. □

Theorem 3.10. III2(B, c0) = σr(B, c0) \ {r1, r2, . . . , rl}.

Proof. Taking complement of the result of Theorem 3.9 in σr(B, c0), we obtain that
III2(B, c0) = σr(B, c0) \ {r1, r2, . . . , rl}. □
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4. Fine Spectra of the Matrix B(r1, . . . , r4; s1, . . . , s6)

We consider the matrix
B(r1, . . . , r4; s1, . . . , s6)

=



r1 0 0 0 0 0 0 0 0 . . .
s1 r2 0 0 0 0 0 0 0 . . .
0 s2 r3 0 0 0 0 0 0 . . .
0 0 s3 r4 0 0 0 0 0 . . .
0 0 0 s4 r1 0 0 0 0 . . .
0 0 0 0 s5 r2 0 0 0 . . .
0 0 0 0 0 s6 r3 0 0 . . .
0 0 0 0 0 0 s1 r4 0 . . .
0 0 0 0 0 0 0 s2 r1 . . .
... ... ... ... ... ... ... ... . . . . . .



.

Now, consider the following sets:
D =

{
λ ∈ C : (|λ − r1||λ − r2||λ − r3||λ − r4|)

1
4 ≤ (|s1||s2||s3||s4||s5||s6|)

1
6
}

,

D1 =
{
λ ∈ C : (|λ − r1||λ − r2||λ − r3||λ − r4|)

1
4 < (|s1||s2||s3||s4||s5||s6|)

1
6
}

,

D2 =
{
λ ∈ C : (|λ − r1||λ − r2||λ − r3||λ − r4|)

1
4 = (|s1||s2||s3||s4||s5||s6|)

1
6
}

.

From the discussion of the previous section, we deduce the following results:
(a) B(r1, . . . , r4; s1, . . . , s6) ∈ B(c0);
(b) ∥B(r1, . . . , r4; s1, . . . , s6)∥c0 ≤ max

i,j
{|ri| + |sj|: 1 ≤ i ≤ 4, 1 ≤ j ≤ 6};

(c) σ(B(r1, . . . , r4; s1, . . . , s6), c0) = D;
(d) σp(B(r1, . . . , r4; s1, . . . , s6), c0) = ∅;
(e) σp(B(r1, . . . , r4; s1, . . . , s6)∗, c∗

0
∼= ℓ1) = D1;

(f) σr(B(r1, . . . , r4; s1, . . . , s6), c0) = D1;
(g) σc(B(r1, . . . , r4; s1, . . . , s6), c0) = D2;
(h) III1σ(B(r1, . . . , r4; s1, . . . , s6), c0) = {r1, r2, r3, r4};
(i) III2σ(B(r1, . . . , r4; s1, . . . , s6), c0) = D1 \ {r1, r2, r3, r4}.

In particular, if we take r1 = 1 − i, r2 = −i, r3 = −1.5, r4 = −i and s1 = i,
s2 = 1 + i, s3 = −2, s4 = −1.5, s5 = 1 − i, s6 = −1, then the spectrum is given by

σ(B(r1, . . . , r4; s1, . . . , s6), c0) =
{
λ ∈ C : (|λ − 1 + i||λ + i|2|λ + 1.5|) 1

4 ≤ 6 1
6
}

,

which is shown by the shaded region in Figure 1.

5. Conclusions

We have studied the spectral decomposition of the matrix B(r1, . . . , rl; s1, . . . , sl′),
which generalizes the following matrices.

• The backward difference operator ∆ [3] for l = 1, l′ = 1, r1 = 1 and s1 = −1.
• The Right shift operator for l = 1, l′ = 1, r1 = 0 and s1 = 1.
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Figure 1. Spectrum of B(r1, . . . , r4; s1, . . . , s6).

• The Zweier matrix [5] for l = 1, l′ = 1, r1 = s and s1 = 1 − s for some complex
numbers s ̸= 0, 1.

• The generalized difference operator B(r, s) [4] for l = 1, l′ = 1, r1 = r and
s1 = s for some complex numbers r and s ̸= 0.
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