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AI-STATISTICAL APPROXIMATION OF CONTINUOUS
FUNCTIONS BY SEQUENCE OF CONVOLUTION OPERATORS

SUDIPTA DUTTA1 AND RIMA GHOSH2

Abstract. In this paper, following the concept of AI-statistical convergence for real
sequences introduced by Savas et al. [22], we deal with Korovkin type approximation
theory for a sequence of positive convolution operators defined on C[a, b], the space
of all real valued continuous functions on [a, b], in the line of Duman [6]. In the
Section 3, we study the rate of AI-statistical convergence.

1. Introduction and Background

Throughout the paper N will denote the set of all positive integers and C[a, b]
denotes the space of all real valued continuous functions defined on [a, b], endowed
with the supremum norm ||f || = supx∈[a,b] |f(x)| for f ∈ C[a, b]. For a sequence
{Tn}n∈N of positive linear operators on C(X), the space of real valued continuous
functions on a compact subset X of real numbers, Korovkin [14] first established the
necessary and sufficient conditions for the uniform convergence of {Tn(f)}n∈N to a
function f by using the test functions e1 = 1, e2 = x, e3 = x2 (see [1]). The study of
the Korovkin type approximation theory has a long history and is a well-established
area of research (see [4, 5, 7–11]).

Our primary interest, in this paper is to obtain a general Korovkin type approxi-
mation theorem for a sequence of positive convolution operators defined on C[a, b], in
AI-statistical sense. In the section 3, we study the rate of AI-statistical convergence.

The concept of statistical convergence of a sequence of real numbers was first
introduced by Fast [12]. This is a generalization of usual convergence. Further investi-
gations started in this area after the works of Šalát [19] and Fridy [13]. Consequently,
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the notion of I-convergence of real sequences was introduced by Kostyrko et al. [17].
On the other hand statistical convergence was generalized to A-statistical convergence
by Kolk ([15, 16]). Later a lot of works have been done on matrix summability and
A-statistical convergence (see [2, 3, 15, 16, 18, 20]). In particular, in [21, 22] the very
general notion of AI-statistical convergence was introduced.

Recall that a family I ⊂ 2Y of subsets of a nonempty set Y is said to be an ideal
in Y if (i) A,B ∈ I implies A ∪ B ∈ I; (ii) A ∈ I, B ⊂ A implies B ∈ I, while an
admissible ideal I of Y further satisfies {x} ∈ I for each x ∈ Y . If I is a non-trivial
proper ideal in Y (i.e., Y /∈ I, I ̸= {∅}) then the family of sets F (I) = {M ⊂ Y : there
exists A ∈ I : M = Y \ A} is a filter in Y . It is called the filter associated with the
ideal I. The real number sequence {xk}k∈N is said to be I-convergent to L provided
that for every ε > 0, the set {k ∈ N : |xk − L| ≥ ε} ∈ I.

If {xk}k∈N is a sequence of real numbers and A = (ank) is an infinite matrix, then
Ax is the sequence whose n-th term is given by

An(x) =
∞∑

k=1
ankxk.

We say that x is A-summable to L if limn→∞ An(x) = L. A matrix A is called regular
if A ∈ (c, c) and limk→∞ Ak (x) = limk→∞xk for all x = {xk}k∈N ∈ c, when c, as usual,
stands for the set of all convergent sequences. It is well-known that the necessary and
sufficient conditions for A to be regular are

I) ||A|| = sup
n

∑
k

|ank| < ∞;

II) lim
n
ank = 0, for each k;

III) lim
n

∑
k

ank = 1.

For a non-negative regular matrix A = (ank) following [15], a set K is said to have
A-density if δA(K) = limn

∑
k∈K ank exists.

The real number sequence {xk}k∈N is A-statistically convergent to L provided that
for every ε > 0, the set K(ε) = {k ∈ N : |xk − L| ≥ ε} has A-density zero (see [15]).
Throughout the paper I will denote the non-trivial admissible ideal on N.

2. AI-Statistical Approximation for a Sequence of Convolution
Operators

We first recall the definition.

Definition 2.1 ([21, 22]). Let A = (ank) be a non-negative regular matrix. For an
ideal I of N, a sequence {xn}n∈N is said to be AI-statistically convergent to L if for
any ε > 0 and δ > 0 n ∈ N :

∑
k∈K(ε)

ank ≥ δ

 ∈ I

where K(ε) = {k ∈ N : |xk − L| ≥ ε}. In this case we write AI-st- limn xn = L.
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Note that for I = Ifin, the ideal of all finite subsets of N, AI-statistical convergence
becomes A-statistical convergence [15].

We consider the Banach space C[a, b] endowed with the supremum norm ||f || =
supx∈[a,b] |f(x)| for f ∈ C[a, b]. Let L be a positive linear operator. Then L(f) ≥ 0
for any positive function f. Also, we denote the value of L(f) at a point x ∈ [a, b] by
L(f ;x).

Theorem 2.1. Let {Ln}n∈N be a sequence of positive linear operators from C[a, b]
into C[a, b]. If AI-st- limn ∥Ln(fi) − fi∥ = 0, with fi = ti, i = 0, 1, 2, then for all
f ∈ C[a, b] we have AI-st- limn ∥Ln(f) − f∥ = 0.

Proof. Our objective is to show that for given ε > 0 there exist constants C0, C1, C2
(depending on ε > 0) such that

∥Ln(f) − f∥ ≤ ε+ C2∥Ln(f2) − f2∥ + C1∥Ln(f1) − f1∥ + C0∥Ln(f0) − f0∥.

If this is done then our hypothesis implies that for ε > 0, δ > 0n ∈ N :
∑

k∈K(ε)
ank ≥ δ

 ∈ I,

where K(ε) = {k ∈ N : ∥Lk(f) − f∥ ≥ ε}.
To this end, start by observing that for each x ∈ [a, b] the function 0 ≤ Ψ ∈ C[a, b]

defined by Ψ(t) = (t− x)2. Since each Ln is positive, Ln(Ψ;x) is a positive function.
In particular, we have

0 ≤ Ln(Ψ;x) =Ln(t2;x) − 2xLn(t;x) + x2Ln(1;x)
=(Ln(t2;x) − t2(x)) − 2x(Ln(t;x) − t(x)) + x2(Ln(1;x) − 1(x))
≤∥Ln(t2) − t2∥ + 2b∥Ln(t) − t∥ + b2∥Ln(1) − 1∥,

for each x ∈ [a, b]. Let M = ∥f∥. Since f is bounded on the whole real axis, we can
write

|f(t) − f(x)| < 2M, −∞ < t, x < ∞.

Also, since f is continuous on [a, b], we have
|f(t) − f(x)| < ε,

for all t, x satisfying |t− x| ≤ δ.
On the other hand, if |t− x| ≥ δ, then it follows that

−2M
δ2 (t− x)2 ≤ −2M ≤ f(t) − f(x) ≤ 2M ≤ 2M

δ2 (t− x)2.

Therefore, for all t ∈ (−∞,∞) and all x ∈ [a, b] we get

|f(t) − f(x)| < ε+ 2M
δ2 (t− x)2,

where δ is a fixed real number.
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Since each Ln is positive, we have

−εLn(f0;x) − 2M
δ2 Ln(Ψ;x) ≤Ln(f(t);x) − f(x)Ln(f0;x)

≤εLn(f0;x) + 2M
δ2 Ln(Ψ;x).

Next, let K = 2M
δ2 and we get

|Ln(f(t);x) − f(x)Ln(f0;x)| ≤εLn(f0;x) + 2M
δ2 Ln(Ψ;x)

=ε+ ε[Ln(f0;x) − f0(x)] +KLn(Ψ;x)
≤ε+ ε|Ln(f0;x) − f0(x)| +KLn(Ψ;x).

In particular,

|Ln(f(t);x) − f(x)| ≤|Ln(f(t);x) − f(x)Ln(f0;x)| + |f(x)||Ln(f0;x) − f0(x)|
≤ε+KLn(Ψ;x) + (M + ε)|Ln(f0;x) − f0(x)|,

which implies

∥Ln(f) − f∥ ≤ ε+ C2∥Ln(f2) − f2∥ + C1∥Ln(f1) − f1∥ + C0∥Ln(f0) − f0∥,

where C2 = K, C1 = 2bK and C0 = (ε+ b2K +M), i.e.,

∥Ln(f) − f∥ ≤ ε+ C
2∑

i=0
∥Ln(fi) − fi∥, i = 0, 1, 2,

where C = max{C0, C1, C2}. For a given ε′ > 0, choose ε > 0 such that ε < ε′ and let
us define the following sets

D = {n : ∥Ln(f) − f∥ ≥ ε′} ,

D1 =
{
n : ∥Ln(f0) − f0∥ ≥ ε′ − ε

3C

}
,

D2 =
{
n : ∥Ln(f1) − f1∥ ≥ ε′ − ε

3C

}
,

D3 =
{
n : ∥Ln(f2) − f2∥ ≥ ε′ − ε

3C

}
.

It follows that D ⊆ D1 ∪D2 ∪D3 and consequently for all n ∈ N∑
k∈D

ank ≤
∑

k∈D1

ank +
∑

k∈D2

ank +
∑

k∈D3

ank,

which implies that for any σ > 0n ∈ N :
∑
k∈D

ank ≥ σ

 ⊆
3⋃

i=1

n ∈ N :
∑

k∈Di

ank ≥ σ

3

 .
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Therefore, from hypothesis, n ∈ N :
∑
k∈D

ank ≥ σ

 ∈ I.

Hence, we have the proof. □

We now consider the following convolution operators defined on C[a, b] by

(2.1) Ln(f ;x) =
∫ b

a
f(y)Kn(y − x)dy, n ∈ N, x ∈ [a, b] and f ∈ C[a, b],

where a and b are two real numbers such that a < b. Throughout the paper we assume
that Kn is a continuous function on [a − b, b − a] and also that Kn(u) ≥ 0 for all
n ∈ N and for every u ∈ [a − b, b − a]. Consider the function Ψ on [a, b] defined by
Ψ(y) = (y − x)2 for each x ∈ [a, b].

Theorem 2.2. Let A = (aij) be a non-negative regular summability matrix and
let {Ln}n∈N be a sequence of convolution operators from C[a, b] into C[a, b]. If
AI-st- limn ∥Ln(f0) − f0∥ = 0, with f0(y) = 1 and AI-st- limn ∥Ln(Ψ)∥ = 0, then
for all f ∈ C[a, b] we have

AI-st- lim
n

∥Ln(f) − f∥ = 0.

Proof. Let Ψ(y) := (y − x)2 be a function on [a, b], where x ∈ [a, b] and Ln(f ;x) =∫ b
a f(y)Kn(y−x)dy, n ∈ N, x ∈ [a, b] and f ∈ C[a, b], where a, b are two real numbers

such that a < b. Since Ln is a positive linear operator then Ln(Ψ;x) ≥ 0.
Let M = ∥f∥ and ε > 0. By the uniform continuity of f ∈ C[a, b] and x ∈ [a, b]

there exists a δ > 0 such that
|f(y) − f(x)| < ε, whenever |y − x| ≤ δ.

Let Iδ = [x− δ, x+ δ] ∩ [a, b]. So,
|f(y) − f(x)| =|f(y) − f(x)|ΨIδ

(y) + |f(y) − f(x)|Ψ[a,b]−Iδ
(y)

≤ε+ 2Mδ−2(y − x)2.

Since Ln’s are positive and linear so we have,

|Ln(f ;x) − f(x)| =
∣∣∣∣∣
∫ b

a
f(y)Kn(y − x)dy − f(x)

∣∣∣∣∣
=
∣∣∣∣∣
∫ b

a
(f(y) − f(x))Kn(y − x)dy + f(x)

∫ b

a
Kn(y − x)dy − f(x)

∣∣∣∣∣
≤
∣∣∣∣∣
∫ b

a
(f(y) − f(x))Kn(y − x)dy

∣∣∣∣∣+ |f(x)| ·
∣∣∣∣∣
∫ b

a
Kn(y − x)dy − 1

∣∣∣∣∣
≤
∫ b

a
|f(y) − f(x)| · |Kn(y − x)dy| + |f(x)| · |Ln(f0;x) − f0(x)|

≤
∫ b

a
(ε+ 2Mδ−2(y − x)2)Kn(y − x)dy +M |Ln(f0;x) − f0(x)|
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=ε+ (ε+M)|Ln(f0;x) − f0(x)| + 2Mδ−2 | Ln(Ψ;x) |
≤ε+ α{|Ln(f0;x) − f0(x)| + |Ln(Ψ;x)|},

where α = max{ε+M, 2M
δ2 }. Therefore,

∥Ln(f) − f∥ ≤ ε+ α{∥Ln(f0) − f0∥ + ∥Ln(Ψ)∥}.

For given r > 0, choose ε > 0 such that 0 < ε < r and define the following sets

D = {n : ∥Ln(f) − f∥ ≥ r} ,

D1 =
{
n : ∥Ln(f0) − f0∥ ≥ r − ε

2α

}
,

D2 =
{
n : ∥Ln(Ψ)∥ ≥ r − ε

2α

}
.

It follows that D ⊆ D1 ∪D2 and consequently for all n ∈ N∑
k∈D

ank ≤
∑

k∈D1

ank +
∑

k∈D2

ank,

which implies that for any σ > 0n ∈ N :
∑
k∈D

ank ≥ σ

 ⊆
2⋃

i=1

n ∈ N :
∑

k∈Di

ank ≥ σ

2

 .
Therefore, from hypothesis n ∈ N :

∑
k∈D

ank ≥ σ

 ∈ I.

Hence, we have the proof. □

Let δ be a positive real number so that δ < b−a
2 and let ∥f∥δ = supa+δ≤x≤b−δ |f(x)|,

f ∈ C[a, b].
In order to give our main result we need the following lemmas.

Lemma 2.1. Let A = (aij) be a non negative regular summability matrix. Assume
that δ is a fixed positive number such that δ < b−a

2 . If the conditions

(2.2) AI-st- lim
n

∫ δ

−δ
Kn(y)dy = 1,

(2.3) AI-st- lim
n

(sup
|y|≥δ

Kn(y)) = 0

hold, then for the operators Ln, where Ln(f ;x) =
∫ b

a f(y)Kn(y−x)dy, n ∈ N, x ∈ [a, b],
f ∈ C[a, b] and a, b are real numbers a < b, we have

AI-st- lim
n

∥Ln(f0) − f0∥δ = 0, with f0(y) = 1.
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Proof. Let 0 < δ < b−a
2 and let x ∈ [a+ δ, b− δ]. Then

δ ≤ x− a ≤ b− a ⇒ −(b− a) ≤ a− x ≤ −δ

and
δ ≤ b− x ≤ b− a.

Now Ln(f0;x) =
∫ b

a Kn(y − x)dy =
∫ b−x

a−x Kn(y)dy. Then we have∫ δ

−δ
Kn(y)dy ≤ Ln(f0;x) ≤

∫ b−a

−(b−a)
Kn(y)dy.

Therefore,
∥Ln(f0) − f0∥δ ≤ un,

where un = max
{∣∣∣∫ δ

−δ Kn(y)dy − 1
∣∣∣ , ∣∣∣∫ b−a

−(b−a) Kn(y)dy − 1
∣∣∣} .

Therefore, AI-st- limn un = 0 for all δ > 0 such that δ < b−a
2 . Now for given ε > 0

define the following sets

D := {n ∈ N : ∥Ln(f0) − f0∥δ ≥ ε} ,
D′ := {n ∈ N : un ≥ ε} .

So D ⊆ D′. Then for all n ∈ N we have,∑
k∈D

ank ≤
∑

k∈D′
ank.

Then for any σ > 0n ∈ N :
∑
k∈D

ank ≥ σ

 ⊆

n ∈ N :
∑

k∈D′
ank ≥ σ

 .
From hypothesis n ∈ N :

∑
k∈D′

ank ≥ σ

 ∈ I.

Hence, n ∈ N :
∑
k∈D

ank ≥ σ

 ∈ I.

So , we have the proof. □

Lemma 2.2. Let A = (aij) be a non negative regular summability matrix. If conditions
(2.2) and (2.3) hold for a fixed δ > 0 such that δ < b−a

2 , then for all convolution
operators Ln defined by Ln(f ;x) =

∫ b
a f(y)Kn(y − x)dy, n ∈ N, x ∈ [a, b] and f ∈

C[a, b], where a, b are two real numbers such that a < b, we have

AI-st- lim
n

∥Ln(Ψ)∥δ = 0, with Ψ(y) = (y − x)2.
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Proof. For a fixed 0 < δ < b−a
2 , let x ∈ [a+δ, b−δ]. Since Ψ(y) = y2−2xy+x2, then Ψ ∈

C[a, b] for all x ∈ [a+ δ, b− δ]. Now Ln(Ψ;x) = Ln(f2;x) − 2xLn(f1;x) + x2Ln(f0;x),
with fi(y) = yi, i = 0, 1 , 2. Then for all n ∈ N

Ln(Ψ;x) =
∫ b

a
(y − x)2Kn(y − x)dy =

∫ b−x

a−x
y2Kn(y)dy ≤

∫ b−a

−(b−a)
y2Kn(y)dy.

Since the function f2 is continuous at y = 0 for given ε > 0 exists η > 0 such that
y2 < ε for all y satisfying |y| ≤ η. We have two cases such that η ≥ b− a or η < b− a.

Case 1. Let η ≥ b − a. Therefore, 0 ≤ Ln(Ψ;x) ≤ ε
∫ b−a

−(b−a) Kn(y)dy. By condition
(2.3), 0 ≤ Ln(Ψ;x) ≤ ε and AI-st- lim

n
∥Ln(Ψ)∥δ = 0 for η ≥ b− a.

Case 2: Let η < b − a. Therefore, Ln(Ψ;x) ≤
∫

|y|≥η y
2Kn(y)dy +

∫
|y|≤η y

2Kn(y)dy
and hence we obtain

∥Ln(Ψ;x)∥δ ≤an

∫ b−a

η
y2dy + ε

∫
|y|≤η

Kn(y)dy = an
(b− a)3 − η3

3 + εbn,

where an = sup|y|≥η Kn(y) and bn =
∫

|y|≤η Kn(y)dy. Also we have from hypotheses

AI-st- lim
n
an = 0

and
AI-st- lim

n
bn = 1.

Taking, M = max
{

(b−a)3−η3

3 , ε
}

we have for all n ∈ N

∥Ln(Ψ)∥δ ≤ ε+M(an + |bn − 1|).
For given r > 0, choose ε > 0 such that ε < r. Let

D = {n ∈ N : ∥Ln(Ψ)∥δ ≥ r} ,

D1 =
{
n ∈ N : an ≥ r − ε

2M

}
,

D2 =
{
n ∈ N : |bn − 1| ≥ r − ε

2M

}
.

Therefore, D ⊆ D1 ∪D2. Hence, for all n ∈ N we have,∑
k∈D

ank ≤
∑

k∈D1

ank +
∑

k∈D2

ank,

which implies that for any σ > 0n ∈ N :
∑
k∈D

ank ≥ σ

 ⊆
2⋃

i=1

n ∈ N :
∑

k∈Di

ank ≥ σ

2

 .
Therefore, from the hypothesisn ∈ N :

∑
k∈D

ank ≥ σ

 ∈ I.

Hence, we have the proof. □



AI-STATISTICAL APPROXIMATION FOR A SEQUENCE OF CONVOLUTION OPERATORS363

Now the following main result follows from Theorem 2.2 and Lemma 2.1, 2.2.

Theorem 2.3. Let A = (aij) be a non negative regular summability matrix and let
{Ln}n∈N be a sequence of convolution operators on C[a, b] given by (2.1). If conditions
(2.2) and (2.3) hold for a fixed δ > 0 such that δ < b−a

2 , then for all f ∈ C[a, b] we
have

AI-st- lim
n

∥Ln(f) − f∥δ = 0.

If we take I = Ifin, the ideal of all finite subsets of N, we get the following result.

Corollary 2.1. ([6, Corollary 2.5]). Let A = (aij) be a non negative regular summa-
bility matrix and let {Ln}n∈N be a sequence of convolution operators on C[a, b] given
by

Ln(f ;x) =
∫ b

a
f(y)Kn(y − x)dy,

n ∈ N, x ∈ [a, b] and f ∈ C[a, b], where a and b are two real numbers such that a < b.
If conditions

stA − lim
n

∫ δ

−δ
Kn(y)dy = 1

and
stA − lim

n
sup
|y|≥δ

Kn(y) = 0

hold for a fixed δ > 0 such that δ < b−a
2 , then for all f ∈ C[a, b] we have

stA − lim
n

∥Ln(f) − f∥δ = 0.

Remark 2.1. We now exhibit a sequence of positive convolution operators for which
Corollary 2.1 does not apply but Theorem 2.3 does. Let

un =

1, for n even,
0, otherwise.

Let I be a non-trivial admissible ideal of N. Choose an infinite subset C = {p1 < p2 <
p3 · · · } from I \ Id, where Id denotes the set of all subsets of N with natural density
zero.

Let A = (ank) be given by

ank =


1, if n = pi, k = 2pi for some i ∈ N,
1, if n ̸= pi for any i, k = 2n+ 1,
0, otherwise.

Now for 0 < ε < 1, K(ε) = {k ∈ N : |uk − 0| ≥ ε} is the set of all even integers.
Observe that ∑

k∈K(ε)
ank =

1, if n = pi for some i ∈ N,
0, if n ̸= pi for any i ∈ N.
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Thus, for any δ > 0,
{
n ∈ N : ∑k∈K(ε)ank ≥ δ

}
= C ∈ I \ Id which shows that

{uk}k∈N is AI-statistically convergent to 0 though x is not A-statistically convergent.
Now let the operators Ln on C[a, b] be defined by

Ln(f ;x) = n(1 + un)√
π

∫ b

a
f(y)e−n2(y−x)2

dy.

If we choose Kn(y) = n(1+un)√
π

e−n2y2 , then

Ln(f ;x) = n(1 + un)√
π

∫ b

a
f(y)Kn(y − x)dy.

Now for every δ > 0 such that δ < b−a
2 we have∫ δ

−δ
Kn(y)dy =n(1 + un)√

π

(∫ ∞

−∞
e−n2y2

dy −
∫

|y|≥δ
e−n2y2

dy

)

=2(1 + un)√
π

(∫ ∞

0
e−y2

dy −
∫ ∞

δ.n
e−y2

dy
)
.

Since
∫∞

0 e−y2
dy =

√
π

2 < ∞, it is clear that lim
n

∫ ∞

δ.n
e−y2

dy = 0. Also since
AI-st- limn(1 + un) = 1, we immediately get

AI-st- lim
n

∫ δ

−δ
Kn(y)dy = 1.

On the other hand, we have

sup
|y|≥δ

Kn(y) = n(1 + un)√
π

sup
|y|≥δ

e−n2y2 ≤ n(1 + un)
en2δ2 .

Since limn
n

en2δ2 = 0 and AI-st- lim
n

(1 + un) = 1, we conclude that

AI-st- lim
n

sup
|y|≥δ

Kn(y) = 0.

Therefore, from Theorem 2.3,
AI-st- lim

n
∥Ln(f) − f∥δ = 0, for all f ∈ C[a, b].

However note that, as {uk}k∈N is not A-statistically convergent to zero so Kn do not
satisfy the hypotheses of Corollary 2.1.

3. Rate of AI-Statistical Convergence

In this section we study the rates of AI-statistical convergence in Theorem 2.3 using
the modulus of continuity. Let f ∈ C[a, b]. The modulus of continuity denoted by
ω(f, α) is defined to be

ω(f, α) = sup
|y−x|≤α

|f(y) − f(x)|.
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The modulus of continuity of the function f in C[a, b] gives the maximum oscillation
of f in any interval of length not exceeding α > 0. It is well-known that if f ∈ C[a, b],
then

lim
α→0

ω(f, α) = ω(f, 0) = 0,
and that for any constants c > 0, α > 0,

ω(f, cα) ≤ (1 + [c])ω(f, α),
where [c] is the greatest integer less than or equal to c.

Next we introduce the following definition.
Definition 3.1. Let A = (ajn) be a non-negative regular summability matrix and
let {cn}n∈N be a positive non-increasing sequence of real numbers. Then a sequence
x = {xn}n∈N is said to be AI-statistically convergent to a number L with the rate of
o(cn) if for every ε > 0, there exists δ > 0 such thatj ∈ N : 1

cj

∑
{n:|xn−L|≥ε}

ajn ≥ δ

 ∈ I.

In this case we write AI-st-o(cn)- limn xn = L.

We establish the following theorem.
Theorem 3.1. Let A = (ajn) be a non-negative regular summability matrix and let
{Ln}n∈N be a sequence of convolution operators given by (2.1). Assume further that
{cn}n∈N and {dn}n∈N are two positive non-increasing sequences. If for a fixed δ > 0
such that δ < b−a

2
AI-st-o(cn)- lim

n
∥Ln(f0) − f0∥δ = 0

and
AI-st-o(dn)- lim

n
ω(f, αn) = 0,

where αn :=
√

∥Ln(Ψ)∥δ, then for all f ∈ C[a, b] we have

AI-st-o(pn)- lim
n

∥Ln(f) − f∥δ = 0,

where pn := max{cn, dn}.

Proof. Let 0 < δ < b−a
2 , f ∈ C[a, b] and x ∈ [a+ δ, b− δ]. By positivity and linearity

of the operators Ln and using the inequalities for any α > 0 we get
|Ln(f ;x) − f(x)| ≤Ln(|f(y) − f(x)|;x) + |f(x)| · |Ln(f0;x) − f0(x)|

≤Ln

(
ω

(
f, α

|y − x|
α

)
;x
)

+ |f(x)| · |Ln(f0;x) − f0(x)|

≤ω(f, α)Ln

(
1 +

[
|y − x|
α

]
;x
)

+ |f(x)| · |Ln(f0;x) − f0(x)|

≤ω(f, α)
{
Ln(f0;x) + 1

α2Ln(ψ;x)
}

+ |f(x)| · |Ln(f0;x) − f0(x)|.
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Therefore, for all n ∈ N

∥Ln(f) − f∥δ ≤ ω(f, α)
{

∥Ln(f0)∥δ + 1
α2 ∥Ln(Ψ)∥δ

}
+M1∥Ln(f0) − f0∥δ,

where M1 := ∥f∥δ. Now let α := αn =
√

∥Ln(Ψ)∥δ. Then we have

∥Ln(f) − f∥δ ≤ω(f, αn){∥Ln(f0)∥δ + 1} +M1∥Ln(f0) − f0∥δ

≤2ω(f, αn) + ω(f, αn)∥Ln(f0) − f0∥δ +M1∥Ln(f0) − f0∥δ.

Let M = max{2,M1}. Then we can write for all n ∈ N that
∥Ln(f) − f∥δ ≤ M{ω(f, αn) + ∥Ln(f0) − f0∥δ} + ω(f, αn)∥Ln(f0) − f0∥δ.

Given ε > 0, define the following sets:
D := {n : ∥Ln(f) − f∥δ ≥ ε} ,

D1 :=
{
n : ω(f, αn) ≥ ε

3M

}
,

D2 :=
{
n : ω(f, αn)∥Ln(f0) − f0∥δ ≥ ε

3

}
,

D3 :=
{
n : ∥Ln(f0) − f0∥δ ≥ ε

3M

}
.

Then D ⊆ D1 ∪D2 ∪D3. Also, we define

D′
2 =

{
n : ω(f, αn) ≥

√
ε

3

}
,

D
′′

2 =
{
n : ∥Ln(f0) − f0∥δ ≥

√
ε

3

}
.

Therefore, D2 ⊆ D′
2 ∪ D

′′
2 . Hence, we get D ⊆ D1 ∪ D′

2 ∪ D
′′
2 ∪ D3. Since pn =

max {cn, dn} we obtain for all j ∈ N that
1
pj

∑
n∈D

ajn ≤ 1
dj

∑
n∈D1

ajn + 1
dj

∑
n∈D′

2

ajn + 1
cj

∑
n∈D

′′
2

ajn + 1
cj

∑
n∈D3

ajn.

As
AI-st-o(cn)- lim

n
∥Ln(f0) − f0∥δ = 0

and
AI-st-o(dn)- lim

n
ω(f, αn) = 0.

Therefore, {
j ∈ N : 1

pj

∑
n∈D

ajn ≥ δ

}
∈ I,

i.e.,
AI-st-o(pn)- lim

n
∥Ln(f) − f∥δ = 0, for all f ∈ C[a, b],

where pn := max {cn, dn}. Hence, the result follows. □
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4. Conclusions

Following the concept of AI-statistical convergence for real sequences, we have
encountered a Korovkin type approximation theory (Theorem 2.3) for a sequence
of positive convolution operators defined on C[a, b]. We have exhibited an example
which shows that Theorem 2.3 is stronger than its A-statistical version [6, Corollary
2.5]. The third section states about the rates of the AI-statistical convergence.

We are very much interested whether the results of this paper are valid for the
function f with two variables. Again we are interested whether the results are relevant
on infinite interval.
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