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NEW INTEGRAL EQUATIONS FOR THE MONIC HERMITE
POLYNOMIALS

KARIMA ALI KHELIL1, RIDHA SFAXI2, AND AMMAR BOUKHEMIS1

Abstract. In this article, we are study the question of existence of integral equation
for the monic Hermite polynomials Hn, where the intervening real function does not
depend on the index n, well-known by the linear functional Wx given by its moments
Hn(x) = ⟨Wx, tn⟩, n ≥ 0, |x| < ∞. Also, we obtain some properties of the zeros of
this intervening function. Furthermore, we obtain an integral representation of the
Dirac mass δx, for every real number x.

1. Introduction

Given two sequences {Bn}n≥0 and {Qn}n≥0 of normalized polynomials with real
coefficients, with one real variable x and where deg Bn = deg Qn = n, for every integer
n ≥ 0. The problem of integral equation between these two polynomial sequences
consists in finding a real function u(·, t) defined in I × R, where I ⊂ R =] − ∞, +∞[,
and satisfying the condition:∫ ∞

−∞
u(x, t)tn dt < ∞, n ≥ 0, x ∈ I,

such that
Bn(x) =

∫ ∞

−∞
u(x, t)Qn(t) dt, n ≥ 0, x ∈ I.

When Qn(x) = xn, for all integer n ≥ 0, i.e.,

Bn(x) =
∫ ∞

−∞
u(x, t)tn dt, n ≥ 0, x ∈ I,
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we recognize the usual integral representation of the polynomial sequence {Bn}n≥0,
called here by the canonical-integral representation of {Bn}n≥0. When Qn(x) = Bn(x),
for all integer n ≥ 0, i.e.,

Bn(x) =
∫ ∞

−∞
u(x, t)Bn(t) dt, n ≥ 0, x ∈ I,

it is appropriate to say that it is an auto-integral representation of {Bn}n≥0.
In fact, this kind of integral equation is of great relevance in the theory of orthogonal

polynomials as well as the moment theory and their applications, [8, 9, 3, 15]. For this
reason-in the past as nowadays has attracted the attention of many authors; see, for
instance, [5, 6, 7, 12, 4, 1, 10, 11]. Based on the principle that the terms of any sequence
of complex numbers are the moments of a unique linear functional on polynomials,
the study of such linear functionals accurate some hypergeometric properties of such
sequences, [2, 13, 14].

In this work, we are interested by the normalized Hermite polynomial sequence
{Hn}n≥0 . Recall that {Hn}n≥0 is orthogonal with respect to a linear functional on
polynomials, namely H and well-known by its integral representation on the real
line [10]

⟨H , p⟩ = 1√
π

∫ ∞

−∞
p (t) e−t2 dt, p ∈ P,

where P is the vector space of polynomials in one variable with real coefficients and P′

its algebraic dual space. Notice that ⟨u, p⟩ is the action of a linear functional u ∈ P′

on p ∈ P and by (u)n := ⟨u, tn⟩, n ≥ 0, the moments of u with respect to the canonical
sequence {tn}n≥0. For any u in P′, any q in P and any complex numbers a, b, c with
a ̸= 0, recall that Du = u′, qu, hau and τbu, be respectively, the derivative, the left
multiplication, the homothetic and the translation of the linear functionals defined
by duality [9]:

⟨u′, f⟩ := − ⟨u, f ′⟩ ,

⟨qu, f⟩ := ⟨u, qf⟩ ,

⟨hau, f⟩ := ⟨u, haf⟩ = ⟨u, f (ax)⟩ ,

⟨τ−bu, f⟩ := ⟨u, τbf⟩ = ⟨u, f (x − b)⟩ , f ∈ P.

The linear functional H is normalized, i.e., (H )0 = 1. It satisfies the following
Pearson equation [10]:

H ′ + 2xH = 0P′ .

The moments of H are given by

(H )n = n!
2n+1Γ(n

2 + 1)
(
1 + (−1)n

)
, n ≥ 0.

This leads to the following integral representation of the moments of H

n!
2n+1Γ(n

2 + 1)
(
1 + (−1)n

)
= 1√

π

∫ ∞

−∞
tne−t2 dt, n ≥ 0.
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The normalized Hermite polynomial Hn can be represented in terms of a definite
integral containing the real variable x as parameter [8]

Hn(x) = ex2

√
π

∫ ∞

−∞
(−it)ne−t2+2itx dt, n ≥ 0, |x| < ∞.

Equivalently,
Hn(x) =

∫ ∞

0
hn(t, x) tn dt, n ≥ 0, |x| < ∞,

where the intervening real function hn(t, ·) depends on the integer n, and given by

hn(t, x) = 2√
π

ex2−t2 cos
(

2tx + n
π

2

)
.

The polynomial Hn satisfies the following integral equation [8]

Hn(x) = (−i)n

√
2π

e
x2
2

∫ ∞

−∞
e− t2

2 +itxHn(t) dt, n ≥ 0, |x| < ∞.

Equivalently,
Hn(x) =

∫ ∞

0
rn(t, x) Hn(t) dt, n ≥ 0, |x| < ∞,

where the real function rn(t, ·) depends on the integer n, and given by

rn(t, x) = 1√
2

hn

(
t√
2

,
x√
2

)
.

The main purpose of this work is to give two new integral equations for the polynomial
sequence {Hn}n≥0, where the intervening real functions do not depend on the integer
n. In summary, we are going to establish the following.

– The canonical-integral representation:

Hn(x) =
∫ ∞

−∞
U(t − x)tn dt, n ≥ 0, |x| < ∞,

where

U(t) = S−1et2
∫ ∞

|t|
e−y2

e−y
1
4 sin y

1
4 dy,

S =
∫ ∞

−∞
eξ2

∫ ∞

|ξ|
e−y2

e−y
1
4 sin y

1
4 dy dξ > 0.

– The auto-integral representation:

Hn(x) =
∫ ∞

−∞
V (t − x)Hn(t) dt, n ≥ 0, |x| < ∞,

where

V (t) =


e−t

1
4 sin(t 1

4 )
πt

, if t > 0,

0, if t ≤ 0.
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2. New Canonical-Integral Representation of {Hn}n≥0

First, let us recall some properties of {Hn}n≥0, [8, 10].
-The Taylor expansion:

Hn(x) =
[ n

2 ]∑
k=0

(−1)kn!
22kk!(n − 2k)!x

n−2k, n ≥ 0.

-The symmetry property:
(2.1) Hn(−x) = (−1)nHn(x), n ≥ 0.

-The Appel property:
H ′

n(x) = nHn−1(x), n ≥ 0, H−1(x) = 0.

-The three-terms-recurrence relation:

(2.2)

 H−1(x) = 0, H0(x) = 1,

Hn+1(x) = xHn(x) − n

2 Hn−1(x), n ≥ 0.

Next, let Wx be the linear functional on polynomials and given by its moments
(2.3) Hn(x) = ⟨Wx, tn⟩ , n ≥ 0, |x| < ∞.

From (2.1) and (2.3), we show that
W−x = h−1(Wx), |x| < ∞.

From (2.2) and (2.3), the linear functional Wx satisfies
(2.4) (Wx)0 = 1, W ′

x − 2(t − x)Wx = 0, |x| < ∞.

Lemma 2.1. For any real number x, the following properties hold:
Wx = τxW0,(2.5)

Hn(x) = ⟨W0, (t + x)n⟩ , n ≥ 0,(2.6)
where W0 is symmetric (i.e., h−1(W0) = W0), normalized (i.e., (W0)0 = 1) and satisfy-
ing the Pearson equation W ′

0 − 2tW0 = 0.

Proof. Let x be a fixed real number. We have (τ−xWx)0 = (Wx)0 = H0(x) = 1. If we
take (2.4) into account, we can write

⟨(τ−xWx)′ − 2t(τ−xWx), p(t)⟩ = − ⟨Wx, p′(t − x)⟩ − 2 ⟨Wx, (t − x)p(t − x)⟩
= ⟨W ′

x , p(t − x)⟩ − 2 ⟨(t − x)Wx, p(t − x)⟩
= ⟨W ′

x − 2(t − x)Wx, p(t − x)⟩
= 0, p ∈ P.

So, the normalized linear functional τ−xWx satisfies: (τ−xWx)′ − 2t(τ−xWx) = 0. The
fact that W0 is the unique normalized linear functional satisfying the Pearson equation
W ′

0 − 2tW0 = 0, yields τ−xWx = W0 and then Wx = τxW0.
Finally, (2.6) follows in a straightforward way from (2.3) and (2.5). □
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2.1. An integral representation of Wx. At first, we start by giving an integral
representation of W0 as follows

(2.7) ⟨W0, p⟩ =
∫ ∞

−∞
U(t)p (t) dt, p ∈ P,

where we assume that the function U is absolutely continuous on the real line and
decaying as fast as its derivative U ′.

By an easy integration by parts, we obtain

0 = ⟨W ′
0 − 2tW0, p⟩ = − ⟨W0, p′(t) + 2tp(t)⟩ = −

∫ ∞

−∞
U(t)

(
p′(t) + 2tp(t)

)
dt

= − [U(t)p(t)]∞−∞ +
∫ ∞

−∞

(
U ′(t) − 2tU(t)

)
p(t) dt, p ∈ P.

The following condition:

(2.8) lim
t→±∞

U(t)p(t) = 0, p ∈ P,

leads to

(2.9)
∫ ∞

−∞

(
U ′(t) − 2tU(t)

)
p(t) dt = 0, p ∈ P.

This implies

(2.10) U ′(t) − 2tU(t) = λf(t),

where λ ̸= 0 is arbitrary and the function f is locally integrable, with rapid decay,
and representing the null function, i.e.,∫ ∞

−∞
tnf(t) dt = 0, n ≥ 0.

Conversely, if U is a solution of (2.10) verifying the hypothesis above and the condition:

(2.11)
∫ ∞

−∞
U(t) dt ̸= 0,

then (2.8) and (2.9) are fulfilled and (2.7) defines a linear functional W0, which is a
solution of the Pearson equation W ′

0 − 2tW0 = 0. Putting

f (t) = − sgn(t)s(|t|), t ∈] − ∞, +∞[,

where s is the Stieltjes function [10, 1, 11],

s(t) =
{ 0, t ≤ 0,

e−t
1
4 sin t

1
4 , t > 0.
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In view of the fact that
∫ ∞

0
tns(t) dt = 0, n ≥ 0, we get

∫ ∞

−∞
tnf(t) dt = −

∫ ∞

−∞
tn sgn(t)s(|t|) dt =

∫ 0

−∞
tns(−t) dt +

∫ ∞

0
tns(t) dt

= (−1)n
∫ ∞

0
tns(t) dt +

∫ ∞

0
tns(t) dt =

(
1 + (−1)n

) ∫ ∞

0
tns(t) dt

= 0, n ≥ 0.

Let U be the function defined on the real line and given by,

(2.12) U(t) = λet2
∫ ∞

|t|
e−y2

s(y) dy, t ∈] − ∞, +∞[.

An easy computation shows that U ′(t) = 2tU(t) − λs (t) for every t ≥ 0, U ′(t) =
2tU(t) + λs (−t) for every t < 0.

Equivalently,
U ′(t) − 2tU(t) = λf (t) , t ∈] − ∞, +∞[.

For |t| large, we have

|U(t)| ≤ |λ| et2
∫ ∞

|t|
e−y2

e−y
1
4 dy ≤ |λ| e− 1

2 |t|
1
4 et2

∫ ∞

|t|
e−y2 dy ≤ o

(
e− 1

2 |t|
1
4
)

, |t| → ∞,

by the fact that,

lim
|t|→∞

et2
∫ ∞

|t|
e−y2 dy = lim

x→∞
ex2

∫ ∞

x
e−y2 dy = lim

x→∞

∫ ∞

x
e−y2 dy

e−x2 = lim
x→∞

e−x2

2xe−x2 = lim
x→∞

1
2x

= 0.

Hence, the condition (2.8) holds. Clearly, U ∈ L1] − ∞, +∞[. Condition (2.11) can
be written as follows: ∫ ∞

−∞
U(t) dt = λS ̸= 0,

where after reverse the order of integration, we get

S = 2
∫ ∞

0
U(t) dt = 2

∫ ∞

0
et2
∫ ∞

t
e−y2

s(y) dy dt

= 2
∫ ∞

0
e−y2

(∫ y

0
et2 dt

)
e−y

1
4 sin y

1
4 dy,

and by making the change of the variable x = y
1
4 , it follows that

S = 8
∫ ∞

0
y3e−yF (y4) sin y dy,

where F (z) = e−z2
∫ z

0
et2 dt, z ∈ C, is the Dawson function (called also the Dawson

integral), [8]. The Dawson function is an entire function for all z ∈ C and remains
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bounded for all real number z. Recall that the Dawson function satisfies [8]
F (0) = 0, F ′(z) = −2zF (z) + 1, z ∈ C,(2.13)

F (z) =
∞∑

k=0

(−1)k2kz2k+1

1 · 3 · · · (2k + 1) , |z| < ∞,

F (z) ≃ 1
2z

, |z| → ∞,

F (−z) = −F (z), z ∈ C,

0 ≤ F (y) ≤ Fmax = 0, 541 . . . , y ≥ 0,(2.14)
where Fmax = F (xmax), with xmax = 0, 942 . . . Notice that xmax is the only critical point
of F on the interval [0, +∞[. The following result contains simple but fundamental
properties which will be useful in the sequel.

Lemma 2.2. The Dawson function satisfies:

F (y) <
1
2y

if and only if 0 < y < xmax,

F (y) >
1
2y

if and only if y > xmax,

F (y) = 1
2y

if and only if y = xmax.

Proof. The proof is an immediate consequence of (2.13) and (2.14). □

We can write
(2.15) S =

∫ ∞

0
G(y) sin y dy,

where
(2.16) G(y) = 8y3e−yF (y4), y ≥ 0.

From (2.16) and (2.14), we obtain
0 ≤ G(y) ≤ 8Fmaxy3e−y, y ≥ 0.

Directly, G(0) = 0 and lim
y→∞

G(y) = 0, which implies that G has a maximum for
y = y > 0, satisfying G′(y) = 0, i.e.,

F (y4) = 4y4

8y8 + y − 3 .

Notice that the function G is decreasing on the interval [y, +∞[.

Lemma 2.3. We have y ≤ 3.

Proof. If we suppose that y > 3, then F (y4) < 1
2y4 . By Lemma 2.2, this yields

y4 < xmax = 0, 942..., i.e., y < (0, 942 . . .) 1
4 < 3. This is a contradiction. □

Furthermore, the following technical lemma will be needed.
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Lemma 2.4 ([1]). Consider the following integral: S =
∫∞

0 G(x) sin x dx, where the
function G : [0, +∞[→ [0, +∞[ is continuous on [0, +∞[, decreasing on [2π, +∞[.
Suppose that

∫ 2π
0 G(y) sin y dy > 0, then S > 0.

The function G given by (2.16) satisfies the condition of the previous lemma. Indeed,
G is a nonnegative function on [0, +∞[ and decreasing on [2π, +∞[. In order to show
that S, given by (2.15), is positive, it suffices to prove that

∫ 2π

0
G(y) sin y dy > 0.

Equivalently, ∫ π

0
G(y) sin y dy > −

∫ 2π

π
G(y) sin y dy.

In view of Lemma 2.2, the fact that G ≥ 0, sin y ≥ 0, for all y ∈ [0, π] , x
1
4max <

π

2 and

sin y ≥ 2
π

y for all y ∈
[
0,

π

2

]
, we obtain

∫ π

0
G(y) sin y dy ≥

∫ π

x
1
4
max

y3e−y sin y F (y4) dy ≥
∫ π

x
1
4
max

y3e−y sin y

2y4 dy

≥ 1
2

∫ π
2

x
1
4
max

e−y sin y

y
dy ≥ 1

2
2
π

∫ π
2

x
1
4
max

e−y dy

≥ 1
π

(
e−x

1
4
max − e− π

2

)
.

Then, we have

(2.17)
∫ π

0
G(y) sin y dy ≥ 1

π

(
e−x

1
4
max − e− π

2

)
≃ 0, 0263.

On the other hand, we have

−
∫ 2π

π
G(y) sin y dy = −

∫ 2π

π
y3e−y sin yF (y4) dy ≤ −F (π4)

∫ 2π

π
y3e−y sin y dy.

By integration by parts and an easy computation we find

−
∫ 2π

π
y3e−y sin y dy = 1

2e−2ππ
(
6 + 12π + 8π2 + eπ(3 + 3π + π2)

)
≃ 1, 8731

and

F (π4) = e−π8
∫ π4

0
et2 dt ≤ e−π8

∫ π4

0
eπ4t dt = 1 − e−π8

π4 ≃ 0, 010266,

then

(2.18) −
∫ 2π

π
G(y) sin y dy ≤ 1, 8731 · 0, 010266 ≃ 0, 01922.

From (2.17) and (2.18), we deduce that∫ π

0
G(y) sin y dy > −

∫ 2π

π
G(y) sin y dy.
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Proposition 2.1. The normalized Hermite polynomial Hn has the following integral
representations:

(2.19) Hn(x) =
∫ ∞

−∞
U(t − x)tn dt, n ≥ 0, |x| < ∞,

where

U(t) = S−1et2
∫ ∞

|t|
e−y2

e−y
1
4 sin y

1
4 dy,

S =
∫ ∞

−∞
eξ2

∫ ∞

|ξ|
e−y2

e−y
1
4 sin y

1
4 dy dξ > 0.

Proof. It is a straightforward consequence of Lemma 2.1 and 2.4, and (2.12). □

2.2. On the zeros of the function U . By the change of the variable y = x4, the
function U given by (2.19), can by written as

(2.20) U(t) = 4S−1et2
V (|t| 1

4 ), |t| < ∞,

where

V (t) =
∫ ∞

t
x3e−x8−x sin x dx =

∫ ∞

0
(x + t)3e−(x+t)8−x−t sin(x + t) dx, t ≥ 0.

Clearly, the function U is even and their zeros are exactly those of the function
t 7→ V (|t| 1

4 ). Observe that we have

V (kπ) = (−1)kIk, k ≥ 0,

where
Ik =

∫ ∞

0
Gk(x) sin x dx

and
Gk(x) = G0(x + kπ) = (x + kπ)3e−(x+kπ)8−(x+kπ).

Lemma 2.5. For every integer k ≥ 0, we have Ik > 0.

Proof. Let h(x) = −8x8 − x + 3 for all x ≥ 0. So, h′(x) = −64x7 − 1 < 0 for all x ≥ 0
and h is decreasing on [0, +∞[. The function h is a bijection from [0, +∞[ to ]−∞, 3].
Directly, there exists a unique solution θ ∈ [0, +∞[ solution of the equation: h(x) = 0,
where x ≥ 0. By the intermediate value theorem, we can see that 1

2 < θ < 1, since
h(1

2) = 9
2 > 0 and h(1) = −6 < 0. So, h(x) < 0, for all x ∈]θ, +∞[, and h(x) > 0

for all x ∈ [0, θ[. It is clear that G′
0(x) = x2e−x8−xh(x) for all x ≥ 0. Thus, G0 is

decreasing on [θ, +∞[. The fact that θ < 1 allows us to say that:
- the function G0 is decreasing on the interval [π, +∞[;
- the function Gk is decreasing on the interval [0, +∞[ for every k ≥ 1.
For every fixed integer k ≥ 1, we have

Ik = lim
n→∞

∫ 2nπ

0
Gk(x) sin x dx.
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Clearly,∫ 2nπ

0
Gk(x) sin x dx =

n−1∑
l=0

∫ π

0

(
Gk

(
x + 2lπ

)
− Gk

(
x + (2l + 1)π

))
sin x dx,

for every integer n ≥ 1. Since sin x > 0 on ]0, π[, and all the functions Gk, k ≥ 1, are
decreasing on [0, +∞[, we have∫ π

0

(
Gk

(
x + 2lπ

)
− Gk

(
x + (2l + 1)π

))
sin x dx > 0, l ≥ 0.

Accordingly, it follows that

Ik ≥
∫ π

0

(
Gk(x) − Gk(x + π)

)
sin x dx > 0, k ≥ 1.

For k = 0, let’s note first that G0 is nonnegative and continuous on [0, +∞[ and
decreasing on [2π, +∞[. By Lemma 2.4, in order to show that I0 > 0, it suffices to
show that

∫ 2π
0 G0(x) sin x dx > 0. Equivalently,

(2.21)
∫ π

0
G0(x) sin x dx > −

∫ 2π

π
G0(x) sin x dx.

On the one hand, we have

(2.22)
∫ π

0
G0(x) sin x dx =

∫ θ

0
G0(x) sin x dx +

∫ π

θ
G0(x) sin x dx.

By the fact that G0(x) sin x ≥ 0 for every x ∈ [0, π], the function G0 is decreasing on
the interval [θ, π], we can write∫ π

θ
G0(x) sin x dx ≥ G0(π)

∫ π

θ
sin x dx = G0(π)

(
1 + cos θ

)
,

but, θ ∈]0, π
2 [, then ∫ π

θ
G0(x) sin x dx ≥ G0(π) = π3e−π8−π.

Since θ ∈]π
2 , π[⊂]0, π[, we get∫ θ

0
G0(x) sin x dx ≥ e−θ8

∫ θ

0
x3e−x sin x dx ≥ e−1

∫ π
2

0
x3e−x sin x dx,

by an easy computation, we obtain∫ π
2

0
x3e−x sin x dx =

35 sin(π
2 ) − 19 cos(π

2 )
16

√
e

,

and hence,

(2.23)
∫ θ

0
G0(x) sin x dx ≥

35 sin π
2 − 19 cos π

2
16e

√
e

= ϑ,

where ϑ ≈ 0.0014752.
From (2.22) and (2.23), we get∫ π

0
G0(x) sin x dx ≥ η1,
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where η1 = ϑ + π3e−π8−π.
On the other hand, since sin x ≤ 0, for all x ∈ [π, 2π], we obtain

−
∫ 2π

π
G0(x) sin x dx = −

∫ 2π

π
x3e−x8−x sin x dx ≤ −e−π8

∫ 2π

π
x3e−x sin x dx,

by an easy computation, we get

−
∫ 2π

π
x3e−x sin x dx = π

2 e−2π
(
6 + 12π + 8π2 + eπ(3 + 3π + π2)

)
≈ 1.8731,

and hence,

−
∫ 2π

π
G0(x) sin x dx ≤ η2,

where η2 = βe−π8 and β ≈ 1.8731.
Since η1 > η2, the condition (2.21) holds. Thus, I0 > 0. □

Proposition 2.2. The function U , given by (2.20), has the following properties.
i) The function U is even and all its zeros are placed symmetrically with respect

to the origin.
ii) For every integer k ≥ 0, sgn U((kπ)4) = (−1)k.
iii) For every integer k ≥ 0, there exists a unique solution ξk ∈

]
(kπ)4, ((k + 1)π)4

[
solution of the equation U(x) = 0, where x ∈ [(kπ)4, ((k + 1)π)4].

Proof. The property given by i) is immediate, by taking (2.20) into account.
By (2.20), sgn U(t) = sgn V (t 1

4 ) for all t ≥ 0. Since, V ′(x) = −t3e−t8−t sin(t) for
all t ≥ 0, then sgn V ′(t) = (−1)k+1 for all t ∈

]
kπ, (k + 1)π

[
and all integer k ≥ 0.

We have already seen that sgn V (kπ) = (−1)k for all integer k ≥ 0. Then, for every
integer k ≥ 0, there exists a unique τk ∈

]
kπ, (k + 1)π

[
solution to the equation

V (x) = 0, where x ∈ [kπ, (k + 1)π]. In view of (2.20), for every integer k ≥ 0, we infer
that sgn U((kπ)4) = (−1)k, and there exists a unique ξk = τ 4

k ∈
]
(kπ)4, ((k + 1)π)4

[
solution of the equation U(x) = 0, where x ∈ [(kπ)4, ((k + 1)π)4]. Thus, ii) and iii)
hold. □

3. An Auto-Integral Representation of the Normalized Hermite
Polynomials

Recall that the Stieltjes integral formula is given by [10]

(3.1)
∫ ∞

0
xp−1e−ax sin mx dx = Γ(p)

(a2 + m2) p
2

sin pθ,

for any positive real numbers p, q, m, with sin θ = m

r
, cos θ = a

r
, 0 < θ < π

2 and
r =

√
a2 + m2.
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From (3.1) taking with θ = π
4 , it comes that a = m = 1, and∫ ∞

0
xp−1e−x sin x dx = Γ(p)

2 p
2

sin pπ

4 , p > 0.

In particular, for p = 4(n + 1), we get∫ ∞

0
x4n+3e−x sin x dx = 0, n ≥ 0,

and the transformation x = t
1
4 , yields,

(3.2)
∫ ∞

0
tne−t

1
4 sin t

1
4 dt = 0, n ≥ 0.

On the other hand, by (3.1) and the recursion property of the Gamma function, to
known Γ(z + 1) = zΓ(z), for all z ∈ C such that z ̸= −n for every integer n ≥ 0, and
Γ(1) = 1, we can write∫ ∞

0
xp−1e−ax sin mx dx = Γ(p + 1)

(a2 + m2) p
2

sin pθ

p
, p > 0,

and by letting p → 0+, we get ∫ ∞

0

e−ax sin mx

x
dx = θ.

For θ = π
4 , m = a = 1, the transformation x = t

1
4 , gives us

∫ ∞

0

e−t
1
4 sin t

1
4

πt
dt = 1,

and by taking (3.2) into account, we obtain∫ ∞

−∞
tnW (t) dt = δn,0, n ≥ 0,

where

W (t) =


e−t

1
4 sin t

1
4

πt
, if t > 0,

0, if t ≤ 0.

This leads to the following integral representation of the Dirac mass δ0,

⟨δ0, p⟩ =
∫ ∞

−∞
W (t)p(t) dt = p(0), p ∈ P,

and more general to an integral representation of the Dirac mass δx, for every real
number x,

⟨δx, p⟩ =
∫ ∞

−∞
W (t − x)p(t) dt = p(x), p ∈ P.

Consequently, the following auto-integral representation of the normalized Hermite
polynomial Hn holds

Hn(x) =
∫ ∞

−∞
W (t − x)Hn(t) dt, n ≥ 0.
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