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SOLUTION SET FOR IMPULSIVE FRACTIONAL DIFFERENTIAL
INCLUSIONS

MOUSTAFA BEDDANI1

Abstract. This paper aims to an initial value problem for an impulsive fractional
differential inclusion with the Riemann-Liouville fractional derivative. We apply
Covitz and Nadler theorem concerning the study of the fixed point for multivalued
maps to obtain the existence results for the given problems. We also obtain some
topological properties about the solution set.

1. Introduction

We study the existence of solutions and determine certain topological properties of
the solutions set for the following impulsive fractional differential inclusion:

(1.1)


RLDαy(t) ∈ F (t, y(t)) a.e. t ∈ J = (0, T ], t ̸= tk,

lim
t−→0+

t1−αy(t) = c,

∆∗y |tk
= Ik(y(t−k )),

where k = 1, . . . ,m, 0 < α ≤ 1, RLDα is the Riemann-Liouville fractional derivative,
F : J ×R → {X ⊂ R : X ̸= ∅} is a given multivalued function, c ∈ R, Ik : R → R are
continuous functions, 0 = t0 < t1 < · · · < tm < tm+1 = T and ∆∗y | tk

= y∗(t+k )−y(t−k ),
where y∗(t+k ) = limt→t+

k
(t− tk)1−αy(t) and y(t−k ) = limt−→t−

k
y(t).

More precisely, we present an overall existence result for (1.1) by using Covitz
and Nadler fixed-point theorem for multivalued maps. Afterwards, we prove the
compactness and acyclicity of the solution set for this problem.
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Since the 1960s, the subject of functional differential inclusions and impulsive
ordinary differential inclusions with various conditions have been investigated by many
authors [1, 2, 8, 11, 14, 24–26, 32, 35, 39, 40], and has several applications in different
areas as engineering, electrical, networks electrochemistry, fluid flow, etc. For more
details we refer the reader to see the following references [4, 13,20,21,30,31,34,36].

The topological and geometric properties of the solution set for differential inclusions
are examined by many mathematicians (see for example [3, 10, 16, 17, 22, 37]) where
the concept of quasi-concavity is extended to multifunctions contractibility, absolutely
retract, acyclicity, Rδ-sets properties are given.

This work is structured as follows: in the second section, we recall some definitions
and properties that are needed throughout this article. Afterwards, in the third
section, we show that the solution sets is contractible to a point. Finally, we give an
example which illustrate the principle result of this paper.

2. Preliminary Results

The object of this section is to recall some basic definitions and useful notations in
multivalued analysis. Let C([a, b],R) be the Banach space of all continuous functions
h from the interval [a, b] into R with the norm

∥h∥∞ = sup
t∈[a,b]

|h(t)|,

and L1([a, b],R) the Banach space of all Lebesgue integrable functions h from the
interval [a, b] into R with the norm

∥h∥L1 =
∫ b

a
|h(t)| dt.

For a given metric space E, we denote:

• P(E) = {X ⊂ E : X ̸= ∅};
• Pcl(E) = {X ∈ P(E) : X is closed};
• Pb(E) = {X ∈ P(E) : X is bounded};
• Pcp(E) = {X ∈ P(E) : X is compact};
• Pc(E) = {X ∈ P(E) : X is convex};
• Pcp,c(E) = Pcp(E) ∩ Pc(E).

If X and Y are two subsets of the metric space E, and x (resp. y) is a point in X
(resp. Y ), we denote:

d(x, Y ) = inf
y∈Y

d(x, y) and d(X, y) = inf
x∈X

d(x, y).

Recall that, the Hausdorff pseudo-metric distance Hd on P(E) defined by

Hd(X, Y ) := max
{

sup
x∈X

d(x, Y ), sup
y∈Y

d(X, y)
}
.
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Form the previous definition, it is well-known that (Pcl,b(E), Hd) (resp. (Pcl(E), Hd))
is a metric space (resp. is a generalized metric space).
Definition 2.1. Let M :→ P(E) be a multivalued map.

(a) We say that M is γ-Lipschitz if there exists a positive real number γ such that
Hd(M(x),M(y)) ≤ γd(x, y), for all x, y ∈ E.

(b) The map M is called a contraction if it is γ-Lipschitz for some 0 < γ < 1.

Notice that, if M is γ-Lipschitz on a Banach space E, then for every real number γ′

greater than γ, M(x) ⊂ M(y) + γ′d(x, y)B(0, 1), where B(0, 1) is the unit ball of E.
Definition 2.2. Let G : X → Pcl(Y ) be a multivalued map, where X and Y are two
metric spaces.

(a) We say that G is closed valued (resp. convex valued) if G(x) is closed (resp.
convex) for all x ∈ E.

(b) Every single-valued map g : X → Y is called a selection of G. We write g ⊂ G
whenever g(x) ∈ G(x) for all x ∈ X. G : J × R → P(R), we define the set of
selections of G by

SG,x = {v ∈ L1(J,R) : v(t) ∈ G(t, x(t)) a.e. t ∈ J}.
Definition 2.3. A multivalued map G : J × R → P(R) is called L1-Carathéodory if
the following are satisfied:

(a) the function G(·, x) is measurable for each x ∈ R;
(b) the function G(t, ·) is upper semi-continuous for almost all t ∈ J ;
(c) for every positive real r, there exists a function fr ∈ L1(J,R+) such that

∥G(t, x)∥ = sup{|v| : v ∈ G(t, x)} ≤ fr(t) a.e. t ∈ J and for all x ∈ [−r, r].

For more details about multivalued analysis, we refer the reader to see [5–7,12,23,
27–29].

Below we present the definition of contractible spaces, and for details about this
type of spaces, we recommend [5, 10,15,33].
Definition 2.4. A contractible subset of a Banach space X is a nonempty subset A
of X for which there exists a continuous homotopy ψ : A × [0, 1] → A and a0 ∈ A
such that for all a ∈ A, ψ(a, 0) = a and ψ(a, 1) = a0.

We give now two basic definitions used frequently in fractional computation theory.
Definition 2.5 ([18, 19]). Let h ∈ L1([a, b],R+). The fractional order integral of h is
given by

Iα
a h(t) =

∫ t

a

(t− s)α−1

Γ(α) h(s) ds.
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Definition 2.6 ([19]). Let b be a positive real number and h a real function defined
on the interval [0, b]. The Riemann-Liouville fractional derivative of order α ∈ R+ of
h is defined as follows:

RLDα
0+h(t) = 1

Γ(n− α)
dn

dtn

(∫ t

0
(t− s)n−α−1h(s) ds

)
.

3. Main Results

Let

PC∗([0, T ],R) =
{
y : [0, T ] −→ R : yk ∈ C(tk, tk+1], k = 0, . . . ,m, and there

exist y(t−k ), y∗(t+k ), k = 1, . . . ,m, with y(tk) = y(t−k )
}
.

It is known that this set is Banach space with the norm

∥y∥P C∗ = max
k=1,...m

∥yk∥∗,

where yk is the restriction of y to the interval Jk = (tk, tk+1] for every k = 0, . . . ,m,
and

∥yk∥∗ = sup
t∈[tk,tk+1]

|(t− tk)1−αyk(t)|, for every k = 1, . . . ,m.

When A ⊂ PC∗([0, T ],R), we define Aα by

Aα = {yα : y ∈ A},

where

yα(t) =

 (t− tk)1−αy(t), if t ∈ (tk, tk + 1],
lim
t→tk

(t− tk)1−αy(t), if t = tk.

Theorem 3.1. Let A be a bounded subset in the Banach space PC∗([0, T ],R) such
that Aα is equicontinuous on PC([0, T ],R). Then the set A is relatively compact in
PC∗([0, T ],R).

Proof. We know that, if {yn}∞
n=1 ⊂ A, then {(yα)n}∞

n=1 ⊂ PC([0, T ],R). From Arzela-
Ascoli theorem, the set K0 = {(yα)n : n ∈ N∗} is relatively compact in the space
PC([0, T ],R). So, we can find a subsequence of (yα)n∈N still denoted by the same
indices such that lim yn ∈ (PC([0, T ],R), ∥ · ∥P C). Put y = lim yn. We have

∥(yα)n − y∥∗ = sup
t∈[tk,tk+1]

(t− tk)1−α|yα)n(t) − y(t)| → 0, n → +∞.

So, yn → y, n → +∞, on PC∗([0, T ],R). □

To explain our results, we need the following lemmas.
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Lemma 3.1 ([38]). Let α be a positive real number and n = 1+[α]. Then the following
differential equation RLDα

a+h(t) = 0, has solutions of the form h(t) = ∑n
k=1 ck(t−a)α−k

for some real numbers c1, c2, . . . , cn.

Lemma 3.2 ([38]). Let α be a positive real number and n = 1 + [α]. Then there exist
some real numbers c1, c2, . . . , cn such that

IαRLDα
a+h(t) = h(t) +

n∑
k=1

ck(t− a)α−k.

Lemma 3.3. Let α be a real number in the interval (0, 1) and h a continuous function.
If y is a solution of following problem

RLDαy(t) =h(t), for all t ∈ J and t ̸= tm for all k = 1, . . . ,m,(3.1)
∆∗y |tk

=Ik(y(t−k )), for all k = 1, . . . ,m,(3.2)
lim
t→0

t1−αy(t) =c.(3.3)

Then
(3.4)

y(t) =



tα−1c+ 1
Γ(α)

∫ t

0
(t− s)α−1h(s) ds, if 0 ≤ t ≤ t1,

(t− t1)α−1tα−1
1 c+ (t− t1)α−1

Γ(α)

∫ t1

0
(t1 − s)α−1h(s) ds

+(t− t1)α−1

Γ(α) I1(y(t−1 )) + 1
Γ(α)

∫ t

t1
(t− s)α−1h(s) ds, if t1 < t ≤ t2,

(t− tk)α−1
k∏

i=1
(ti − ti−1)α−1c

+(t− tk)α−1

Γ(α)

[∫ tk

tk−1
(tk − s)α−1h(s) ds+

k−1∑
i=1

k−i∏
j=1

(tk−j+1 − tk−j)α−1
∫ ti

ti−1
(ti − s)α−1h(s) ds


+(t− tk)α−1

Γ(α)
[
Ik(y(t−k ))

+
k−1∑
i=1

k−i∏
j=1

(tk−j+1 − tk−j)α−1Ii(y(t−i ))


+ 1
Γ(α)

∫ t

tk

(t− s)α−1h(s) ds, if tk < t ≤ tk+1,

2 ≤ k ≤ m.

Proof. Suppose that y satisfies (3.1)–(3.3). It is clear when 0 ≤ t ≤ t1, we have
RLDαy(t) = h(t).
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From the previous lemma, we get

y(t) = tα−1c1 + 1
Γ(α)

∫ t

0
(t− s)α−1h(s) ds.

Hence, c1 = c. Thus,

y(t) = tα−1c+ 1
Γ(α)

∫ t

0
(t− s)α−1h(s) ds.

When t1 < t ≤ t2, we can obtain, by using the previous lemma, that

y(t) =(t− t1)α−1y∗(t+1 ) + 1
Γ(α)

∫ t

t1
(t− s)α−1h(s) ds

=(t− t1)α−1
(
I1(y(t−1 ) + y(t−1 )

)
+ 1

Γ(α)

∫ t

t1
(t− s)α−1h(s) ds

=(t− t1)α−1tα−1
1 c+ (t− t1)α−1

Γ(α)

∫ t1

0
(t1 − s)α−1h(s) ds

+ 1
Γ(α)

∫ t

t1
(t− s)α−1h(s) ds+ (t− t1)α−1I1(y(t−1 )).

If t2 < t ≤ t3, Lemma 3.2 implies

y(t) =(t− t2)α−1y∗(t+2 ) + 1
Γ(α)

∫ t

t2
(t− s)α−1h(s) ds,

y(t) =(t− t2)α−1[y(t−2 ) + I2(y(t−2 ))] + 1
Γ(α)

∫ t

t2
(t− s)α−1h(s) ds

=(t− t2)α−1(t2 − t1)α−1tα−1
1 + (t− t2)α−1(t2 − t1)α−1

Γ(α)

∫ t1

0
(t1 − s)α−1h(s) ds

+ (t− t2)α−1

Γ(α)

∫ t2

t1
(t2 − s)α−1h(t) ds+ 1

Γ(α)

∫ t

t2
(t− s)α−1h(s) ds

+ (t− t2)α−1
[
(t2 − t1)α−1I1(y(t−1 )) + I2(y2(t−2 ))

]
.

Finally, when tk < t ≤ tk+1, we obtain (3.4), by using Lemma 3.2. □

Definition 3.1. Let y be a function in PC∗. We say that y is a mild solution of
the problem (1.1) if there exists v ∈ L1(J,R) such that v(t) ∈ F (t, y(t)) a.e. on J \
{t1, . . . , tm}, lim

t−→0
t1−αy(t) = c, ∆∗y |tk

= Ik(t−k ) for all k = 1, . . . ,m, and RLDαy(t) =
v(t) for all t ∈ J \ {t1, . . . , tm}.

Definition 3.2 ([6, 23]). A single-valued map f : [0, a] ×X → Y be a single-valued
map is said to be measurable locally Lipschitz (mLL) if

(1) f(·, x) is measurable for every x ∈ X, and
(2) for each x ∈ X, there exists a neighborhood Vx of x and an integrable function

Lx : [0, a] → [0,∞) such that
d′(f(t, x1), f(t, x2)) ≤ Lx(t)d(x1, x2) a.e. t ∈ [0, a] and x1, x2 ∈ Vx.
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Definition 3.3 ([6, 23]). A mapping F : [0, a] × X → P(Y ) is mLL-selectionable
provided there exists a measurable locally-Lipchitzian map f : [0, a] × X → Y such
that f ∈ F .
Lemma 3.4 ([2,11]). If N : X → Pcl(X) is a contraction on a complete metric space
X, then the fixed point set of N is nonempty.

Theorem 3.2. Let F : J ×R → Pcp(R) be a mLL-selectionable multivalued map such
that the following properties are satisfied:

(H1) there exist a and b in R+ such that for every x ∈ R, we have
∥F (t, x)∥P ≤ a|x| + b a.e. t ∈ J ;

(H2) there exist ak and bk ∈ R+ such that
|Ik(x)| ≤ ak|x| + bk, for x ∈ R;

(H3) there exist p ∈ C([0, T ],R+) such that
Hd(F (t, z1), F (t, z2)) ≤ p(t)∥z1 − z2∥, for all z1, z2 ∈ R,

and d(0, F (t, 0)) ≤ p(t), t ∈ J ;
(H4) there exist a real number L ∈ R+ such that

|Ik(z1) − Ik(z2)| ≤ L∥z1 − z2∥, for all z1, z2 ∈ R.

If
Tα∥p∥∞Γ(α)(1 +mTα−1)

Γ(2α) + mTα−1
0 L

Γ(α) < 1,

then (1.1) has a solution. In addition, if F : J × R → Pcp(R) is a Carathéodory
multivalued map with compact convex values, then the solution set is contractible and
compact, and hence it is acyclic.

Proof. Step 1. Existence of solutions. Let P : PC∗ −→ P(PC∗) the operator defined
by

P (y) =
{
h ∈ PC∗ : h(t) = (t− tk)α−1

k∏
i=1

(ti − ti−1)α−1c

+ (t− tk)α−1

Γ(α)

[∫ tk

tk−1
(tk − s)α−1h(s) ds

+
k−1∑
i=1

k−i∏
j=1

(tk−j+1 − tk−j)α−1
∫ ti

ti−1
(ti − s)α−1v(s) ds

+ (t− tk)α−1

Γ(α)
[
Ik(y(t−k ))

+
k−1∑
i=1

k−i∏
j=1

(tk−j+1 − tk−j)α−1Ii(y(t−i ))
+ 1

Γ(α)

∫ t

tk

(t− s)α−1v(s) ds

 ,
where v ∈ SF,y = {v ∈ L1(J,R) : v(t) ∈ F (t, y(t)) a.e. t ∈ J}. Now, we show that
the operator F satisfies the hypotheses (H1), (H2) and (H3) of Lemma 3.4. To prove
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that P (y) ∈ Pcl(PC∗([0, T ],R)) for all y ∈ PC∗([0, T ],R), let {un}∞
n=0 ∈ F (y) be a

sequence converges to u on the space PC∗([0, T ],R). Then u ∈ PC∗([0, T ],R) and
there exists vn ∈ SF,y such that, for each t ∈ (0, T ]

un(t) =(t− tk)α−1
k∏

i=1
(ti − ti−1)α−1c

+ (t− tk)α−1

Γ(α)

[∫ tk

tk−1
(tk − s)α−1vn(s) ds

+
k−1∑
i=1

k−i∏
j=1

(tk−j+1 − tk−j)α−1
∫ ti

ti−1
(ti − s)α−1vn(s) ds


+ (t− tk)α−1

Γ(α)

Ik(y(t−k )) +
k−1∑
i=1

k−i∏
j=1

(tk−j+1 − tk−j)α−1Ii(y(t−i ))


+ 1
Γ(α)

∫ t

tk

(t− s)α−1vn(s) ds.

We use the fact that F has compact value and by passing (if necessary) onto a
subsequence to obtain that vn converges to v in L1([0, T ],R), we get v ∈ SF,y, and for
each t ∈ (0, T ], we have

un(t) → u(t) =(t− tk)α−1
k∏

i=1
(ti − ti−1)α−1c

+ (t− tk)α−1

Γ(α)

[∫ tk

tk−1
(tk − s)α−1v(s) ds

+
k−1∑
i=1

k−i∏
j=1

(tk−j+1 − tk−j)α−1
∫ ti

ti−1
(ti − s)α−1v(s) ds


+ (t− tk)α−1

Γ(α)

Ik(y(t−k )) +
k−1∑
i=1

k−i∏
j=1

(tk−j+1 − tk−j)α−1Ii(y(t−i ))


+ 1
Γ(α)

∫ t

tk

(t− s)α−1v(s) ds.

Hence, u ∈ F (y).

Now, we will prove the existence of a real number δ < 1 for which

Hd(F (x), F (y)) ≤ δ∥x− y∥P C∗ , for all x, y ∈ PC∗([0, T ],R)

For each x, y ∈ PC∗([0, T ],R) and h1 ∈ P (x), we can find v1(t) ∈ F (t, x(t)) such
that, for all t ∈ (0, T ],

h1(t) =(t− tk)α−1
k∏

i=1
(ti − ti−1)α−1c
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+ (t− tk)α−1

Γ(α)

[∫ tk

tk−1
(tk − s)α−1v1(s) ds

+
k−1∑
i=1

k−i∏
j=1

(tk−j+1 − tk−j)α−1
∫ ti

ti−1
(ti − s)α−1v1(s) ds


+ (t− tk)α−1

Γ(α)

Ik(x(t−k )) +
k−1∑
i=1

k−i∏
j=1

(tk−j+1 − tk−j)α−1Ii(x(t−i ))


+ 1
Γ(α)

∫ t

tk

(t− s)α−1v1(s) ds.

From (H3), we have
Hd(F (t, x(t)), F (t, y(t))) ≤ p(t)|x(t) − y(t)|.

Consequently, exists w ∈ F (t, y(t)) such that
|v1(t) − w| ≤ p(t)|x(t) − y(t)|, t ∈ (0, T ].

Consider the map U from (0, T ] into P(R) defined by
U(t) := {w(t) ∈ R : |v1(t) − w| ≤ p(t)|x(t) − y(t)|}.

From [9, Proposition III. 4], the intersection between U(t) and F (t, y(t)) is a measur-
able set. Therefore, we can find a measurable selection v2(·) for U(·) ∩ F (·, y(·)). So,
v2(t) ∈ F (t, y(t)) and

|v1(t) − v2(t)| ≤ p(t)|x(t) − y(t)|, for all 0 < t ≤ T .

For every 0 < t ≤ T , we define

h1(t) =(t− tk)α−1
k∏

i=1
(ti − ti−1)α−1c

+ (t− tk)α−1

Γ(α)

[∫ tk

tk−1
(tk − s)α−1v2(s) ds

+
k−1∑
i=1

k−i∏
j=1

(tk−j+1 − tk−j)α−1
∫ ti

ti−1
(ti − s)α−1v2(s) ds


+ (t− tk)α−1

Γ(α)

Ik(y(t−k )) +
k−1∑
i=1

k−i∏
j=1

(tk−j+1 − tk−j)α−1Ii(y(t−i ))


+ 1
Γ(α)

∫ t

tk

(t− s)α−1v2(s) ds.

Thus,
|(t− tk)1−αh1(t) − (t− tk)1−αh2(t)|

≤ 1
Γ(α)

[∫ tk

tk−1
(tk − s)α−1|v2(s) − v1(s)| ds
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+
k−1∑
i=1

k−i∏
j=1

(tk−j+1 − tk−j)α−1
∫ ti

ti−1
(ti − s)α−1|v2(s) − v1(s)| ds


+ 1

Γ(α)

|Ik(y(t−k )) − Ik(x(t−k ))| +
k−1∑
i=1

k−i∏
j=1

(tk−j+1 − tk−j)α−1|Ii(y(t−i )) − Ii(x(t−i ))|


+ (t− tk)1−α

Γ(α)

∫ t

tk

(t− s)α−1|v2(s) − v1(s)| ds.

Hence,

∥h1 − h2∥P C∗ ≤
[
Tα∥p∥∞Γ(α)(1 +mTα−1)

Γ(2α) + mTα−1
0 L

Γ(α)

]
∥x− y∥P C∗ ,

where T0 = mini=1,...,m(ti+1 − ti). Interchange x by y in the previous computation, we
obtain

Hd(P (x), P (y)) ≤ δ∥x− y∥P C∗ ,

where δ = T α∥p∥∞Γ(α)(1+mT α−1)
Γ(2α) + mT α−1

0 L

Γ(α) < 1. Hence, P is a contraction, and from
Lemma 3.4, it has a fixed point y considered as a solution of (1.1).

Step 2. Structure of the solutions set. Let

SF (c) = {y ∈ PC∗([0, T ],R) : y is solution of (1.1)}.

We will prove that SF (c) is compact in PC∗([0, T ],R). Let {yn}n∈N ∈ SF (c), then
there exists vn ∈ SF,yn and t ∈ J such that

yn(t) =(t− tk)α−1
k∏

i=1
(ti − ti−1)α−1c

+ (t− tk)α−1

Γ(α)

[∫ tk

tk−1
(tk − s)α−1vn(s) ds

+
k−1∑
i=1

k−i∏
j=1

(tk−j+1 − tk−j)α−1
∫ ti

ti−1
(ti − s)α−1vn(s) ds


+ (t− tk)α−1

Γ(α)

Ik(y(t−k )) +
k−1∑
i=1

k−i∏
j=1

(tk−j+1 − tk−j)α−1Ii(y(t−i ))


+ 1
Γ(α)

∫ t

tk

(t− s)α−1vn(s) ds.

From (H1) and (H2), there exists M1 > 0 such that ∥yn∥|P C∗ ≤ M1 for every n ≥ 1,
and the set {y1, y2, . . . , yn, . . .} is equicontinuous in PC∗([0, T ],R). By using Theorem
3.1, we can find a subsequence of (yn) (still denoted (yn)) converges to y in the space
PC∗([0, T ],R. Now, we will prove the existence of v(·) ∈ F (·, y(·)) and an element
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t ∈ J such that

y(t) =(t− tk)α−1
k∏

i=1
(ti − ti−1)α−1c

+ (t− tk)α−1

Γ(α)

[∫ tk

tk−1
(tk − s)α−1v(s) ds

+
k−1∑
i=1

k−i∏
j=1

(tk−j+1 − tk−j)α−1
∫ ti

ti−1
(ti − s)α−1v(s) ds


+ (t− tk)α−1

Γ(α)

Ik(y(t−k )) +
k−1∑
i=1

k−i∏
j=1

(tk−j+1 − tk−j)α−1Ii(y(t−i ))


+ 1
Γ(α)

∫ t

tk

(t− s)α−1v(s) ds.

Use the fact that F (·, ·) is upper semi-continuous, we can show that for every positive
real number ε, there exists a positive integer n0 such that

vn(t) ∈ F (t, yn(t)) ⊂ F (t, yn(t)) + εB(0, 1) a.e. t ∈ J, for every n ≥ n0.

Using the compactness of F (·, ·) we get the subsequence vnm(·) such that

vnm(·) → v(·) and v(t) ∈ F (t, y(t)) a.e. t ∈ J.

From (H1), we have
vnm(·) ≤ atα−1M1 + b a.e. t ∈ J.

Using Lebesgue’s dominated convergence theorem, we obtain that v ∈ L1(J,R), so
v ∈ SF,y. Therefore, for all t ∈ J

y(t) =(t− tk)α−1
k∏

i=1
(ti − ti−1)α−1c

+ (t− tk)α−1

Γ(α)

[∫ tk

tk−1
(tk − s)α−1v(s) ds

+
k−1∑
i=1

k−i∏
j=1

(tk−j+1 − tk−j)α−1
∫ ti

ti−1
(ti − s)α−1v(s) ds


+ (t− tk)α−1

Γ(α)

Ik(y(t−k )) +
k−1∑
i=1

k−i∏
j=1

(tk−j+1 − tk−j)α−1Ii(y(t−i ))


+ 1
Γ(α)

∫ t

tk

(t− s)α−1v(s) ds.

Then SF (c) is compact.
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Let f ∈ F be a function which is mLL. Consider the following single-valued problem

(3.5)


RLDαy(t) = f(t, y(t)) a.e. t ∈ J = (0, T ], t ̸= tk,

lim
t−→0+

t1−αy(t) = c,

∆∗y |tk
= Ik(y(t−k )).

Using Banach fixed point theorem, we can prove easily that the problem (3.5) has a
unique solution x. Consider the homotopy h : SF (c) × [0, 1] → SF (c) defined by

h(y, λ) :=
{
y, for λ = 1 and y ∈ SF (c),
x, for λ = 0.

Note that
h(y, λ)(t) =

{
y(t), for 0 < t ≤ λT,
x(t), for λT < t ≤ T.

We will show that h is a continuous homotopy. Let (yn, λn) ∈ SF (c) × [0, 1] such that
(yn, λn) → (y, λ). We shall show that h(yn, λn) → h(y, λ). We have

h(yn, λn)(t) =
{
yn(t), for t ∈ (0, λnT ],
x(t), for (λnT, T ].

(a) If limn→∞ λn = 0, then H(y, 0)(t) = x(t), for t ∈ (0, T ], hence
∥H(yn, λn) −H(y, λ)∥P C∗ ≤ ∥yn − y∥P C∗ + ∥yn − x∥[0,λnT ],

which tends to 0 as n → +∞. The case limn→∞ λn = 1 can be processed in the same
way.

(b) If λn ̸= 0 and 0 < limn−→∞ λn = λ < 1. We distinguish two sub-cases.

(i) Since yn ∈ SF (c), there exists vn ∈ SF,yn such that for t ∈ (0, λnT ]

yn(t) =(t− tk)α−1
k∏

i=1
(ti − ti−1)α−1c

+ (t− tk)α−1

Γ(α)

[∫ tk

tk−1
(tk − s)α−1vn(s) ds

+
k−1∑
i=1

k−i∏
j=1

(tk−j+1 − tk−j)α−1
∫ ti

ti−1
(ti − s)α−1vn(s) ds


+ (t− tk)α−1

Γ(α)

Ik(yn(t−k )) +
k−1∑
i=1

k−i∏
j=1

(tk−j+1 − tk−j)α−1Ii(yn(t−i ))


+ 1
Γ(α)

∫ t

tk

(t− s)α−1vn(s) ds.

Since yn → y as n → ∞, there exists a positive real number r > 0 such that
∥yn∥P C∗ ≤ r, and as the function F (·, ·) is upper semi-continuous, for every
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positive real number ε, there exists a positive integer n0 such that for every
n ≥ n0, we have

vn(t) ∈ F (t, yn(t)) ⊂ F (t, yn(t)) + εB(0, 1) a.e. t ∈ J.

Using the fact that F (·, ·) has compact values, we can obtain the subsequence
vnm(·) such that

vnm(·) → v(·) and v(t) ∈ F (t, y(t)) a.e. t ∈ J.

From (H1), we have

vnm(·) ≤ atα−1M1 + b a.e. t ∈ J.

Using Lebesgue’s dominated convergence theorem, we get v ∈ L1(J,R), so
v ∈ SF,y. Since Ik are continuous functions, then, for all t ∈ J , we get

y(t) =(t− tk)α−1
k∏

i=1
(ti − ti−1)α−1c

+ (t− tk)α−1

Γ(α)

[∫ tk

tk−1
(tk − s)α−1v(s) ds

+
k−1∑
i=1

k−i∏
j=1

(tk−j+1 − tk−j)α−1
∫ ti

ti−1
(ti − s)α−1v(s) ds


+ (t− tk)α−1

Γ(α)

Ik(y(t−k )) +
k−1∑
i=1

k−i∏
j=1

(tk−j+1 − tk−j)α−1Ii(y(t−i ))


+ 1
Γ(α)

∫ t

tk

(t− s)α−1v(s) ds.

(ii) Since t ∈ (λnT, T ], then

h(yn, λn)(t) = h(y, λ)(t) = x.

Thus,
∥h(yn, λn) − h(y, λ)∥P C∗ → 0 n → ∞.

Consequently, h is continuous, and hence, SF (c) is contractible to the point x.
Therefore, SF (c) is an acyclic space. □

Example 3.1 (An application). Consider

(3.6)



RLD
1
2y(t) ∈ F (t, y(t)) a.e. t ∈ (0, 1], t ̸= 1

2 ,

lim
t→0+

t
1
2y(t) = 1

4 ,

∆∗y |t= 1
2

= 1
9

∣∣∣∣∣sin
(
y

(
1
2

−))∣∣∣∣∣+ 1,
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where T = 1, m = 1, t1 = 1
2 ,

F (t, x) =
[
0, 1

9 sin x+ |x|
t+ 9 + 1

9

]
and

I1(u) = 1
9 | sin(u)| + 1, for u ∈ R.

Clearly,

sup
v∈F (t,x)

|v| ≤1
9 + 1

9 | sin x| + |x|
t+ 9 ,

Hd(F (t, x), F (t, y)) ≤
[ 1
t+ 9 + 1

9

]
|x− y|

and
|I1(u)| ≤ 1

9 | sin(u)| + 1, |I1(u) − I1(v)| ≤ 1
9 |u− v|.

Let p(t) = 1
9 + 1

t+9 . Then ∥p∥∞ = 2
9 and

Tα∥p∥∞Γ(α)(1 +mTα−1)
Γ(2α) + mTα−1

0 L

Γ(α) ≃ 0, 73965 < 1.

Theorem 3.2 confirms that (3.6) has at least one solution. In addition, it is clear that
F is a mLL-selectionable multivalued map (i.e., the function f(t, u) = 1

9 sin u+ |u|
t+9 + 1

9
is measurable, locally-Lipchitzian) with compact and convex values. Consequently,
the solution set is contractible and compact, and hence it is acyclic.
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