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DIFFERENTIAL SUBORDINATION RESULTS FOR
HOLOMORPHIC FUNCTIONS RELATED TO GENERALIZED

DIFFERENTIAL OPERATOR

ABBAS KAREEM WANAS1

Abstract. In the present investigation, we use the principle of subordination to
introduce a new family for holomorphic functions defined by generalized differential
operator. Also we establish some interesting geometric properties for functions
belonging to this family.

1. Introduction and Preliminaries

Let Am stands for the family of functions f of the form:

(1.1) f(z) = z +
∞∑

n=m+1
anz

n (m ∈ N = {1, 2, . . . } , z ∈ U),

which are holomorphic in the open unit disk U = {z ∈ C : |z| < 1}.
For two functions f and g holomorphic in U , we say that the function f is subor-

dinate to g, written f ≺ g or f(z) ≺ g(z)(z ∈ U), if there exists a Schwarz function
w holomorphic in U with w(0) = 0 and |w(z)| < 1, z ∈ U , such that f(z) = g(w(z)),
z ∈ U . In particular, if the function g is univalent in U , then f ≺ g if and only if
f(0) = g(0) and f(U) ⊂ g(U) (see [6]).

If f ∈ Am is given by (1.1) and g ∈ Am given by

g(z) = z +
∞∑

n=m+1
bnz

n (m ∈ N = {1, 2, . . . } , z ∈ U),
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then the Hadamard product (or convolution) f ∗ g of f and g is defined by

(f ∗ g)(z) = z +
∞∑

n=m+1
anbnz

n = (g ∗ f)(z).

A function f ∈ Am is said to be starlike of order ρ in U if

Re
{
zf ′(z)
f(z)

}
> ρ (0 ≤ ρ < 1, z ∈ U).

Indicate the class of all starlike functions of order ρ in U by S∗(ρ).
A function f ∈ Am is said to be prestarlike of order ρ in U if

z

(1 − z)2(1−ρ) ∗ f(z) ∈ S∗(ρ) (ρ < 1).

Indicate the class of all prestarlike functions of order ρ in U by Re(ρ).
Clearly a function f ∈ Am is in the class Re(0) if and only if f is convex univalent

in U and Re(1
2) = S∗(1

2).
For σ ∈ N0 = N ∪ {0}, α, δ ≥ 0, τ, λ, β > 0 and α ̸= λ, we consider the generalized

differential operator Aσ
τ,λ,δ(α, β) : Am → Am, introduced by Amourah and Darus [2],

where

(1.2) Aσ
τ,λ,δ(α, β)f (z) = z +

∞∑
n=m+1

[
1 + (n− 1) ((λ− α)β + nδ)

τ + λ

]σ

anz
n.

It is readily verified from (1.2) that

z
(
Aσ

τ,λ,δ(α, β)f (z)
)′

= τ + λ

(λ− α)β + nδ
Aσ+1

τ,λ,δ(α, β)f (z)(1.3)

+
(

1 − τ + λ

(λ− α)β + nδ

)
Aσ

τ,λ,δ(α, β)f (z) .

Here, we would point out some of the special cases of the operator defined by (1.2)
can be found in [1, 4, 5, 11].

Let H be the class of functions h with h(0) = 1, which are holomorphic and convex
univalent in U .

Definition 1.1. A function f ∈ Am is said to be in the class M(η, σ, τ, λ, δ, α, β,m;h)
if it satisfies the subordination condition:
(1.4)
1
z

[(
1 − η (τ + λ)

(λ− α) β + nδ

)
Aσ

τ,λ,δ(α, β)f (z) + η (τ + λ)
(λ− α) β + nδ

Aσ+1
τ,λ,δ(α, β)f (z)

]
≺ h(z),

where η ∈ C, σ ∈ N0 = N ∪ {0}, α, δ ≥ 0, τ, λ, β > 0, α ̸= λ and h ∈ H.

Now, we need the following lemmas that will be used to prove our main results.
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Lemma 1.1 ([8]). Let g be holomorphic in U and let h be holomorphic and convex
univalent in U with h(0) = g(0). If

(1.5) g(z) + 1
µ
zg′(z) ≺ h(z),

where Re(µ) ≥ 0 and µ ̸= 0, then

g(z) ≺ h̆(z) = µz−µ
∫ z

0
tµ−1h(t)dt ≺ h(z)

and h̆ is the best dominant of (1.5).

Lemma 1.2 ([10]). Let ρ < 1, f ∈ S∗(ρ) and g ∈ Re(ρ). Then, for any holomorphic
function F in U

g ∗ (fF )
g ∗ f

(U) ⊂ c̄o (F (U)) ,

where c̄o (F (U)) denotes the closed convex hull of F (U).

Such type of study was carried out by various authors for another classes, like, Liu
[7], Prajapat and Raina [9], Atshan and Wanas [3], Wanas [12] and Wanas and Majeed
[13].

2. Main Results

Theorem 2.1. Let 0 ≤ η < ε. Then
M(ε, σ, τ, λ, δ, α, β,m;h) ⊂ M(η, σ, τ, λ, δ, α, β,m;h).

Proof. Let 0 ≤ η < ε and f ∈ M(ε, σ, τ, λ, δ, α, β,m;h). Assume that

(2.1) g(z) =
Aσ

τ,λ,δ(α, β)f (z)
z

= 1 +
∞∑

n=m+1

[
1 + (n− 1) ((λ− α)β + nδ)

τ + λ

]σ

anz
n−1.

It is obvious that the function g is holomorphic in U and g(0) = 1. Since f ∈
M(ε, σ, τ, λ, δ, α, β,m;h), then we deduce that
(2.2)
1
z

[(
1 − ε (τ + λ)

(λ− α) β + nδ

)
Aσ

τ,λ,δ(α, β)f (z) + ε (τ + λ)
(λ− α) β + nδ

Aσ+1
τ,λ,δ(α, β)f (z)

]
≺ h(z).

Differentiating both sides of (2.1) with respect to z and using (1.3) and (2.2), we find
that

1
z

[(
1 − ε (τ + λ)

(λ− α) β + nδ

)
Aσ

τ,λ,δ(α, β)f (z) + ε (τ + λ)
(λ− α) β + nδ

Aσ+1
τ,λ,δ(α, β)f (z)

]

=1
z

[
(1 − ε)Aσ

τ,λ,δ(α, β)f (z) + ε

(
1 − τ + λ

(λ− α) β + nδ

)
Aσ

τ,λ,δ(α, β)f (z)

+ ε (τ + λ)
(λ− α) β + nδ

Aσ+1
τ,λ,δ(α, β)f (z)

]
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=(1 − ε)
Aσ

τ,λ,δ(α, β)f (z)
z

+ ε
(
Aσ

τ,λ,δ(α, β)f (z)
)′

=
Aσ

τ,λ,δ(α, β)f (z)
z

+ εz

(
Aσ

τ,λ,δ(α, β)f (z)
z

)′

=g(z) + εzg′(z) ≺ h(z).

An application of Lemma 1.1 with µ = 1
ε
, yields

(2.3) g(z) ≺ h(z).
Evidently, 0 ≤ η

ε
< 1 and that h is convex univalent in U , it follows from (2.1), (2.2)

and (2.3) that
1
z

[(
1 − η (τ + λ)

(λ− α) β + nδ

)
Aσ

τ,λ,δ(α, β)f (z) + η (τ + λ)
(λ− α) β + nδ

Aσ+1
τ,λ,δ(α, β)f (z)

]

= η

εz

[(
1 − ε (τ + λ)

(λ− α) β + nδ

)
Aσ

τ,λ,δ(α, β)f (z) + ε (τ + λ)
(λ− α) β + nδ

Aσ+1
τ,λ,δ(α, β)f (z)

]

+
(

1 − η

ε

)
g(z) ≺ h(z).

Hence, f ∈ M(η, σ, τ, λ, δ, α, β,m;h) and the proof of Theorem 2.1 is completed. □

Theorem 2.2. Let Re
{

τ+λ
(λ−α)β+nδ

}
≥ 0 and τ+λ

(λ−α)β+nδ
̸= 0. Then

M(η, σ + 1, τ, λ, δ, α, β,m;h) ⊂ M(η, σ, τ, λ, δ, α, β,m;h).

Proof. Let f ∈ M(η, σ + 1, τ, λ, δ, α, β,m;h) and suppose that
(2.4)

g(z) = 1
z

[(
1 − η (τ + λ)

(λ− α) β + nδ

)
Aσ

τ,λ,δ(α, β)f (z) + η (τ + λ)
(λ− α) β + nδ

Aσ+1
τ,λ,δ(α, β)f (z)

]
.

By taking the derivatives in the both sides of (2.4) with respect to z and using (1.3),
we conclude that

g(z) + zg′(z)(2.5)

=1
z

[(
1 − η (τ + λ)

(λ− α) β + nδ

)(
1 − τ + λ

(λ− α) β + nδ

)
Aσ

τ,λ,δ(α, β)f (z)

+
(

1 + η

(
1 − 2 (τ + λ)

(λ− α) β + nδ

))
τ + λ

(λ− α) β + nδ
Aσ+1

τ,λ,δ(α, β)f (z)

+η
(

τ + λ

(λ− α) β + nδ

)2

Aσ+2
τ,λ,δ(α, β)f (z)

 .
In the light of (2.4) and (2.5), we deduce that

τ + λ

(λ− α) β + nδ
g(z) + zg′(z)
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=1
z

[(
1 − η (τ + λ)

(λ− α) β + nδ

)(
τ + λ

(λ− α) β + nδ

)
Aσ+1

τ,λ,δ(α, β)f (z)

+η
(

τ + λ

(λ− α) β + nδ

)2

Aσ+2
τ,λ,δ(α, β)f (z)

 ,
that is

g(z) + (λ− α) β + nδ

τ + λ
zg′(z) =1

z

[(
1 − η (τ + λ)

(λ− α) β + nδ

)
Aσ+1

τ,λ,δ(α, β)f (z)(2.6)

+ η (τ + λ)
(λ− α) β + nδ

Aσ+2
τ,λ,δ(α, β)f (z)

]
.

Since f ∈ M(η, σ + 1, τ, λ, δ, α, β,m;h), then it follows from (2.6) that

g(z) + (λ− α) β + nδ

τ + λ
zg′(z) ≺ h(z),

where
Re

{
τ + λ

(λ− α) β + nδ

}
≥ 0, τ + λ

(λ− α) β + nδ
̸= 0.

An application of Lemma 1.1, with µ = τ+λ
(λ−α)β+nδ

, yields g(z) ≺ h(z). In view of (2.4),
we have
1
z

[(
1 − η (τ + λ)

(λ− α) β + nδ

)
Aσ

τ,λ,δ(α, β)f (z) + η (τ + λ)
(λ− α) β + nδ

Aσ+1
τ,λ,δ(α, β)f (z)

]
≺ h(z).

This shows that f ∈ M(η, σ, τ, λ, δ, α, β,m;h) and the proof of Theorem 2.2 is com-
pleted. □

Theorem 2.3. Let η > 0, γ > 0 and f ∈ M(η, σ, τ, λ, δ, α, β,m; γh+1−γ). If γ ≤ γ0,
where

(2.7) γ0 = 1
2

1 − 1
η

∫ 1

0

u
1
η

−1

1 + u
du

−1

,

then f ∈ M(0, σ, τ, λ, δ, α, β,m;h). The bound γ0 is the sharp when h(z) = 1
1−z

.

Proof. Assume that

(2.8) g(z) =
Aσ

τ,λ,δ(α, β)f (z)
z

.

Let f ∈ M(η, σ, τ, λ, δ, α, β,m; γh+ 1 − γ) with η > 0 and γ > 0. Then we obtain
g(z) + ηzg′(z)

=1
z

[(
1 − η (τ + λ)

(λ− α) β + nδ

)
Aσ

τ,λ,δ(α, β)f (z) + η (τ + λ)
(λ− α) β + nδ

Aσ+1
τ,λ,δ(α, β)f (z)

]
≺γh(z) + 1 − γ.
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Making use of Lemma 1.1, we observe that

(2.9) g(z) ≺ γ

η
z− 1

η

∫ z

0
t

1
η

−1h(t)dt+ 1 − γ = (h ∗ ϕ)(z),

where

(2.10) ϕ(z) = γ

η
z− 1

η

∫ z

0

t
1
η

−1

1 − t
dt+ 1 − γ.

If 0 < γ ≤ γ0, where γ0 > 1 is given by (2.7), then we find from (2.10) that

(2.11) Re (ϕ(z)) = γ

η

∫ 1

0
u

1
η

−1 Re
( 1

1 − uz

)
du+ 1 − γ >

γ

η

∫ 1

0

u
1
η

−1

1 + u
du+ 1 − γ ≥ 1

2 .

By using (2.8) and (2.9), we have

(2.12)
Aσ

τ,λ,δ(α, β)f (z)
z

≺ (h ∗ ϕ)(z).

In the light of (2.11), we note that the function ϕ(z) has the Herglotz representation

(2.13) ϕ(z) =
∫

|x|=1

dµ(x)
1 − xz

(z ∈ U),

where µ(x) is a probability measure defined on the unit circle |x| = 1 and∫
|x|=1

dµ(x) = 1.

Since h is convex univalent in U , then we deduce from (2.12) and (2.13) that
Aσ

τ,λ,δ(α, β)f (z)
z

≺ (h ∗ ϕ)(z) =
∫

|x|=1
ϕ(xz) dµ(x) ≺ h(z).

This shows that f ∈ M(0, σ, τ, λ, δ, α, β,m;h). For h(z) = 1
1−z

and f ∈ Am defined
by

Aσ
τ,λ,δ(α, β)f (z)

z
= γ

η
z− 1

η

∫ z

0

t
1
η

−1

1 − t
dt+ 1 − γ,

we obtain
1
z

[(
1 − η (τ + λ)

(λ− α) β + nδ

)
Aσ

τ,λ,δ(α, β)f (z) + η (τ + λ)
(λ− α) β + nδ

Aσ+1
τ,λ,δ(α, β)f (z)

]
=γh(z) + 1 − γ.

Thus, f ∈ M(η, σ, τ, λ, δ, α, β,m; γh+ 1 − γ). Also, for γ > γ0 , we have

Re

{
Aσ

τ,λ,δ(α, β)f (z)
z

}
−→ γ

η

∫ 1

0

u
1
η

−1

1 + u
du+ 1 − γ <

1
2 (z → −1),

which implies that f /∈ M(0, σ, τ, λ, δ, α, β,m;h). Thus, the bound γ0 cannot be
increased when h(z) = 1

1−z
. This completes the proof of the theorem. □
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Theorem 2.4. Let f ∈ M(η, σ, τ, λ, δ, α, β,m;h) be defined as in (1.1). Then the
function I defined by

I(z) = c+ 1
zc

∫ z

0
tc−1f(t)dt (Re(c) > −1),

is also in the class M(η, σ, τ, λ, δ, α, β,m;h).

Proof. Let f ∈ M(η, σ, τ, λ, δ, α, β,m;h) be defined as in (1.1). Then, we find that
(2.14)
1
z

[(
1 − η (τ + λ)

(λ− α) β + nδ

)
Aσ

τ,λ,δ(α, β)f (z) + η (τ + λ)
(λ− α) β + nδ

Aσ+1
τ,λ,δ(α, β)f (z)

]
≺ h(z).

We can easily see that

(2.15) I(z) = c+ 1
zc

∫ z

0
tc−1f(t)dt = z +

∞∑
n=m+1

c+ 1
c+ n

anz
n.

We have from (2.15) that I ∈ Am and

(2.16) f(z) = cI(z) + zI ′(z)
c+ 1 .

Define the function J by
(2.17)

J(z) = 1
z

[(
1 − η (τ + λ)

(λ− α) β + nδ

)
Aσ

τ,λ,δ(α, β)I (z) + η (τ + λ)
(λ− α) β + nδ

Aσ+1
τ,λ,δ(α, β)I (z)

]
.

Differentiating both sides of (2.17) with respect to z and using (2.14) and (2.16), we
obtain

1
z

[(
1 − η (τ + λ)

(λ− α) β + nδ

)
Aσ

τ,λ,δ(α, β)f (z) + η (τ + λ)
(λ− α) β + nδ

Aσ+1
τ,λ,δ(α, β)f (z)

]

=1
z

[(
1 − η (τ + λ)

(λ− α) β + nδ

)
Aσ

τ,λ,δ(α, β)
(
cI(z) + zI ′(z)

c+ 1

)

+ η (τ + λ)
(λ− α) β + nδ

Aσ+1
τ,λ,δ(α, β)

(
cI(z) + zI ′(z)

c+ 1

)]

= c

z(c+ 1)

[(
1 − η (τ + λ)

(λ− α) β + nδ

)
Aσ

τ,λ,δ(α, β)I (z)

+ η (τ + λ)
(λ− α) β + nδ

Aσ+1
τ,λ,δ(α, β)I (z)

]

+ 1
z(c+ 1)

[(
1 − η (τ + λ)

(λ− α) β + nδ

)
Aσ

τ,λ,δ(α, β) (zI ′(z))

+ η (τ + λ)
(λ− α) β + nδ

Aσ+1
τ,λ,δ(α, β) (zI ′(z))

]

= c

c+ 1J(z) + 1
c+ 1 (zJ ′(z) + J(z)) = J(z) + 1

c+ 1zJ
′(z) ≺ h(z).



122 A. K. WANAS

An application of Lemma 1.1 with µ = c+ 1, yields J(z) ≺ h(z). By using (2.17), we
get
1
z

[(
1 − η (τ + λ)

(λ− α) β + nδ

)
Aσ

τ,λ,δ(α, β)I (z) + η (τ + λ)
(λ− α) β + nδ

Aσ+1
τ,λ,δ(α, β)I (z)

]
≺ h(z),

which implies that I ∈ M(η, σ, τ, λ, δ, α, β,m;h). □

Theorem 2.5. Let f ∈ M(η, σ, τ, λ, δ, α, β,m;h), g ∈ Am and

(2.18) Re
{
g(z)
z

}
>

1
2 .

Then f ∗ g ∈ M(η, σ, τ, λ, δ, α, β,m;h).

Proof. Let f ∈ M(η, σ, τ, λ, δ, α, β,m;h) and g ∈ Am. Then, we have
1
z

[(
1 − η (τ + λ)

(λ− α) β + nδ

)
Aσ

τ,λ,δ(α, β) (f ∗ g) (z)(2.19)

+ η (τ + λ)
(λ− α) β + nδ

Aσ+1
τ,λ,δ(α, β) (f ∗ g) (z)

]

=
(

1 − η (τ + λ)
(λ− α) β + nδ

)(
g(z)
z

)
∗
(
Aσ

τ,λ,δ(α, β)f(z)
z

)

+ η (τ + λ)
(λ− α) β + nδ

(
g(z)
z

)
∗
(
Aσ+1

τ,λ,δ(α, β)f(z)
z

)
=
(
g(z)
z

)
∗ φ(z),

where

φ(z) = 1
z

[(
1 − η (τ + λ)

(λ− α) β + nδ

)
Aσ

τ,λ,δ(α, β)f (z) + η (τ + λ)
(λ− α) β + nδ

Aσ+1
τ,λ,δ(α, β)f (z)

](2.20)

≺ h(z).

In view of (2.18), we note that the function g(z)
z

has the Herglotz representation

(2.21) g(z)
z

=
∫

|x|=1

dµ(x)
1 − xz

(z ∈ U),

where µ(x) is a probability measure defined on the unit circle |x| = 1 and∫
|x|=1

dµ(x) = 1.

Since h is convex univalent in U , then we find from (2.19), (2.20) and (2.21) that
1
z

[(
1 − η (τ + λ)

(λ− α) β + nδ

)
Aσ

τ,λ,δ(α, β) (f ∗ g) (z) + η (τ + λ)
(λ− α) β + nδ

× Aσ+1
τ,λ,δ(α, β) (f ∗ g) (z)

]
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=
∫

|x|=1
φ(xz) dµ(x) ≺ h(z).

This shows that f ∗ g ∈ M(η, σ, τ, λ, δ, α, β,m;h). □

Theorem 2.6. Let f ∈ M(η, σ, τ, λ, δ, α, β,m;h) and g ∈ Am be prestarlike of order
α, (α < 1). Then f ∗ g ∈ M(η, σ, τ, λ, δ, α, β,m;h).

Proof. For f ∈ M(η, σ, τ, λ, δ, α, β,m;h) and g ∈ Am, from (2.19) (used in the proof
of Theorem 2.5), we can write

1
z

[(
1 − η (τ + λ)

(λ− α) β + nδ

)
Aσ

τ,λ,δ(α, β) (f ∗ g) (z) + η (τ + λ)
(λ− α) β + nδ

(2.22)

× Aσ+1
τ,λ,δ(α, β) (f ∗ g) (z)

]
(2.23)

=g(z) ∗ (zφ(z))
g(z) ∗ z

(z ∈ U),

where φ(z) is defined as in (2.20). Since h is convex univalent in U , ψ(z) ≺ h(z),
g(z) ∈ Re(α) and z ∈ S∗(α), α < 1, it follows from (2.22) and Lemma 1.2, we obtain
the result. □
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