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EXTREMAL GRAPHS FOR EXPONENTIAL VDB INDICES

ROBERTO CRUZ1 AND JUAN RADA1

Abstract. We find the extremal graphs for the exponential of well known vertex-
degree-based topological indices over Gn, the set of graphs with n non-isolated
vertices.

1. Introduction

A topological index is a number associated to a graph (for motivation and chemical
applications see [2, 10, 11, 16, 17]). One important class of topological indices are
the so-called vertex-degree-based (VDB for short) topological indices, which strongly
depend on the degree of the vertices of the graph [1,3, 6, 8, 9, 12].

More precisely, let Gn be the set of graphs with n non-isolated vertices. Consider
the function m : Gn → R

(n−1)n
2 defined as m (G) = (mij (G))(i,j)∈K for every G ∈ Gn,

where
K = {(i, j) ∈ N × N : 1 ≤ i ≤ j ≤ n− 1}

and mij (G) is the number of edges in G joining vertices of degree i and j. We
order K lexicographically so that m (G) is a vector of R

(n−1)n
2 , for each G ∈ Gn.

A VDB topological index over Gn is a function φ : Gn → R induced by a vector
φ = (φij)(i,j)∈K ∈ R

(n−1)n
2 , defined as

φ (G) = m (G) · φ,

the dot product of m (G) and φ as vectors in R
(n−1)n

2 [13]. In other words,
φ (G) =

∑
(i,j)∈K

mij (G)φij,
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for every G ∈ Gn.
The best known VDB topological indices are the following:
(a) the First Zagreb index [7], denoted by FZ and defined as φij = i + j for all

(i, j) ∈ K;
(b) the Second Zagreb index [7], denoted by SZ and defined as φij = ij;
(c) the Randić index [15], denoted by χ and defined as φij = 1√

ij
;

(d) the Harmonic index [20], denoted by H and defined as φij = 2
i+j

;
(e) the Geometric-Arithmetic index [18], denoted by GA and defined as φij = 2

√
ij

i+j
;

(f) the Sum-Connectivity index [19], denoted by SC and defined as φij = 1√
i+j

;
(g) the Atom-Bond-Connectivity index [4], denoted by ABC and defined as φij =√

i+j−2
ij

;

(h) the Augmented Zagreb index [5], denoted by AZ and defined as φij =
(

ij
i+j−2

)3
.

In a recent paper [14], the exponential of a VDB topological index φ = (φij)(i,j)∈K

was introduced as ψ = eφ ∈ R
(n−1)n

2 , defined as

ψij = eφij ,

for all (i, j) ∈ K. Among other things, it was shown in [14] that the exponential VDB
topological indices have good discrimination properties. In this paper we determine
the extremal graphs for the exponentials of all the best known VDB topological indices
listed above, over the set Gn.

Consider the VDB topological index φ = (φij)(i,j)∈K ∈ R
(n−1)n

2 . The vector φ can
be viewed as a function φ : K → R, where φ (x, y) = φxy for all (x, y) ∈ K. We define
the auxiliary function fφ : K → R defined as fφ (x, y) = xyφxy

x+y
. In order to find the

maximal and minimal values of φ over Gn, it is sufficiently to find the maximal and
minimal values of fφ over K [12]. Recall that

Kmin (fφ) =
{

(r, s) ∈ K : fφ (r, s) = min
(i,j)∈K

fφ (i, j)
}

and

Kmax (fφ) =
{

(p, q) ∈ K : fφ (p, q) = max
(i,j)∈K

fφ (i, j)
}
.

We use notations Kc
min (fφ) = K−Kmin (fφ) and Kc

max (fφ) = K−Kmax (fφ). In order
to compute Kmin (fφ) and Kmax (fφ), we will assume that φ is a real continuous and
differentiable function defined over the compact set

K̂ = {(x, y) ∈ R × R : 1 ≤ x ≤ y ≤ n− 1} .

Hence, fφ : K̂ → R defined as fφ (x, y) = xyφxy

x+y
for all (x, y) ∈ K̂, is also continuous

and differentiable over K̂.
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2. Extremal Values of Exponentials of VDB Topological Indices

Based on [12, Theorem 2.3] and [12, Theorem 2.7] we will compute the maximal
and minimal values of the exponentials of the VDB topological indices listed in the
Introduction.

Theorem 2.1. Let eFZ be the exponential of the first Zagreb index FZ. Then:
1. Kn is the unique maximal graph over Gn with respect to eFZ, with value

n−1
2 ne2(n−1);

2. if n is even (resp. odd), n
2K2 (resp. n−3

2 K2 ∪P3) is the unique minimal graph
over Gn with respect to eFZ, with value n

2 e
2 (resp. n−3

2 e2 + 2e3).

Proof. The associated function for eFZ over K̂ is

f
eFZ

(x, y) = xyex+y

x+ y
.

Note that

(2.1) ∂

∂x

(
xyex+y

x+ y

)
= y

ex+y

(x+ y)2

(
x2 + yx+ y

)
> 0,

for all (x, y) ∈ K̂.
1. By (2.1), the greatest value of f

eFZ
over K̂ is attained in the diagonal

D =
{
(x, y) ∈ K̂ : y = x

}
.

Note that (
f

eFZ
(x, x)

)′
=
(1

2xe
2x
)′

= 1
2e

2x (2x+ 1) > 0,(2.2)

for all x ∈ [1, n− 1]. It follows that

Kmax
(
f

eFZ

)
= {(n− 1, n− 1)} .

Now we apply [12, Theorem 2.3] to obtain

eFZ (G) ≤nf
eFZ

(n− 1, n− 1) = 1
2 (n− 1)ne2(n−1) = eFZ (Kn) .

Moreover, equality is obtained if and only if mrs (G) = 0 for all (r, s) ̸= (n− 1, n− 1).
This is precisely G = Kn.

2. By (2.1), the minimal value of f
eFZ

over K̂ is attained in the vertical line

V =
{
(x, y) ∈ K̂ : x = 1

}
.

Note that (
f

eFZ
(1, y)

)′
=
(
y
ey+1

y + 1

)′

= ey+1

(y + 1)2

(
y2 + y + 1

)
> 0,
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for all y ∈ [1, n− 1] . Hence,
Kmin

(
f

eFZ

)
= {(1, 1)} .

It follows from [12, Theorem 2.3] that if n is even, then

eFZ (G) ≥ nf
eFZ

(1, 1) = n

2 e
2 = eFZ

(
n

2K2

)
,

for all G ∈ Gn. Furthermore, equality is obtained if and only if mrs (G) = 0 for all
(r, s) ̸= (1, 1). This is precisely G = n

2K2.
Finally, assume that n is odd. From (2.1) and (2.2) we deduce that

f
eFZ

(1, 2) < f
eFZ

(x, y) ,
for all (x, y) ∈ K different from (1, 1) and (1, 2). Hence, by [12, Theorem 2.7],

eFZ (G) ≥ f
eFZ

(1, 1) (n− 3) + 3f
eFZ

(1, 2)

= n− 3
2 e2 + 2e3

= eFZ
(
n− 3

2 K2 ∪P3

)
,

for all G ∈ Gn. Equality occurs if and only if G = n−3
2 K2 ∪P3. □

An identical argument as in the proof of Theorem 2.1 works for the exponential of
the Second Zagreb index SZ and the Atom-Bond-Connectivity index ABC. We state
them without proof.
Theorem 2.2. Let eSZ be the exponential of the Second Zagreb index SZ. Then:

(a) Kn is the unique maximal graph over Gn with respect to eSZ, with value
1
2 (n− 1)ne(n−1)2

;

(b) if n is even (resp. odd), n
2K2 (resp. n−3

2 K2 ∪P3) is the unique minimal graph
over Gn with respect to eSZ, with value n

2 e (resp. n−3
2 e+ 2e2).

Theorem 2.3. Let eABC be the exponential of the ABC index. Then:
(a) Kn is the unique maximal graph over Gn with respect to eABC, with value

1
2 (n− 1)ne

1
n−1

√
2(n−2);

(b) if n is even (resp. odd), n
2K2 (resp. n−3

2 K2 ∪P3) is the unique minimal graph
over Gn with respect to eABC, with value n

2 (resp. n−3
2 + 2e

1√
2 ).

We next examine the exponential of the Harmonic index.
Theorem 2.4. Let eH be the exponential of the Harmonic index H. Then:

1. Kn is the unique maximal graph over Gn with respect to eH, with value
1
2 (n− 1)ne

1
n−1 ;
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2. Sn is the unique minimal graph over Gn with respect to eH, with value (n− 1) e 2
n .

Proof. The associated function for eH is

f
eH

(x, y) = xye
2

x+y

x+ y
.

Now

(2.3) ∂

∂x

xye 2
x+y

x+ y

 = ye
2

x+y
−2x+ xy + y2

(x+ y)3 > 0,

for all (x, y) ∈ K̂ − {(1, 1)} (in (1, 1) equals to zero).
1. By (2.3), the maximal value of f

eH
over K̂ is attained in the diagonal

D =
{
(x, y) ∈ K̂ : y = x

}
.

Note that (
f

eH
(x, x)

)′
=
(1

2xe
1
x

)′
= 1

2xe
1
x (x− 1) > 0,

for all x ∈ (1, n− 1] . Hence,

Kmax
(
f

eH

)
= {(n− 1, n− 1)} .

Now we apply [12, Theorem 2.3] to obtain

eH (G) ≤nf
eH

(n− 1, n− 1) = 1
2 (n− 1)ne

1
n−1 = eH (Kn) .

Moreover, equality holds if and only if mrs (G) = 0 for all (r, s) ̸= (n− 1, n− 1), i.e.,
G = Kn.

2. By (2.3), the minimal value of f
eH

over K̂ is attained in the vertical line

V =
{
(x, y) ∈ K̂ : x = 1

}
.

Note that (
f

eH
(1, y)

)′
=
y e 2

y+1

y + 1

′

= −e
2

y+1
y − 1

(y + 1)3 < 0,

for all y ∈ (1, n− 1] . It follows that,

Kmin
(
f

eH

)
= {(1, n− 1)} .

Now, by [12, Theorem 2.3],

eH (G) ≥ nf
eH

(1, n− 1) = (n− 1) e 2
n = eH (Sn) ,

for all G ∈ Gn. Equality holds if and only if mrs (G) = 0 for all (r, s) ̸= (1, n− 1), i.e.,
G =Sn. □
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The extremal values of the exponential of the Randić index χ and the Augmented-
Zagreb AZ can also be computed using an identical argument as in the proof of
Theorem 2.4. We state them without proof.

Theorem 2.5. ([14, Theorem 4.3]). Let eχ be the exponential of the Randić index χ.
Then:

(a) Kn is the unique maximal graph over Gn with respect to eχ, with value
1
2 (n− 1)ne

1
n−1 ;

(b) Sn is the unique minimal graph over Gn with respect to eχ, with value

(n− 1) e
1√

n−1 .

Theorem 2.6. Let eAZ be the exponential of the Augmented-Zagreb index AZ. Then:
(a) Kn is the unique maximal graph over Gn with respect to eAZ, with value

1
2 (n− 1)ne

(
(n−1)2
2(n−2)

)3

;

(b) Sn is the unique minimal graph over Gn with respect to eAZ, with value

(n− 1) e(
n−1
n−2)3

.

Next we consider the exponential of the Geometric-Arithmetic index GA.

Theorem 2.7. Let eGA be the exponential of the Geometric-Arithmetic index GA.
Then

(a) Kn is the unique maximal graph over Gn with respect to eGA, with value
1
2 (n− 1)ne;

(b) If n ≤ 34 is even (resp. odd), n
2K2 (resp. n−3

2 K2 ∪P3) is the unique minimal
graph over Gn with respect to eGA with value n

2 e (resp. n−3
2 e+ 2e 2

√
2

3 );
(c) If n ≥ 35, then Sn is the unique minimal graph over Gn with respect to eGA,

with value (n− 1) e 2
n

√
n−1.

Proof. The associated function for eGA is

f
eGA

(x, y) = xye
2√

xy

x+y

x+ y
.

Note that

(2.4) ∂

∂x

xye 2√
xy

x+y

x+ y

 = y2e2
√

xy

x+y

√
xy
(
x+ y + √

xy
)

− x2

√
xy (x+ y)3 > 0,

for all (x, y) ∈ K̂.
(a) By (2.4), the maximal value of f

eGA
over K̂ is attained in the diagonal

D =
{
(x, y) ∈ K̂ : y = x

}
.
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Note that (
f

eGA
(x, x)

)′
=
(1

2ex
)′

= 1
2e > 0,

for all x ∈ [1, n− 1] . Hence,

Kmax
(
f

eGA

)
= {(n− 1, n− 1)} .

It follows from [12, Theorem 2.3] that

eGA (G) ≤ nf
eGA

(n− 1, n− 1) = 1
2 (n− 1)ne,

for all G ∈ Gn. Equality holds if and only if mrs (G) = 0 for all (r, s) ̸= (n− 1, n− 1),
i.e., G = Kn.

(b) By (2.4), the minimal value of f
eGA

over K̂ is attained in the vertical line

V =
{
(x, y) ∈ K̂ : x = 1

}
.

The graph of the one variable function f
eGA

(1, y) = y
y+1e

2√
y

y+1 is shown in Figure 1.

Figure 1. Graph of f
eGA

(1, y).

The function f
eGA

(1, y) attains its maximal value at ymax ≈ 3.383, is strictly
decreasing for y > ymax, f

eGA
(1, y∗) = f

eGA
(1, 1) = 1.3591 for y∗ ≈ 33.310 and

limy→∞ f
eGA

(1, y) = 1. Hence, if n − 1 ≤ 33, then f
eGA

(1, 1) < f
eGA

(1, n− 1) and
clearly

Kmin
(
f

eGA

)
= {(1, 1)} .
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A similar argument as in the proof of Theorem 2.1 shows that if n ≤ 34 is even
(resp. odd), then the minimal value of eGA over Gn is attained uniquely in n

2K2 (resp.
n−3

2 K2 ∪P3) with value n
2 e (resp. n−3

2 e + 2e 2
√

2
3 ). On the other hand, if n − 1 ≥ 34,

then
Kmin

(
f

eGA

)
= {(1, n− 1)} .

Now, by [12, Theorem 2.3],

eGA (G) ≥ nf
eGA

(1, n− 1) = (n− 1) e 2
n

√
n−1 = eH (Sn) ,

for all G ∈ Gn. Equality holds if and only if mrs (G) = 0 for all (r, s) ̸= (1, n− 1), i.e.,
G =Sn. □

A very similar argument to the one used in the proof of Theorem 2.7, gives the
extremal values for the exponential of the Sum-Connectivity index SC. In the case
of the minimal value of eSC over K̂, the one variable function f

eSC
(1, y) = y

y+1e
1√

y+1 ,
behaves similarly to the function f

eGA
(1, y) for y ≥ 1. It attains its maximal value

at ymax ≈ 4.8284, is strictly decreasing for y > ymax, f
eSC

(1, y∗) = f
eSC

(1, 1) = 1.0141
for y∗ ≈ 4986, 3 and limy→∞ f

eSC
(1, y) = 1. Hence, if n− 1 ≤ 4986, then f

eSC
(1, 1) <

f
eSC

(1, n− 1) and if n − 1 ≥ 4987, then f
eSC

(1, n− 1) < f
eSC

(1, 1). We state it
without proof.

Theorem 2.8. Let eSC be the exponential of the Sum-Connectivity index SC. Then:
(a) Kn is the unique maximal graph over Gn with respect to eSC, with value

1
2 (n− 1)ne

1√
2(n−1) ;

(b) if n ≤ 4987 is even (resp. odd), n
2K2 (resp. n−3

2 K2 ∪P3) is the unique minimal
graph over Gn with respect to eSC with value n

2 e
1√
2 (resp. n−3

2 e
1√
2 + 2e

1√
3 );

(c) if n ≥ 4988, then Sn is the unique minimal graph over Gn with respect to eSC,
with value (n− 1) e

1√
n .
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