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APPLICATION OF THE HOPF MAXIMUM PRINCIPLE TO THE
THEORY OF GEODESIC MAPPINGS

SERGEY STEPANOV1,2 AND JOSEF MIKEŠ3

Abstract. In the present paper we consider some applications the Hopf maximum
principle and its generalization to the classical theory of geodesic mappings. As a
result, a series of classical theorems on geodesic mappings become consequences of
our statements which we shall prove in the present paper.

1. Introduction

The Hopf maximum principle is a maximum principle in the theory of second order
elliptic differential equations and has been described as the “classic and bedrock
result” of that theory. E. Hopf proved in 1927 that if a function satisfies a second
order partial differential inequality of a certain kind in a connected domain of Rn and
attains a maximum in the domain then the function is constant. The simple idea
behind Hopf’s proof, the comparison technique he introduced for this purpose, has led
to an enormous range of important applications and generalizations (see [2,3,14]). In
the present paper we consider some applications the Hopf maximum principle and its
generalization to the classical theory of geodesic mappings or in other words projective
mappings (see, for example, [5, p. 131–142], [9–11]). As a result, a series of classical
theorems on geodesic mappings become consequences of our statements which we
shall prove in the present paper.
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2. Geodesically Equivalent Riemannian Metrics on Complete and
Compact Riemannian Manifolds

Two Riemannian metrics g and ḡ on a connected domain U ⊂M of a same smooth
manifoldM are said to be pointwise projectively equivalent or in other words pointwise
geodesically equivalent, if every geodesic of g in U is a reparametrized geodesic of ḡ.
In addition, we say that g and ḡ are pointwise affine equivalent in a connected domain
U ⊂M , if their Levi-Civita connections ∇ and ∇̄ of g and ḡ respectively, coincide.

The volume element of g is the volume form Vol(g), which is defined whether or
not M is oriented. In local coordinates, Vol(g) =

√
det g |dx|. In turn, for ḡ we

have Vol(ḡ) =
√

det ḡ |dx|. As well known (see [5, p. 133]), two metrics g and ḡ are
geodesically equivalent in a connected domain U ⊂M if and only if for the function

(2.1) ϕ = 1
n+ 1 log

(
Vol(ḡ)
Vol(g)

)
,

we have
(2.2) (∇Z ḡ) (X, Y ) = 2ḡ(X, Y ) dϕ(Z) + ḡ(X,Z) dϕ(Y ) + ḡ(Y, Z) dϕ(X)
at every point x of U ⊂M and for any vectors X, Y, Z ∈ TxM . As a consequence of
these equations, we obtain the following equalities (see [5, p. 135])
(2.3) Ric = Ric +(n− 1) (∇ dϕ− dϕ⊗ dϕ),
where Ric and Ric are the Ricci tensors of g and ḡ, respectively. Now, if we set
∆ϕ = traceg∇ dϕ, then from (2.3) have

(2.4) ∆ϕ = 1
n− 1 (s∗ − s) + g(dϕ, dϕ),

for ‖ϕ‖2 = g(dϕ, dϕ), the scalar curvature s = traceg Ric of g and s∗ = tracegRic.
Now, we prove the following theorem.

Theorem 2.1. Let g and ḡ be two pointwise geodesically equivalent Riemannian
metrics on a connected domain U ⊂M of an n-dimensional (n ≥ 2) smooth manifold
M such that s∗ ≥ s at every point of U, where s is the scalar curvature of g and
s∗ = tracegRic for the Ricci tensor Ric of ḡ. The assumption that the function
ϕ = (n+ 1)−1 log(Vol(ḡ)/Vol(g)) attains a local maximum value at some point x ∈ U
implies that g and ḡ are geodesically equivalent on U if and only if they are pointwise
affinely equivalent metrics. Furthermore, if there is at least one point of U at which
s∗ > s, then ḡ = g.

Proof. We suppose now that g and ḡ be two geodesically equivalent Riemannian
metrics on a connected domain U ⊂M of an n-dimensional smooth manifold M such
that s∗ ≥ s where s is the scalar curvature of g and s∗ = tracegRic for the Ricci
tensor Ric of ḡ. As a result, the function ϕ = (n + 1)−1 log(Vol(ḡ)/Vol(g)) satisfies
the inequality ∆ϕ ≥ 0 at each point of U , by (2.4). Therefore, ϕ is a subharmonic
function (see [3, 14]). In this case, assumption that the function ϕ attains a local
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maximum value at some point then implies ϕ is a constant C in U , by the Hopf’s
maximum principle (see [3, Theorem 1]). Then from (2.2) we obtain that ∇ḡ = 0
on U and hence g and ḡ are affine equivalent on U . If C > 0, then gradϕ is nowhere
zero. Now, at a point where s∗ > s, the left side of (2.4) is zero while the right side is
positive. This contradiction shows that C = 0 and hence ḡ = g. Thus we have proved
our Theorem 2.1. �

In particular, if Ric ≥ 0 and s ≤ 0 at an arbitrary point of U then s∗ ≥ s. In this
case, ∆ϕ ≥ 0 at each point of U , by (2.4). Therefore, the following corollary is true.

Corollary 2.1. Let g and ḡ be two Riemannian metrics on a connected domain
U ⊂ M of an n-dimensional (n ≥ 2) compact smooth manifold M such that s ≤ 0
for the scalar curvature s of g and Ric ≥ 0 for the Ricci tensor Ric of ḡ. Then
the assumption that the function ϕ = (n + 1)−1 log(Vol(ḡ)/Vol(g)) attains a local
maximum value at some point x ∈ U implies that g and ḡ are pointwise geodesically
equivalent if and only if they are pointwise affinely equivalent metrics. Furthermore,
if there is at least one point x ∈ U at which the Ricci tensor Ric is positive in all
directions or the scalar curvature s is negative, then ḡ = g.

Let U = M and M be a compact manifold. Then there exists a point x ∈ M at
which the function ϕ = (n + 1)−1 log(Vol(ḡ)/Vol(g)) attains the maximum. As a
result we can formulate the following statements that are corollaries of our Theorem
2.1 (see also Theorem 3 and Corollary 4 from [7] and with Theorem 1.3 from [4]).

Corollary 2.2. Let g and ḡ be two Riemannian metrics on an n-dimensional (n ≥ 2)
compact smooth manifold M such that s∗ ≥ s where s is the scalar curvature of g and
s∗ = tracegRic for the Ricci tensor Ric of ḡ. Then g and ḡ are pointwise geodesically
equivalent if and only if they are pointwise affinely equivalent metrics. Furthermore,
if there is at last point of M at which s∗ > s, then ḡ = g.

Corollary 2.3. Let g and ḡ be two geodesically equivalent Riemannian metrics on an
n-dimensional compact smooth manifold M such that s ≤ 0 and Ric ≥ 0 where s is
the scalar curvature of g and Ric is the Ricci tensor of ḡ. Then g and ḡ are pointwise
geodesically equivalent if and only if they are pointwise affinely equivalent metrics.
Furthermore, if there is at least one point of M at which the Ricci curvature Ric is
positive or the scalar curvature s is negative, then ḡ = g.

Let g and ḡ be two geodesically equivalent Riemannian metrics on a connected
domain U ⊂ M of an n-dimensional (n ≥ 2) smooth manifold M . We suppose that
gradϕ = (ϕi) and ḡ−1 = (ḡjk) with respect to a local coordinate system x1, . . . , xn

on U and denote by ξ the vector field with the local components ξj = ϕkḡ
jk for

i, j, k = 1, . . . , n. If the metric g is an Einstein metric then by direct calculations we
obtain the formula (see also [12])

(2.5) ∆ϕ = 2(n+ 3)
n(n− 1) s · ψ + 2 g(∇ξ,∇ξ),
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for ψ = e4ϕg(ξ, ξ). This formula is an analogue of our formula (2.4). Therefore, we
can prove an analogue of our Theorem 2.1.

Theorem 2.2. Let g be an Einstein metric with the nonnegative scalar curvature s
on a connected domain U ⊂ M of an n-dimensional (n ≥ 3) smooth manifold M. If
there exists another Riemannian metric ḡ on U that pointwise geodesically equivalent
to g and the function ψ = e4ϕg(ξ, ξ) for the vector field ξ corresponding to gradϕ
under the duality defined by the metric ḡ attains a local maximum value at some point
x ∈ U , then the scalar curvature s is necessarily equal to zero and ḡ is pointwise affine
equivalent to g or ḡ = g for the case s > 0.

Let U = M and M be a compact smooth manifold. Then there exists a point
x ∈M at which the function ψ attains the maximum. As a result we can formulate
the following theorem that is a corollary of our Theorem 2.2 (see also [12]).

Corollary 2.4. Let M be an n-dimensional (n ≥ 3) compact smooth manifold M
and g be an Einstein metric with nonnegative scalar curvature s on M. If there exists
another Riemannian metric ḡ on M that pointwise geodesically equivalent to g, then
the scalar curvature s is necessarily equal to zero and ḡ is pointwise affine equivalent
to g or ḡ = g for the case s > 0.

3. Geodesically Equivalent Riemannian Metrics on Complete
Noncompact Riemannian Manifolds

Li and Schoen have proved in [8] that there is no a non-constant, non-negative
Lp-integrable (0 < p < ∞) subharmonic function ψ on any complete Riemannian
manifold (M, g) with non-negative Ricci tensor. In other word, if we suppose that
Ric ≥ 0 and

∫
M ‖ψ‖pdVolg < ∞ for a complete Riemannian manifold (M, g), then

ψ = C for some constant C. In this case, we have Cp
∫

M dVolg < ∞. If C > 0,
ψ is nowhere zero and the volume of (M, g) is finite. Side by side, we know from
[14] that every complete non-compact Riemannian manifold (M, g) with non-negative
Ricci tensor has infinite volume. This contradiction shows C = 0 and hence ψ ≡ 0.
Therefore, we can formulate the following lemma.

Lemma 3.1. Let (M, g) be a complete non-compact Riemannian manifold with non-
negative Ricci tensor, then there is no nonzero non-negative Lp(M, g)-integrable (0 <
p <∞) subharmonic function.

On the other hand, if the scalar curvature s of an Einstein metric g is nonnegative
then Ric = s

n
g ≥ 0 and from (2.5) we obtain ∆ψ ≥ 0 and hence ψ is a non-negative

subharmonic function.
Using the Lemma we can formulate the following statement.

Corollary 3.1. Let (M, g) be a complete non-compact Einstein manifold with non-
negative scalar curvature, and ḡ be another Riemannian metric on M that pointwise
geodesically equivalent to g. If the function ψ = e4ϕg(ξ, ξ) for the vector field ξ
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corresponding to gradϕ under the duality defined by the metric ḡ is Lp(M, g)-integrable
(0 < p <∞) function then the scalar curvature s is necessarily equal to zero and ḡ is
pointwise affine equivalent to g.

Remark 3.1. Other results on pointwise geodesically equivalent Riemannian metrics
on compact and non-compact Riemannian manifolds can be found among others in
papers from the following list [1, 6, 9, 12, 13].
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