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LYAPUNOV-TYPE INEQUALITY FOR AN ANTI-PERIODIC
CONFORMABLE BOUNDARY VALUE PROBLEM

JAGAN MOHAN JONNALAGADDA1, DEBANANDA BASUA2,
AND DIPAK KUMAR SATPATHI3

Abstract. In this article, we present a Lyapunov-type inequality for a conformable
boundary value problem associated with anti-periodic boundary conditions. To
demonstrate the applicability of established result, we obtain a lower bound on the
eigenvalue of the corresponding eigenvalue problem.

1. Introduction

The subject of fractional calculus deals with the theory and applications of integral
and differential operators of arbitrary order. The combined efforts of a number of
scientists for many years resulted a strong basic theory of fractional calculus [13,19].
In this process, several types of fractional differential operators were proposed so far.
Unfortunately, each type obeys only some of the properties of the classical derivative.

In 2015, Ortigueira et al. [15] formulated two criteria required by an operator
capable of being interpreted as fractional derivative. Recently, Tarasov [20] proposed
a principle of nonlocality for fractional derivatives. As a result of these two articles,
neither of the conformable differential operators proposed by Khalil et al. [12] are
interpreted as fractional derivatives. Further, differential equations with conformable
derivatives can be represented as differential equations of integer order for the space
of differentiable functions. Subsequently, the conformable derivative was generalized
in many ways [1, 10,11]. Several authors have explored properties [3–7] and physical
applications of the conformable derivative [5, 6, 24]. Recently, Anderson et al. [5]
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argued that there is a significant value in exploring the mathematics and physical
applications of these derivatives.

The Lyapunov inequality is a necessary condition for the existence of a nontrivial
solution of Hill’s equation associated with Dirichlet boundary conditions.

Theorem 1.1 ([14]). If the boundary value problem

(1.1)

y′′(t) + p(t)y(t) = 0, a < t < b,

y(a) = 0, y(b) = 0,

has a nontrivial solution, where p : [a, b]→ R is a continuous function, then

(1.2)
∫ b

a
|p(s)|ds > 4

(b− a) .

The Lyapunov inequality (1.2) finds its applications in various problems related
to the theory of differential equations and allied fields. Due to its importance, the
Lyapunov inequality has been generalized in many forms. For a detailed discussion
on Lyapunov-type inequalities and their applications, one can refer [8, 16, 18, 21–23]
and the references therein.

On the other hand, Abdeljawad [2] and Gholami et al. [9] independently generalized
Theorem 1.1 to the case where the classical second-order derivative in (1.1) is replaced
by an αth-order, 1 < α ≤ 2, conformable derivative.

Theorem 1.2 ([2]). If the boundary value problem
(
Tαa+y

)
(t) + p(t)y(t) = 0, a < t < b,

y(a) = 0, y(b) = 0,

has a nontrivial solution, where p : [a, b]→ R is a continuous function, then∫ b

a
|p(s)|ds > αα

(α− 1)α−1(b− a)α−1 .

Here Tαa+ denotes the αth-order conformable differential operator. Motivated by
these works, in this article, we derive a Lyapunov-type inequality for the following
two-point anti-periodic conformable boundary value problem:

(1.3)


(
Tα0+y

)
(t) + p(t)y(t) = 0, 1 < α ≤ 2, 0 < t < T,

y(0) + y(T ) = 0, y′(0) + y′(T ) = 0.

2. Preliminaries

Throughout, we shall use the following notations, definitions and known results of
conformable calculus [1, 12].
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Definition 2.1 ([1]). Let y : [a,∞)→ R and 0 < α ≤ 1. The αth-order conformable
derivative of y starting from a is defined by

(
Tαa+y

)
(t) = lim

ε→0

y
(
t+ ε(t− a)1−α

)
− y(t)

ε

 , t ∈ (a,∞).

If
(
Tαa+y

)
exists on (a, b), then(

Tαa+y
)
(a) = lim

t→a+

(
Tαa+y

)
(t).

Definition 2.2 ([1]). Let y : [a,∞) → R, α > 0 and choose n ∈ N1 such that
n − 1 < α ≤ n. Assume that y(n−1) exists on (a,∞). The αth-order conformable
derivative of y starting from a is defined by(

Tαa+y
)
(t) =

(
Tα−n+1
a+ y(n−1)

)
(t)

= lim
ε→0

y(n−1)
(
t+ ε(t− a)n−α

)
− y(n−1)(t)

ε

 , t ∈ (a,∞).

If y(n) exists on (a,∞), we have(
Tαa+y

)
(t) = (t− a)n−αy(n)(t), t ∈ (a,∞).

Also, we define (
T 0
a+y

)
(t) = y(t), t ∈ (a,∞).

Definition 2.3 ([1]). Let y : [a, b] → R, α > 0 and choose n ∈ N1 such that
n− 1 < α ≤ n. The αth-order conformable integral of y starting from a is defined by(

Iαa+y
)
(t) = 1

(n− 1)!

∫ t

a
(t− s)n−1(s− a)α−ny(s)ds, t ∈ [a, b].

Theorem 2.1 ([1]). Let y : [a, b] → R, α > 0 and choose n ∈ N1 such that n− 1 <
α ≤ n. If y(n−1) exists on (a, b), then(

Iαa+T
α
a+y

)
(t) = y(t)−

n−1∑
k=0

y(k)(a)(t− a)k
k! , t ∈ (a, b).

3. Anti-Periodic Boundary Value Problem

In this section, we derive a few properties of the Green’s function for the boundary
value problem (1.3) and obtain the corresponding Lyapunov-type inequality.

Theorem 3.1. Let 1 < α ≤ 2 and h : [0, T ] → R is a continuous function. The
conformal boundary value problem

(3.1)


(
Tα0+y

)
(t) + h(t) = 0, 0 < t < T,

y(0) + y(T ) = 0, y′(0) + y′(T ) = 0,
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has the unique solution

y(t) =
∫ T

0
G(t, s)h(s)ds,

where

(3.2) G(t, s) =


(
T

4 + t− s
2

)
sα−2, 0 < t ≤ s ≤ T,(

T

4 + s− t
2

)
sα−2, 0 < s ≤ t ≤ T.

Proof. Applying Iα0+ on both sides of (3.1) and using Theorem 2.1, we have

(3.3) y(t) = C1 + C2t−
∫ t

0
(t− s)sα−2h(s)ds.

Differentiating (3.3) with respect to t, we get

(3.4) y′(t) = C2 −
∫ t

0
sα−2h(s)ds.

Using y(0) + y(T ) = 0 in (3.3) we get

(3.5) 2C1 + C2T =
∫ T

0
(T − s)sα−2h(s)ds.

Using y′(0) + y′(T ) = 0 in (3.4) we get

(3.6) C2 = 1
2

∫ T

0
sα−2h(s)ds.

Then, from (3.5) and (3.6), we have

2C1 = −T2

∫ T

0
sα−2h(s)ds+

∫ T

0
(T − s)sα−2h(s)ds,

which implies

(3.7) C1 = 1
2

∫ T

0

(
T

2 − s
)
sα−2h(s)ds.

Then, from (3.3), (3.6) and (3.7) we have

y(t) = 1
2

∫ T

0

(
T

2 − s
)
sα−2h(s)ds+ t

2

∫ T

0
sα−2h(s)ds−

∫ t

0
(t− s)sα−2h(s)ds

= 1
2

∫ t

0

(
T

2 + t− s
)
sα−2h(s)ds+ 1

2

∫ T

t

(
T

2 + t− s
)
sα−2h(s)ds

−
∫ t

0
(t− s)sα−2h(s)ds

=
∫ t

0

(
T

4 + s− t
2

)
sα−2h(s)ds+

∫ T

t

(
T

4 + t− s
2

)
sα−2h(s)ds

=
∫ T

0
G(t, s)h(s)ds.

The proof is complete. �
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Lemma 3.1. The Green’s function G(t, s) defined in (3.2) satisfies the following
properties:

(a) G(t, s) ≤ G(s, s), (t, s) ∈ (0, T ]× (0, T ];
(b) s2−αG(s, s) = T

4 , s ∈ [0, T ];
(c)

∣∣∣s2−αG(t, s)
∣∣∣ ≤ T

4 , (t, s) ∈ [0, T ]× [0, T ];

(d) maxt∈[0,T ]
∫ T

0 G(t, s)ds =
Tα

(
2−α+2

α−2
α−1 (α−1)

)
4α(α−1) ;

(e) maxt∈[0,T ]
∫ T

0 s2−αG(t, s)ds = T 2

8 ;
(f) maxt∈[0,T ]

∫ T
0 G′(t, s)ds = Tα−1

2(α−1) ;
(g) maxt∈[0,T ]

∫ T
0 s2−αG′(t, s)ds = T

2 ;
(h) maxt∈[0,T ]

∫ T
0

∣∣∣G(t, s)
∣∣∣ds = Tα(7α−2)

4α(α−1) .

Proof. Define the functions

G1(t, s) =
(
T

4 + t− s
2

)
sα−2 and G2(t, s) =

(
T

4 + s− t
2

)
sα−2.

We can easily check that G1(t, s) is an increasing function of t. Differentiating G2(t, s)
with respect to t for every fixed s, we observe that, G2(t, s) is a decreasing function
of t. Thus, we have (a). The proof of (b) follows from (3.2). Clearly, from (a) and
(b), we have

(3.8) s2−αG(t, s) ≤ T

4 , (t, s) ∈ [0, T ]× [0, T ].

Consider
s2−αG1(t, s) = T

4 + s− t
2 ≥ T

4 + 0− T
2 ≥ −T4 ,

which implies

(3.9) − s2−αG1(t, s) ≤
T

4 .

Similarly

s2−αG2(t, s) = T

4 + t− s
2 ≥ T

4 + 0− T
2 ≥ −T4 ,

implies

(3.10) − s2−αG2(t, s) ≤
T

4 .

So, from (3.9) and (3.10), we get

(3.11) − s2−αG(t, s) ≤ T

4 , (t, s) ∈ [0, T ]× [0, T ].

Then, from (3.8) and (3.11), (c) follows. For (d), consider∫ T

0
G(t, s)ds =

∫ t

0

(
T

4 + s− t
2

)
sα−2ds+

∫ T

t

(
T

4 + t− s
2

)
sα−2ds
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=
(
T

4 −
t

2

)(
tα−1

α− 1

)
+ tα

2α +
(
T

4 + t

2

) [
Tα−1

α− 1 −
tα−1

α− 1

]

− 1
2

[
Tα

α
− tα

α

]
.(3.12)

Define H1(t) as the right hand side of (3.12). Now, differentiating H1(t) with respect
to t and equating it to 0, we obtain t = T

2
1

α−1
. Again, differentiating H1

′(t) with
respect to t, we observe that H1

′′(t) ≤ 0 at t = T

2
1

α−1
. So, H1(t) attains its maximum

at t = T

2
1

α−1
. Thus, we have (d). Consider

∫ T

0
s2−αG(t, s)ds =

∫ t

0

(
T

4 + s− t
2

)
ds+

∫ T

t

(
T

4 + t− s
2

)
ds

=
(
T

4 −
t

2

)
t+ t2

4 +
(
T

4 + t

2

)
(T − t)−

(
T 2 − t2

4

)
.(3.13)

Define H2(t) as the right hand side of (3.13). Now, differentiating H2(t) with respect
to t and equating it to 0, we obtain t = T

2 . Again, differentiating H2
′(t) with respect

to t, we observe that H2
′′(t) < 0 at t = T

2 . So, H2(t) attains its maximum at t = T
2 .

Thus, we have (e). Consider∫ T

0
G′(t, s)ds = −1

2

∫ t

0
sα−2ds+ 1

2

∫ T

t
sα−2ds

= −1
2

[
tα−1

α− 1

]
+ 1

2

[
Tα−1

α− 1 −
tα−1

α− 1

]

≤ Tα−1

2(α− 1) .

This completes the proof of (f). For (g), consider∫ T

0
s2−αG′(t, s)ds = −1

2

∫ t

0
ds+ 1

2

∫ T

t
ds = − t2 + T

2 −
t

2 = T

2 − t ≤
T

2 .

Consider∫ T

0
|G(t, s)|ds =

∫ t

0
|G1(t, s)|ds+

∫ T

t
|G2(t, s)|ds

≤
∫ t

0

(
T

4 +
∣∣∣∣s− t2

∣∣∣∣) sα−2ds+
∫ T

t

(
T

4 +
∣∣∣∣t− s2

∣∣∣∣) sα−2ds

= Ttα−1

4(α− 1) −
∫ t

0

(
s− t

2

)
sα−2ds+ T

4

(
Tα−1

α− 1 −
tα−1

α− 1

)

−
∫ T

t

(
t− s

2

)
sα−2ds

= Ttα−1

4(α− 1) −
tα

2α + tα

2(α− 1) −
t (Tα−1 − tα−1)

2(α− 1) + Tα−1 − tα−1

2α
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≤ Tα

4(α− 1) + Tα

α− 1 + Tα

2α = Tα(7α− 2)
4α(α− 1) .(3.14)

Thus, we have (h). The proof is complete. �

We are now able to formulate a Lyapunov-type inequality for the anti-periodic
boundary value problem.
Theorem 3.2. If (1.3) has a nontrivial solution, then

(3.15)
∫ T

0
sα−2|p(s)|ds ≥ 4

T
.

Proof. Let C[0, T ] be the Banach space of continuous functions y on [0, T ] with the
norm

‖y‖C = max
t∈[0,T ]

|y(t)|.

It follows from Theorem 3.1 that a solution to (1.3) satisfies the equation

y(t) =
∫ T

0
G(t, s)p(s)y(s)ds.

Consider

|y(t)| =
∣∣∣∣ ∫ T

0
G(t, s)p(s)y(s)ds

∣∣∣∣
≤
∫ T

0

∣∣∣G(t, s)
∣∣∣|p(s)||y(s)|ds

≤ ‖y‖
∫ T

0

∣∣∣G(t, s)
∣∣∣|p(s)|ds

= ‖y‖
∫ T

0

[
s2−α

∣∣∣G(t, s)
∣∣∣]∣∣∣sα−2p(s)

∣∣∣ds,
which implies

‖y‖ ≤ ‖y‖ max
s∈[0,T ]

[
s2−α

∣∣∣G(t, s)
∣∣∣][ ∫ T

0

∣∣∣sα−2p(s)
∣∣∣ds].

An application of Lemma 3.1 yields the result. The proof is complete. �

4. Application

In this section, we estimate a lower bound for the eigenvalue of the conformable
eigenvalue problem corresponding to the conformable boundary value problem (1.3)
using three different methods.
Definition 4.1 ([17]). A Lyapunov Inequality Lower Bound (LILB) is defined as a
lower estimate for the smallest eigenvalue obtained from Lyapunov-type inequality
given in (3.15) by setting p(s) = λ, that is,

λ ≥ 1
TGmax

,

where Gmax = max0≤t≤T |G(t, s)|.
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Definition 4.2 ([17]). A Cauchy-Schwartz Inequality Lower Bound (CSILB) is defined
as a lower bound for the smallest eigenvalue obtained from Cauchy-Schwartz inequality
of type given in (3.15) by setting p(s) = λ, that is,

λ ≥
[∫ T

0

∫ T

0
G2(t, s)dsdt

]− 1
2

.

Definition 4.3 ([17]). A Semi Maximum Norm Lower Bound (SMNLB) is defined
as a lower bound for the smallest eigenvalue obtained from Semi Maximum Norm
inequality of type given in given in (3.15) by setting p(s) = λ, that is,

(4.1) λ ≥ 1
max0≤t≤T

∫ T
0 |G(t, s)|ds

.

Theorem 4.1. Assume that y is a nontrivial solution of the conformable eigenvalue
problem 

(
Tα0+y

)
(t) + λy(t) = 0, 0 < t < T,

y(0) + y(T ) = 0, y′(0) + y′(T ) = 0,
where y(t) 6= 0 for each t ∈ (0, T ). Then

λ(LILB) ≥
4(α− 1)
Tα

, 1 < α ≤ 2,(4.2)

λ(CSILB) ≥
4
√

(2α− 3)
Tα

,
3
2 ≤ α ≤ 2,(4.3)

λ(SMNLB) ≥
4α(α− 1)
Tα(7α− 2) , 1 < α ≤ 2.(4.4)

Proof. We choose p(s) = λ in (3.15). Then, we obtain,

λ
∫ T

0
sα−2ds ≥ 4

T
,

implies

λ

(
Tα−1

α− 1

)
≥ 4
T
.

This proves the result (4.2). Consider,

λ ≥
[∫ T

0

∫ T

0
G2(t, s)dsdt

]− 1
2

=
(∫ T

0

∫ T

0

∣∣∣s2−αG(t, s)
∣∣∣2s2α−4dsdt

)− 1
2

≥
(
T 2

16

∫ T

0

∫ T

0
s2α−4dsdt

)− 1
2
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= 4
T

(
T 2α−2

2α− 3

)− 1
2

=
4
√

(2α− 3)
Tα

.

So, (4.3) is proved. The result (4.4) follows from (4.1) and (3.14). The proof is
complete. �
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