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CERTAIN CLASSES OF BI-UNIVALENT FUNCTIONS OF
COMPLEX ORDER ASSOCIATED WITH
QUASI-SUBORDINATION INVOLVING (p, q)-DERIVATIVE
OPERATOR

S. ALTINKAYA! AND S. YALCIN?

ABSTRACT. In this present paper, as applications of the post-quantum calculus
known as the (p, ¢)-calculus, we construct a new class Dzliq (7,¢, ¥) of bi-univalent
functions of complex order defined in the open unit disk. Coefficients inequalities
and several special consequences of the results are obtained.

1. INTRODUCTION AND PRELIMINARIES

The g-calculus as well as the fractional g-calculus provide important tools that
have been used in the fields of special functions and many other areas. Historically
speaking, a firm footing of the usage of the g-calculus in the context of Geometric
Function Theory was actually provided and the basic (or ¢-) hypergeometric functions
were first used in Geometric Function Theory in a book chapter by Srivastava (see,
for details, [30]). In fact, the theory of univalent functions can be described by using
the theory of the ¢-calculus. Moreover, in recent years, such g-calculus operators as
the fractional g-integral and fractional g-derivative operators were used to construct
several subclasses of analytic functions (see, for example, [3,19,21,26]). In particular,
Purohit and Raina [20] investigated applications of fractional g-calculus operators
to define several classes of functions which are analytic in the open unit disk. On
the other hand, Mohammed and Darus [14] studied approximation and geometric
properties of these g-operators in regard to some subclasses of analytic functions in a
compact disk.
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Further the possibility of extension of the g-calculus to post-quantum calculus
denoted by the (p, ¢)-calculus. The (p, ¢)-calculus which have many applications in
areas of science and engineering was introduced in order to generalize the ¢-series by
Gasper and Rahman [8]. The (p, q)-series is derived as corresponding extensions of
g-identities (for example [2,6]).

We begin by providing some basic definitions and concept details of the (p,q)-
calculus which are used in this paper.

The (p, ¢)-number is given by

n n

P —q
nl .= . PFGQ
[l = 2

which is a natural generalization of the g-number (see [11]), that is
_1-
=T

q# 1

tim [n],,, = [1],

It is clear that the notation [n], is symmetric, that is,

Let p and ¢ be elements of complex numbers and D = D,,, C C such that z € D
implies pxr € D and qr € D. Here, in this investigation, we give the following two
definitions which involve a post-quantum generalization of Sofonea’s work [27].

Definition 1.1. Let 0 < |¢| < [p| < 1. A given function f : D,, — C is called
(p, q)-differentiable under the restriction that, if 0 € D, ,, then f'(0) exists.

Definition 1.2. Let 0 < |¢| < [p| < 1. A given function f : D,, — C is called
(p, g)-differentiable of order n, if and only if 0 € D, ,, then £ (0) exists.

Definition 1.3 ([6]). The (p, ¢)-derivative of a function f is defined as

f(pr) — f(gx)
(p—q)
and (D, ,f)(0) = f'(0), provided f’(0) exists.

(anf)(l') = ) z 7A 07

As with ordinary derivative, the action of the (p, q)-derivative of a function is a
linear operator. More precisely, for any constants a and b,

Dpg(af(z) +bg(2)) = aDyof(2) + 0Dy g(2).

The (p, q)-derivative fulfils the following product rules

Dy o(f(2)9(2)) =f(p2)Dyp49(2) + 9(q2) Do f(2),
Dy o(f(2)9(2)) =9(p2) Dy f(2) + f(q2) Dpeg(2).
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Further, the (p, ¢)-derivative fulfils the following product rules

D, (f(@) 9(42) Dpof(2) = f(q2) Dye9(2)

(2) 9(rz)g(qz) ’
(2)\ _92)Dpyf(2) = f(p2)Dpag(2)
br < (2 )) 9(pz)g(qz) '

Let A indicate an analytic function family, which is normalized under the condition
of f(0) = f(0)—1=0in A ={z:2€Cand |2|] <1} and given by the following
Taylor-Maclaurin series:

(1.1) flz) =2+ ianz"

Further, by S we shall denote the class of all functions in A which are univalent in A.
If f is of the form (1.1), then

( qu _1+Z

With a view to recalling the principle of subordlnatlon between analytic functions,
let the functions f and ¢ be analytic in A. Then we say that the function f is
subordinate to g if there exists a Schwarz function w (2), analytic in A with

w(0)=0,lw(z)| <1, z€A,
such that

f(z)=g(w(z)), zeA
We denote this subordination by

f=<gor f(2)<g(2), z€A.
In particular, if the function ¢ is univalent in A, the above subordination is equivalent
to
f(0)=g(0), f(A)Cg(A)
In the year 1970, Robertson [23] introduced the concept of quasi-subordination. For
two analytic functions f and g, the function f is said to be quasi-subordinate to g in
A and written as

f(2) <p9(2), z€A,
if there exists an analytic function |h(z)| < 1 such that E ; analytic in A and

f(2)

— A

n) J9B) 2EA
that is, there exists a Schwarz function w(z) such that f(z) = h(z)g(w(z)). Observe
that if h(z) = 1, then f(2) = g(w(z)) so that f(z) < g(z) in A. Also notice that
if w(z) = z, then f(z) = h(2)g(z) and it is said that is majorized by g and written
f(2) < g(z) in A. Hence it is obvious that quasi-subordination is a generalization
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of subordination as well as majorization (see, e.g., [13,22,23] for works related to
quasi-subordination).

The Koebe-One Quarter Theorem [7] ensures that the image of A under every
univalent function f € A contains a disk of radius 1/4. Thus every univalent
function f has an inverse f~! satisfying f~!(f(2)) = z and f(f ' (w)) = w

(ol <70 (f) , ro(f) = %), where
(12) f_l (w) =w — a2w2 + (2(1% — a3> U)3 — (5&3 — 5a2a3 —+ a4) w4 + .

A function f € A is said to be bi-univalent in A if both f and f~! are univalent
in A. Let ¥ denote the class of bi-univalent functions in A given by (1.1). For
a brief history and interesting examples in the class X, see [29] (see also [4,5,12,
16]). Furthermore, judging by the remarkable flood of papers on the subject (see,
for example, [10,17,28]). Not much is known about the bounds on the general
coefficient |a,|. In the literature, there are only a few works determining the general
coefficient bounds |a,| for the analytic bi-univalent functions ([1,9,15,31]). The
coefficient estimate problem for each of |a,| (7 € N\ {1,2}, N={1,2,3,...}) is still
an open problem.

Recently for f € A, Selvaraj et al. [25] defined and discussed (p, ¢)-analogue of
Salagean differential operator as given below:

D, f(z) =f(2)
D1197qf<z) =z (Dpqf(2))

D! f(2) =D, (D f(2))

Dyof () =2+ L lnly,an2", k€ No=NU{0}2 € A

If welet p =1 and ¢ — 17, then D’;’q f(2) reduces to the well-known Salagean
differential operator (see [24]).

Making use of the differential operator D
bi-univalent functions as follows.

k

»q» We introduce a new class of analytic

Definition 1.4. A function f € ¥ given by (1.1) is said to be in the class
D! (7,¢¥), 7eC\{0}, 0<(<LkeN, 0<qg<p<l, zweA,
if the following conditions are satisfied:

1 z (D’;’qf(z))/
1\ (1= QD f(2) + ¢z (DE,1(2)

=1 =<, (¥(z) = 1)
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and

1 w (Dmg(w)) ;=1 =<, (T(w) —1),
7\ (1= 0D g(w) + Cw (DL g(w))

where the function g is given by (1.2).

Remark 1.1. For p =1 and ¢ — 1, a function f € ¥ given by (1.1) is said to be in the
class D¥ (7, ¢, ), if the following conditions are satisfied:

1 =(D"() 1| =, (W(z) = 1), zeA
7\ (1= QD*f(2) + ¢= (D" f(2))

and

1 w (Dtg(w) 1| =, (W(w) 1), zeEA,
7\ (1= QD g(w) + ¢w (D*g(w))

where v € C\{0}, 0 < (<1, k € Ny and the function ¢ is given by (1.2).

Remark 1.2. For ( =0 and v € C\{0}, a function f € ¥ given by (1.1) is said to be
in the class D};,q (v, U), if the following conditions are satisfied:

1 (z (DE,1(2))

v\ DI f(2)

S 1)<p(\11(z)1), z €A

and

/

1 [w(DF g(w

- <kp’q( )) —1| <, (T(w)—1), z€A,
7\ Dpg9(w)

where k € Ny, 0 < ¢ < p <1 and the function g is given by (1.2).

Remark 1.3. For ( = k =0 and v € C\{0}, a function f € ¥ given by (1.1) is said to
be in the class Sy, (v, ¥), if the following conditions are satisfied:

and

where the function g is given by (1.2).
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2. MAIN RESULT AND ITS CONSEQUENCES
Firstly, we will state the Lemma 2.1 to obtain our result.

Lemma 2.1 ([18]). If s € P, then |s;| < 2 for each i, where P is the family of all
functions s, analytic in A, for which

Re(s(z)) > 0,

where
s(2) =1+ 812+ 85927+ .

Through out this paper it is assumed that ¥ is analytic in A with U(0) = 1 and let

Also let
(2.2) h(z) = Do+ Diz+ Doz* +---, |h(2)| <1, z € A.

We begin this section by finding the estimates on the coefficients |ay| and |as| for
functions in the class D’;’q (v, ¢, ¥) proposed by Definition 1.4.

Theorem 2.1. Let f of the form (1.1) be in the class D’;’q (7,¢, V). Then
711 Dol C1v/Cy

las| <
¢<1 — )28l ,7C2 Do — [22% [(1 = )(C2 = C1) + (1 + O CED |

and )
|’YD0| 012 |vD1| Cy |'YD0| Ch

(1= 2, 20-QB), 20-Q[B],,

las] <

Proof. It f € D’;q (7,¢, ¥) then, there are two analytic functions u,v : A — A with

u(0) =v(0) =0, |u(2)|] < 1,|v(w)| < 1 and a function h given by (2.2), such that

1 Dt f(2)
(23 - - (53.,/2) 1| = ) (W) - 1)

Y\ (=D}, f(2) + 2 (D f(2))
and

k /

24) - - (D) 1] = ) (W) - 1),

v\ (1= 9D} g(w) + Cw (D} g(w))
Determine the functions s; and s, in P given by

s1(z) = i_zgzi =14tz +te2® 4 -
and .
e C) S S

1 —w(w)
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Thus,
_si(z) -1 1 1) 2
(2.5) u(z)—81(z)+1—2<t12+<t2—2)2+ )
and
so(w)—1 1 0\ o
(2.6) U<w):82(w)+1:2<QIw+<q2_2>w —i—)

The fact that s; and s, are analytic in A with s;(0) = s2(0) = 1. Since u,v : A — A,
the functions s;, so have a positive real part in A, and the relations |t;| < 2 and
lg;| < 2 are true. Using (2.5) and (2.6) together with (2.1) and (2.2) in the right
hands of the relations (2.3) and (2.4), we obtain

27) h(z) (U (u(z)) — 1) :;DOC’ltlz

1 1 2\ 1\,
+ | =D:1City + §D001 to— — | + -DoCoty | 2° + ---

2 2 4
and
(2.8)
1
h(w) (¥ (v(w)) — 1) =5DoCrqw
1 1 AN
+ <2D1C1Q1 + §D001 <Q2 — q21> + 4D002Q%> w?

In the light of (2.3) and (2.4), we get
(1-2) [2]];,q _ DoCity
a9 =

2.
(2.9) ) Sy
2(1-¢) [3]’;,(1 az — (1 —¢?) [2];2,2 aj _ DiCity | DoCy t7 DyCot3
(2.10) = + th— 2] +
~ 2 2 2 4
and
(1-¢) [Q]k DoCrqa

2.11 - Py, =
( ) v Qg 9 )
(2.12)
21— Q) B, (263 —a5) — (1 =) 2} _DiCiay | Dy <q2 B q> | DoCag?

~ 2 2 2 4
Now, (2.9) and (2.11) give
(2.13) ti=—q
and

(2.14) 8(1—¢)* 205 a5 = ¥ DiCE (8 + ai) -
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Adding (2.10) and (2.12), we get
4(1 =) [3]2(1 —2(1-¢%) {2]1272 2 DoCi(ta+q2)  Do(Cy—Ch)(t7+¢q7)

2.15 : = .
( ) ~ ay 9 + 1
By using (2.13), (2.14) and Lemma 2.1 in (2.15), we obtain
71 1Do| GV Y
|as| <

=021, 70D — 212, [(1= O(C2 = C1) + (1 + O3y
Next, to find the bound on |as|, by subtracting (2.12) from (2.10), we have
4(1 —i) [S]I;,q (a3 B ag) _ Do (;2 — q2) + D:,Cy (;1 —q1)
It follows from (2.13), (2.14) and (2.16) that
_ PDCE (T +qi) | vDiCi(t — q1) | vDoCh (ts — o)
S 8(1-)Rl,  81-0BL,  81-0OB,
Applying Lemma 2.1 once again for the coefficients t1, 9, ¢; and ¢, we readily get
VDol C? [vD1| G [7Do| C1
(1= 12 20-0B, 20-0B],,
This completes the proof of Theorem 2.1. O
Corollary 2.1. Let f of the form (1.1) be in the class D* (,(, ¥). Then

7 [Do| C1v/ T
V(1= Q) 129CDy3E — 228 [(1 = ¢)(C — C1) + (1 + C)yCEDy|

(2.16)

las] <

las| <

and ,
|vDo|” CF |vD1| Cy |vDy| C4
1222k T o(1—O)3F ' 2(1— Q)3F

Corollary 2.2. Let [ of the form (1.1) be in the class D';jq (v, V). Then
7|1 Do] C1v/Ch
V2Bl €D — 212, [(Ca — C1) +C3 D

lag| <
(

las| <

and )
las] < [vDol” C} | |vDy|Cy | |vDo| C
> 2% 2 E -

Corollary 2.3. Let f of the form (1.1) be in the class Sx, (v, V). Then

[7Do| C1v/Cy
V€1 = Gy +7C2Dy|

las| <
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and

(ID1] + Do) [7] €1
5 :

jas| < |yDol” CF +

3. CONCLUDING REMARK

Various choices of ¥ as mentioned above and suitably choosing the values of C; and
C5, we state some interesting results analogous to Theorem 2.1 and the Corollaries
2.1 to 2.3. For example, the function VU is given by

v - (7

0
) =142024+20%2+--., 0<6<1,

which gives
Ol = 20 and CQ = 292

By taking
I+(1-2
\I'(z>=leﬂ(l—u)zw(l—u)zu-“> O<p<l
we have

01202:2(1—[0
On the other hand, for —1 < B < A < 1, if we let

1+ A
\I/(z):JBizl—k(A—B)z—B(A—B)quL---, 0<f<1,

then we have
Ci=(A—-B)and C, = —B(A— B).

The details involved may be left as an exercise for the interested reader.
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