CERTAIN CLASSES OF BI-UNIVALENT FUNCTIONS OF COMPLEX ORDER ASSOCIATED WITH QUASI-SUBORDINATION INVOLVING (p, q)-DERIVATIVE OPERATOR

Ş. ALTINKAYA ${ }^{1}$ AND S. YALÇIN ${ }^{1}$

Abstract

In this present paper, as applications of the post-quantum calculus known as the (p, q)-calculus, we construct a new class $\boldsymbol{D}_{p, q}^{k}(\gamma, \zeta, \Psi)$ of bi-univalent functions of complex order defined in the open unit disk. Coefficients inequalities and several special consequences of the results are obtained.

1. Introduction and Preliminaries

The q-calculus as well as the fractional q-calculus provide important tools that have been used in the fields of special functions and many other areas. Historically speaking, a firm footing of the usage of the q-calculus in the context of Geometric Function Theory was actually provided and the basic (or $q-$) hypergeometric functions were first used in Geometric Function Theory in a book chapter by Srivastava (see, for details, [30]). In fact, the theory of univalent functions can be described by using the theory of the q-calculus. Moreover, in recent years, such q-calculus operators as the fractional q-integral and fractional q-derivative operators were used to construct several subclasses of analytic functions (see, for example, [3, 19, 21, 26]). In particular, Purohit and Raina [20] investigated applications of fractional q-calculus operators to define several classes of functions which are analytic in the open unit disk. On the other hand, Mohammed and Darus [14] studied approximation and geometric properties of these q-operators in regard to some subclasses of analytic functions in a compact disk.

[^0]Further the possibility of extension of the q-calculus to post-quantum calculus denoted by the (p, q)-calculus. The (p, q)-calculus which have many applications in areas of science and engineering was introduced in order to generalize the q-series by Gasper and Rahman [8]. The (p, q)-series is derived as corresponding extensions of q-identities (for example $[2,6]$).

We begin by providing some basic definitions and concept details of the (p, q)calculus which are used in this paper.

The (p, q)-number is given by

$$
[n]_{p, q}=\frac{p^{n}-q^{n}}{p-q}, \quad p \neq q,
$$

which is a natural generalization of the q-number (see [11]), that is

$$
\lim _{p \rightarrow 1}[n]_{p, q}=[n]_{q}=\frac{1-q^{n}}{1-q}, \quad q \neq 1 .
$$

It is clear that the notation $[n]_{p, q}$ is symmetric, that is,

$$
[n]_{p, q}=[n]_{q, p}
$$

Let p and q be elements of complex numbers and $D=D_{p, q} \subset \mathbb{C}$ such that $x \in D$ implies $p x \in D$ and $q x \in D$. Here, in this investigation, we give the following two definitions which involve a post-quantum generalization of Sofonea's work [27].

Definition 1.1. Let $0<|q|<|p| \leq 1$. A given function $f: D_{p, q} \rightarrow \mathbb{C}$ is called (p, q)-differentiable under the restriction that, if $0 \in D_{p, q}$, then $f^{\prime}(0)$ exists.

Definition 1.2. Let $0<|q|<|p| \leq 1$. A given function $f: D_{p, q} \rightarrow \mathbb{C}$ is called (p, q)-differentiable of order n, if and only if $0 \in D_{p, q}$, then $f^{(n)}(0)$ exists.

Definition $1.3([6])$. The (p, q)-derivative of a function f is defined as

$$
\left(D_{p, q} f\right)(x)=\frac{f(p x)-f(q x)}{(p-q) x}, \quad x \neq 0
$$

and $\left(D_{p, q} f\right)(0)=f^{\prime}(0)$, provided $f^{\prime}(0)$ exists.
As with ordinary derivative, the action of the (p, q)-derivative of a function is a linear operator. More precisely, for any constants a and b,

$$
D_{p, q}(a f(z)+b g(z))=a D_{p, q} f(z)+b D_{p, q} g(z)
$$

The (p, q)-derivative fulfils the following product rules

$$
\begin{aligned}
& D_{p, q}(f(z) g(z))=f(p z) D_{p, q} g(z)+g(q z) D_{p, q} f(z) \\
& D_{p, q}(f(z) g(z))=g(p z) D_{p, q} f(z)+f(q z) D_{p, q} g(z)
\end{aligned}
$$

Further, the (p, q)-derivative fulfils the following product rules

$$
\begin{aligned}
D_{p, q}\left(\frac{f(z)}{g(z)}\right) & =\frac{g(q z) D_{p, q} f(z)-f(q z) D_{p, q} g(z)}{g(p z) g(q z)}, \\
D_{p, q}\left(\frac{f(z)}{g(z)}\right) & =\frac{g(p z) D_{p, q} f(z)-f(p z) D_{p, q} g(z)}{g(p z) g(q z)} .
\end{aligned}
$$

Let A indicate an analytic function family, which is normalized under the condition of $f(0)=f^{\prime}(0)-1=0$ in $\Delta=\{z: z \in \mathbb{C}$ and $|z|<1\}$ and given by the following Taylor-Maclaurin series:

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1.1}
\end{equation*}
$$

Further, by S we shall denote the class of all functions in A which are univalent in Δ. If f is of the form (1.1), then

$$
\left(D_{p, q} f\right)(z)=1+\sum_{n=2}^{\infty}[n]_{p, q} a_{n} z^{n-1} .
$$

With a view to recalling the principle of subordination between analytic functions, let the functions f and g be analytic in Δ. Then we say that the function f is subordinate to g if there exists a Schwarz function $w(z)$, analytic in Δ with

$$
w(0)=0,|w(z)|<1, \quad z \in \Delta,
$$

such that

$$
f(z)=g(w(z)), \quad z \in \Delta .
$$

We denote this subordination by

$$
f \prec g \text { or } f(z) \prec g(z), \quad z \in \Delta .
$$

In particular, if the function g is univalent in Δ, the above subordination is equivalent to

$$
f(0)=g(0), \quad f(\Delta) \subset g(\Delta) .
$$

In the year 1970, Robertson [23] introduced the concept of quasi-subordination. For two analytic functions f and g, the function f is said to be quasi-subordinate to g in Δ and written as

$$
f(z) \prec_{\rho} g(z), \quad z \in \Delta,
$$

if there exists an analytic function $|h(z)| \leq 1$ such that $\frac{f(z)}{h(z)}$ analytic in Δ and

$$
\frac{f(z)}{h(z)} \prec g(z), \quad z \in \Delta,
$$

that is, there exists a Schwarz function $w(z)$ such that $f(z)=h(z) g(w(z))$. Observe that if $h(z)=1$, then $f(z)=g(w(z))$ so that $f(z) \prec g(z)$ in Δ. Also notice that if $w(z)=z$, then $f(z)=h(z) g(z)$ and it is said that is majorized by g and written $f(z) \ll g(z)$ in Δ. Hence it is obvious that quasi-subordination is a generalization
of subordination as well as majorization (see, e.g., $[13,22,23]$ for works related to quasi-subordination).

The Koebe-One Quarter Theorem [7] ensures that the image of Δ under every univalent function $f \in A$ contains a disk of radius $1 / 4$. Thus every univalent function f has an inverse f^{-1} satisfying $f^{-1}(f(z))=z$ and $f\left(f^{-1}(w)\right)=w$ $\left(|w|<r_{0}(f), r_{0}(f) \geq \frac{1}{4}\right)$, where

$$
\begin{equation*}
f^{-1}(w)=w-a_{2} w^{2}+\left(2 a_{2}^{2}-a_{3}\right) w^{3}-\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right) w^{4}+\cdots \tag{1.2}
\end{equation*}
$$

A function $f \in A$ is said to be bi-univalent in Δ if both f and f^{-1} are univalent in Δ. Let Σ denote the class of bi-univalent functions in Δ given by (1.1). For a brief history and interesting examples in the class Σ, see [29] (see also [4, 5, 12, 16]). Furthermore, judging by the remarkable flood of papers on the subject (see, for example, $[10,17,28]$). Not much is known about the bounds on the general coefficient $\left|a_{n}\right|$. In the literature, there are only a few works determining the general coefficient bounds $\left|a_{n}\right|$ for the analytic bi-univalent functions ($[1,9,15,31]$). The coefficient estimate problem for each of $\left|a_{n}\right|(n \in \mathbb{N} \backslash\{1,2\}, \mathbb{N}=\{1,2,3, \ldots\})$ is still an open problem.

Recently for $f \in A$, Selvaraj et al. [25] defined and discussed (p, q)-analogue of Salagean differential operator as given below:

$$
\begin{aligned}
\boldsymbol{D}_{p, q}^{0} f(z) & =f(z) \\
\boldsymbol{D}_{p, q}^{1} f(z) & =z\left(\boldsymbol{D}_{p, q} f(z)\right) \\
& \vdots \\
\boldsymbol{D}_{p, q}^{k} f(z) & =z \boldsymbol{D}_{p, q}\left(\boldsymbol{D}_{p, q}^{k-1} f(z)\right) \\
\boldsymbol{D}_{p, q}^{k} f(z) & =z+\sum_{n=2}^{\infty}[n]_{p, q}^{k} a_{n} z^{n}, \quad k \in \mathbb{N}_{0}=\mathbb{N} \cup\{0\}, z \in \Delta .
\end{aligned}
$$

If we let $p=1$ and $q \rightarrow 1^{-}$, then $\boldsymbol{D}_{p, q}^{k} f(z)$ reduces to the well-known Salagean differential operator (see [24]).

Making use of the differential operator $\boldsymbol{D}_{p, q}^{k}$, we introduce a new class of analytic bi-univalent functions as follows.

Definition 1.4. A function $f \in \Sigma$ given by (1.1) is said to be in the class

$$
\boldsymbol{D}_{p, q}^{k}(\gamma, \zeta, \Psi), \quad \gamma \in \mathbb{C} \backslash\{0\}, 0 \leq \zeta<1, k \in \mathbb{N}_{0}, 0<q<p \leq 1, z, w \in \Delta
$$

if the following conditions are satisfied:

$$
\frac{1}{\gamma}\left(\frac{z\left(\boldsymbol{D}_{p, q}^{k} f(z)\right)^{\prime}}{(1-\zeta) \boldsymbol{D}_{p, q}^{k} f(z)+\zeta z\left(\boldsymbol{D}_{p, q}^{k} f(z)\right)^{\prime}}-1\right) \prec_{\rho}(\Psi(z)-1)
$$

and

$$
\frac{1}{\gamma}\left(\frac{w\left(\boldsymbol{D}_{p, q}^{k} g(w)\right)^{\prime}}{(1-\zeta) \boldsymbol{D}_{p, q}^{k} g(w)+\zeta w\left(\boldsymbol{D}_{p, q}^{k} g(w)\right)^{\prime}}-1\right) \prec_{\rho}(\Psi(w)-1)
$$

where the function g is given by (1.2).
Remark 1.1. For $p=1$ and $q \rightarrow 1$, a function $f \in \Sigma$ given by (1.1) is said to be in the class $\boldsymbol{D}^{k}(\gamma, \zeta, \Psi)$, if the following conditions are satisfied:

$$
\frac{1}{\gamma}\left(\frac{z\left(\boldsymbol{D}^{k} f(z)\right)^{\prime}}{(1-\zeta) \boldsymbol{D}^{k} f(z)+\zeta z\left(\boldsymbol{D}^{k} f(z)\right)^{\prime}}-1\right) \prec_{\rho}(\Psi(z)-1), \quad z \in \Delta
$$

and

$$
\frac{1}{\gamma}\left(\frac{w\left(\boldsymbol{D}^{k} g(w)\right)^{\prime}}{(1-\zeta) \boldsymbol{D}^{k} g(w)+\zeta w\left(\boldsymbol{D}^{k} g(w)\right)^{\prime}}-1\right) \prec_{\rho}(\Psi(w)-1), \quad z \in \Delta,
$$

where $\gamma \in \mathbb{C} \backslash\{0\}, 0 \leq \zeta<1, k \in \mathbb{N}_{0}$ and the function g is given by (1.2).
Remark 1.2. For $\zeta=0$ and $\gamma \in \mathbb{C} \backslash\{0\}$, a function $f \in \Sigma$ given by (1.1) is said to be in the class $\boldsymbol{D}_{p, q}^{k}(\gamma, \Psi)$, if the following conditions are satisfied:

$$
\frac{1}{\gamma}\left(\frac{z\left(\boldsymbol{D}_{p, q}^{k} f(z)\right)^{\prime}}{\boldsymbol{D}_{p, q}^{k} f(z)}-1\right) \prec_{\rho}(\Psi(z)-1), \quad z \in \Delta
$$

and

$$
\frac{1}{\gamma}\left(\frac{w\left(\boldsymbol{D}_{p, q}^{k} g(w)\right)^{\prime}}{\boldsymbol{D}_{p, q}^{k} g(w)}-1\right) \prec_{\rho}(\Psi(w)-1), \quad z \in \Delta
$$

where $k \in \mathbb{N}_{0}, 0<q<p \leq 1$ and the function g is given by (1.2).
Remark 1.3. For $\zeta=k=0$ and $\gamma \in \mathbb{C} \backslash\{0\}$, a function $f \in \Sigma$ given by (1.1) is said to be in the class $S_{\Sigma}(\gamma, \Psi)$, if the following conditions are satisfied:

$$
\frac{1}{\gamma}\left(\frac{z f^{\prime}(z)}{f(z)}-1\right) \prec_{\rho}(\Psi(z)-1), \quad z \in \Delta
$$

and

$$
\frac{1}{\gamma}\left(\frac{w g^{\prime}(w)}{g(w)}-1\right) \prec_{\rho}(\Psi(w)-1), \quad z \in \Delta
$$

where the function g is given by (1.2).

2. Main Result and its Consequences

Firstly, we will state the Lemma 2.1 to obtain our result.
Lemma 2.1 ([18]). If $s \in P$, then $\left|s_{i}\right| \leq 2$ for each i, where P is the family of all functions s, analytic in Δ, for which

$$
\operatorname{Re}(s(z))>0
$$

where

$$
s(z)=1+s_{1} z+s_{2} z^{2}+\cdots .
$$

Through out this paper it is assumed that Ψ is analytic in Δ with $\Psi(0)=1$ and let

$$
\begin{equation*}
\Psi(z)=1+C_{1} z+C_{2} z^{2}+\cdots, \quad C_{1}>0 \tag{2.1}
\end{equation*}
$$

Also let

$$
\begin{equation*}
h(z)=D_{0}+D_{1} z+D_{2} z^{2}+\cdots, \quad|h(z)| \leq 1, z \in \Delta . \tag{2.2}
\end{equation*}
$$

We begin this section by finding the estimates on the coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$ for functions in the class $\boldsymbol{D}_{p, q}^{k}(\gamma, \zeta, \Psi)$ proposed by Definition 1.4.

Theorem 2.1. Let f of the form (1.1) be in the class $\boldsymbol{D}_{p, q}^{k}(\gamma, \zeta, \Psi)$. Then

$$
\left|a_{2}\right| \leq \frac{|\gamma|\left|D_{0}\right| C_{1} \sqrt{C_{1}}}{\sqrt{(1-\zeta)\left|2[3]_{p, q}^{k} \gamma C_{1}^{2} D_{0}-[2]_{p, q}^{2 k}\left[(1-\zeta)\left(C_{2}-C_{1}\right)+(1+\zeta) \gamma C_{1}^{2} D_{0}\right]\right|}}
$$

and

$$
\left|a_{3}\right| \leq \frac{\left|\gamma D_{0}\right|^{2} C_{1}^{2}}{(1-\zeta)^{2}[2]_{p, q}^{2 k}}+\frac{\left|\gamma D_{1}\right| C_{1}}{2(1-\zeta)[3]_{p, q}^{k}}+\frac{\left|\gamma D_{0}\right| C_{1}}{2(1-\zeta)[3]_{p, q}^{k}}
$$

Proof. If $f \in \boldsymbol{D}_{p, q}^{k}(\gamma, \zeta, \Psi)$ then, there are two analytic functions $u, v: \Delta \rightarrow \Delta$ with $u(0)=v(0)=0,|u(z)|<1,|v(w)|<1$ and a function h given by (2.2), such that

$$
\begin{equation*}
\frac{1}{\gamma}\left(\frac{z\left(\boldsymbol{D}_{p, q}^{k} f(z)\right)^{\prime}}{(1-\zeta) \boldsymbol{D}_{p, q}^{k} f(z)+\zeta z\left(\boldsymbol{D}_{p, q}^{k} f(z)\right)^{\prime}}-1\right)=h(z)(\Psi(u(z))-1) \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{1}{\gamma}\left(\frac{w\left(\boldsymbol{D}_{p, q}^{k} g(w)\right)^{\prime}}{(1-\zeta) \boldsymbol{D}_{p, q}^{k} g(w)+\zeta w\left(\boldsymbol{D}_{p, q}^{k} g(w)\right)^{\prime}}-1\right)=h(w)(\Psi(v(w))-1) . \tag{2.4}
\end{equation*}
$$

Determine the functions s_{1} and s_{2} in P given by

$$
s_{1}(z)=\frac{1+u(z)}{1-u(z)}=1+t_{1} z+t_{2} z^{2}+\cdots
$$

and

$$
s_{2}(w)=\frac{1+v(w)}{1-v(w)}=1+q_{1} w+q_{2} w^{2}+\cdots .
$$

Thus,

$$
\begin{equation*}
u(z)=\frac{s_{1}(z)-1}{s_{1}(z)+1}=\frac{1}{2}\left(t_{1} z+\left(t_{2}-\frac{t_{1}^{2}}{2}\right) z^{2}+\cdots\right) \tag{2.5}
\end{equation*}
$$

and

$$
\begin{equation*}
v(w)=\frac{s_{2}(w)-1}{s_{2}(w)+1}=\frac{1}{2}\left(q_{1} w+\left(q_{2}-\frac{q_{1}^{2}}{2}\right) w^{2}+\cdots\right) . \tag{2.6}
\end{equation*}
$$

The fact that s_{1} and s_{2} are analytic in Δ with $s_{1}(0)=s_{2}(0)=1$. Since $u, v: \Delta \rightarrow \Delta$, the functions s_{1}, s_{2} have a positive real part in Δ, and the relations $\left|t_{i}\right| \leq 2$ and $\left|q_{i}\right| \leq 2$ are true. Using (2.5) and (2.6) together with (2.1) and (2.2) in the right hands of the relations (2.3) and (2.4), we obtain

$$
\begin{align*}
h(z)(\Psi(u(z))-1)= & \frac{1}{2} D_{0} C_{1} t_{1} z \tag{2.7}\\
& +\left(\frac{1}{2} D_{1} C_{1} t_{1}+\frac{1}{2} D_{0} C_{1}\left(t_{2}-\frac{t_{1}^{2}}{2}\right)+\frac{1}{4} D_{0} C_{2} t_{1}^{2}\right) z^{2}+\cdots
\end{align*}
$$

and

$$
\begin{align*}
h(w)(\Psi(v(w))-1)= & \frac{1}{2} D_{0} C_{1} q_{1} w \tag{2.8}\\
& +\left(\frac{1}{2} D_{1} C_{1} q_{1}+\frac{1}{2} D_{0} C_{1}\left(q_{2}-\frac{q_{1}^{2}}{2}\right)+\frac{1}{4} D_{0} C_{2} q_{1}^{2}\right) w^{2}+\cdots .
\end{align*}
$$

In the light of (2.3) and (2.4), we get

$$
\begin{equation*}
\frac{(1-\zeta)[2]_{p, q}^{k}}{\gamma} a_{2}=\frac{D_{0} C_{1} t_{1}}{2} \tag{2.9}
\end{equation*}
$$

$$
\begin{equation*}
\frac{2(1-\zeta)[3]_{p, q}^{k} a_{3}-\left(1-\zeta^{2}\right)[2]_{p, q}^{2 k} a_{2}^{2}}{\gamma}=\frac{D_{1} C_{1} t_{1}}{2}+\frac{D_{0} C_{1}}{2}\left(t_{2}-\frac{t_{1}^{2}}{2}\right)+\frac{D_{0} C_{2} t_{1}^{2}}{4} \tag{2.10}
\end{equation*}
$$

and

$$
\begin{equation*}
-\frac{(1-\zeta)[2]_{p, q}^{k}}{\gamma} a_{2}=\frac{D_{0} C_{1} q_{1}}{2}, \tag{2.11}
\end{equation*}
$$

$$
\begin{equation*}
\frac{2(1-\zeta)[3]_{p, q}^{k}\left(2 a_{2}^{2}-a_{3}\right)-\left(1-\zeta^{2}\right)[2]_{p, q}^{2 k} a_{2}^{2}}{\gamma}=\frac{D_{1} C_{1} q_{1}}{2}+\frac{D_{0} C_{1}}{2}\left(q_{2}-\frac{q_{1}^{2}}{2}\right)+\frac{D_{0} C_{2} q_{1}^{2}}{4} . \tag{2.12}
\end{equation*}
$$

Now, (2.9) and (2.11) give

$$
\begin{equation*}
t_{1}=-q_{1} \tag{2.13}
\end{equation*}
$$

and

$$
\begin{equation*}
8(1-\zeta)^{2}[2]_{p, q}^{2 k} a_{2}^{2}=\gamma^{2} D_{0}^{2} C_{1}^{2}\left(t_{1}^{2}+q_{1}^{2}\right) . \tag{2.14}
\end{equation*}
$$

Adding (2.10) and (2.12), we get
(2.15) $\frac{4(1-\zeta)[3]_{p, q}^{k}-2\left(1-\zeta^{2}\right)[2]_{p, q}^{2 k}}{\gamma} a_{2}^{2}=\frac{D_{0} C_{1}\left(t_{2}+q_{2}\right)}{2}+\frac{D_{0}\left(C_{2}-C_{1}\right)\left(t_{1}^{2}+q_{1}^{2}\right)}{4}$.

By using (2.13), (2.14) and Lemma 2.1 in (2.15), we obtain

$$
\left|a_{2}\right| \leq \frac{|\gamma|\left|D_{0}\right| C_{1} \sqrt{C_{1}}}{\sqrt{(1-\zeta)\left|2[3]_{p, q}^{k} \gamma C_{1}^{2} D_{0}-[2]_{p, q}^{2 k}\left[(1-\zeta)\left(C_{2}-C_{1}\right)+(1+\zeta) \gamma C_{1}^{2} D_{0}\right]\right|}} .
$$

Next, to find the bound on $\left|a_{3}\right|$, by subtracting (2.12) from (2.10), we have

$$
\begin{equation*}
\frac{4(1-\zeta)[3]_{p, q}^{k}}{\gamma}\left(a_{3}-a_{2}^{2}\right)=\frac{D_{0} C_{1}\left(t_{2}-q_{2}\right)}{2}+\frac{D_{1} C_{1}\left(t_{1}-q_{1}\right)}{2} . \tag{2.16}
\end{equation*}
$$

It follows from (2.13), (2.14) and (2.16) that

$$
a_{3}=\frac{\gamma^{2} D_{0}^{2} C_{1}^{2}\left(t_{1}^{2}+q_{1}^{2}\right)}{8\left(1-\zeta^{2}\right)[2]_{p, q}^{2 k}}+\frac{\gamma D_{1} C_{1}\left(t_{1}-q_{1}\right)}{8(1-\zeta)[3]_{p, q}^{k}}+\frac{\gamma D_{0} C_{1}\left(t_{2}-q_{2}\right)}{8(1-\zeta)[3]_{p, q}^{k}} .
$$

Applying Lemma 2.1 once again for the coefficients t_{1}, t_{2}, q_{1} and q_{2}, we readily get

$$
\left|a_{3}\right| \leq \frac{\left|\gamma D_{0}\right|^{2} C_{1}^{2}}{(1-\zeta)^{2}[2]_{p, q}^{2 k}}+\frac{\left|\gamma D_{1}\right| C_{1}}{2(1-\zeta)[3]_{p, q}^{k}}+\frac{\left|\gamma D_{0}\right| C_{1}}{2(1-\zeta)[3]_{p, q}^{k}} .
$$

This completes the proof of Theorem 2.1.
Corollary 2.1. Let f of the form (1.1) be in the class $\boldsymbol{D}^{k}(\gamma, \zeta, \Psi)$. Then

$$
\left|a_{2}\right| \leq \frac{|\gamma|\left|D_{0}\right| C_{1} \sqrt{C_{1}}}{\sqrt{(1-\zeta)\left|2 \gamma C_{1}^{2} D_{0} 3^{k}-2^{2 k}\left[(1-\zeta)\left(C_{2}-C_{1}\right)+(1+\zeta) \gamma C_{1}^{2} D_{0}\right]\right|}}
$$

and

$$
\left|a_{3}\right| \leq \frac{\left|\gamma D_{0}\right|^{2} C_{1}^{2}}{(1-\zeta)^{2} 2^{2 k}}+\frac{\left|\gamma D_{1}\right| C_{1}}{2(1-\zeta) 3^{k}}+\frac{\left|\gamma D_{0}\right| C_{1}}{2(1-\zeta) 3^{k}}
$$

Corollary 2.2. Let f of the form (1.1) be in the class $\boldsymbol{D}_{p, q}^{k}(\gamma, \Psi)$. Then

$$
\left|a_{2}\right| \leq \frac{|\gamma|\left|D_{0}\right| C_{1} \sqrt{C_{1}}}{\sqrt{\left|2[3]_{p, q}^{k} \gamma C_{1}^{2} D_{0}-[2]_{p, q}^{2 k}\left[\left(C_{2}-C_{1}\right)+\gamma C_{1}^{2} D_{0}\right]\right|}}
$$

and

$$
\left|a_{3}\right| \leq \frac{\left|\gamma D_{0}\right|^{2} C_{1}^{2}}{[2]_{p, q}^{2 k}}+\frac{\left|\gamma D_{1}\right| C_{1}}{2[3]_{p, q}^{k}}+\frac{\left|\gamma D_{0}\right| C_{1}}{2[3]_{p, q}^{k}}
$$

Corollary 2.3. Let f of the form (1.1) be in the class $S_{\Sigma}(\gamma, \Psi)$. Then

$$
\left|a_{2}\right| \leq \frac{\left|\gamma D_{0}\right| C_{1} \sqrt{C_{1}}}{\sqrt{\left|C_{1}-C_{2}+\gamma C_{1}^{2} D_{0}\right|}}
$$

and

$$
\left|a_{3}\right| \leq\left|\gamma D_{0}\right|^{2} C_{1}^{2}+\frac{\left(\left|D_{1}\right|+\left|D_{0}\right|\right)|\gamma| C_{1}}{2}
$$

3. Concluding Remark

Various choices of Ψ as mentioned above and suitably choosing the values of C_{1} and C_{2}, we state some interesting results analogous to Theorem 2.1 and the Corollaries 2.1 to 2.3. For example, the function Ψ is given by

$$
\Psi(z)=\left(\frac{1+z}{1-z}\right)^{\theta}=1+2 \theta z+2 \theta^{2} z^{2}+\cdots, \quad 0<\theta \leq 1,
$$

which gives

$$
C_{1}=2 \theta \text { and } C_{2}=2 \theta^{2} .
$$

By taking

$$
\Psi(z)=\frac{1+(1-2 \mu) z}{1-z}=1+2(1-\mu) z+2(1-\mu) z^{2}+\cdots, \quad 0 \leq \mu<1
$$

we have

$$
C_{1}=C_{2}=2(1-\mu) .
$$

On the other hand, for $-1 \leq B \leq A<1$, if we let

$$
\Psi(z)=\frac{1+A z}{1+B z}=1+(A-B) z-B(A-B) z^{2}+\cdots, \quad 0<\theta \leq 1,
$$

then we have

$$
C_{1}=(A-B) \text { and } C_{2}=-B(A-B) .
$$

The details involved may be left as an exercise for the interested reader.

References

[1] Ş. Altınkaya and S. Yalçın, Faber polynomial coefficient bounds for a subclass of bi-univalent functions, C. R. Math. Acad. Sci. Paris 353 (2015), 1075-1080.
[2] S. Araci, U. Duran, M. Acikgoz and H. M. Srivastava, A certain (p, q)-derivative operator and associated divided differences, J. Inequal. Appl. 301 (2016), 2016, 8 pages.
[3] S. M. Aydoğan, Y. Kahramaner and Y. Polatoğlu, Close-to-convex functions defined by fractional operator, Appl. Math. Sci. 7 (2013), 2769-2775.
[4] D. A. Brannan and J. G. Clunie, Aspects of contemporary complex analysis, in: Proceedings of the NATO Advanced Study Instute, University of Durham, New York, 1979.
[5] D. A. Brannan and T. S. Taha, On some classes of bi-univalent functions, Stud. Univ. BabesBolyai Math. 31 (1986), 70-77.
[6] R. Chakrabarti and R. Jagannathan, $A(p, q)$-oscillator realization of two-parameter quantum algebras, J. Phys. A. 24 (1991), 711-718.
[7] P. L. Duren, Univalent Functions, Grundlehren der Mathematischen Wissenschaften 259, Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, 1983.
[8] G. Gasper and M. Rahman, Basic Hypergeometric Series, Cambridge University Press, Cambridge, MA, 1990.
[9] S. G. Hamidi and J. M. Jahangiri, Faber polynomial coefficients of bi-subordinate functions, C. R. Math. Acad. Sci. Paris 354(2016), 365-370.
[10] T. Hayami and S. Owa, Coefficient bounds for bi-univalent functions, Pan-American Mathematical Journal 22 (2012), 15-26.
[11] F. H. Jackson, On q-functions and a certain difference operator, Transactions of the Royal Society of Edinburgh 46 (1908), 253-281.
[12] M. Lewin, On a coefficient problem for bi-univalent functions, Proc. Amer. Math. Soc. 18 (1967), 63-68.
[13] T. H. MacGregor, Majorization by univalent functions, Duke Math. J. 34 (1967), 95-102.
[14] A. Mohammed and M. Darus, A generalized operator involving the q-hypergeometric function, Mat. Vesnik 65 (2013), 454-465.
[15] F. M. Sakar and H. Ö. Güney, Faber polynomial coefficient bounds for analytıc bi-close-to-convex functions defined by fractional calculus, J. Fract. Calc. Appl. 9 (2018), 64-71.
[16] E. Netanyahu, The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in $|z|<1$, Arch. Ration. Mech. Anal. 32 (1969), 100-112.
[17] T. Panigarhi and G. Murugusundaramoorthy, Coefficient bounds for bi-univalent functions analytic functions associated with Hohlov operator, Proc. Jangjeon Math. Soc. 16 (2013), 91-100.
[18] Ch. Pommerenke, Univalent Functions, Vandenhoeck and Rupercht, Gottingen, 1975.
[19] S. D. Purohit and R. K. Raina, Certain subclass of analytic functions associated with fractional q-calculus operators, Math. Scand. 109 (2011), 55-70.
[20] S. D. Purohit and R. K. Raina, Fractional q-calculus and certain subclass of univalent analytic functions, Mathematica (Cluj) 55 (2013), 62-74.
[21] R. K. Raina and P. Sharma, Subordination properties of univalent functions involving a new class of operators, Electron. J. Math. Anal. Appl. 2 (2014), 37-52.
[22] F. Y. Ren, S. Owa and S. Fukui, Some inequalities on quasi-subordinate functions, Bull. Aust. Math. Soc. 43 (1991), 317-324.
[23] M. S. Robertson, Quasi-subordination and coefficients conjectures, Bull. Amer. Math. Soc. 76 (1970), 1-9.
[24] G. S. Salagean, Subclasses of univalent functions, in: Proceeding of Complex Analysis - Fifth Romanian Finnish Seminar, Part 1, Bucharest, 1981, Lecture Notes in Math. 1013, Springer, Berlin, 1983, 362-372.
[25] C. Selvaraj, G. Thirupathi and E. Umadevi, Certain classes of analytic functions involving a family of generalized differential operators, Transylvanian Journal of Mathemtics and Mechanics 9 (2017), 51-61.
[26] P. Sharma, R. K. Raina and J. Sokol, On the convolution of a finite number of analytic functions involving a generalized Srivastava-Attiya operator, Mediterr. J. Math. 13 (2016), 1535-1553.
[27] D. F. Sofonea, Some properties in q-calculus, Gen. Math. 16 (2008), 47-54.
[28] H. M. Srivastava, G. Murugusundaramoorthy and N. Magesh, Certain subclasses of bi-univalent functions associated with the Hohlov operator, Appl. Math. Lett. 1 (2013), 67-73.
[29] H. M. Srivastava, A. K. Mishra and P. Gochhayat, Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett. 23 (2010), 1188-1192.
[30] H. M. Srivastava, Univalent functions, fractional calculus, and associated generalized hypergeometric functions, in: H. M. Srivastava and S. Owa (Eds.), Univalent Functions, Fractional Calculus and Their Applications, Halsted Press (Ellis Horwood Limited, Chichester), John Wiley and Sons, New York, Chichester, Brisbane, Toronto, 1989.
[31] A. Zireh, E. A. Adegani and S. Bulut, Faber polynomial coefficient estimates for a comprehensive subclass of analytic bi-univalent functions defined by subordination, Bull. Belg. Math. Soc. Simon Stevin 23 (2016), 487-504.
${ }^{1}$ Department of Mathematics, Bursa Uludag University, 16059, Bursa, Turkey
Email address: sahsenealtinkaya@gmail.com
Email address: syalcin@uludag.edu.tr

[^0]: Key words and phrases. Coefficient bounds, Bi-univalent functions, Quasi-subordination, qcalculus, (p, q)-derivative operator.

 2010 Mathematics Subject Classification. Primary: 30C45. Secondary: 33D15.
 DOI 10.46793/KgJMat2004.639A
 Received: December 28, 2017.
 Accepted: August 22, 2018.

