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SOME GRUSS TYPE INEQUALITIES FOR FRECHET
DIFFERENTIABLE MAPPINGS

T. TEIMOURI-AZADBAKHT! AND A. G GHAZANFARI!

ABSTRACT. Let X be a Hilbert C*-module on C*-algebra A and p € A. We denote
by D,(A, X) the set of all continuous functions f : A — X, which are Fréchet
differentiable on a open neighborhood U of p. Then, we introduce some generalized
semi-inner products on D, (A, X), and using them some Griiss type inequalities in
semi-inner product C*-module D, (A, X) and D,(A, X™) are established.

1. INTRODUCTION

Let A, X be two normed vector spaces over K(K = C,R), we recall that a function
f A — X is Fréchet differentiable in p € A, if there exists a bounded linear mapping
u: A — X such that

L ) = £() — u(B)llx

h=0 [|2]] 4

and in this case, we denote u by D f(p). Let D,(A, X) denotes the set of all continuous
functions f : A — X, which are Fréchet differentiable on a open neighborhood (say U)
of p. The main purpose of differential calculus consists in getting some information
using an affine approximation to a given nonlinear map around a given point. In
many applications it is important to have Fréchet derivatives of f, since they provide
genuine local linear approximation to f. For instance, let U be an open subset of A
containing the segment [z,y] = {(1—0)x +0y: 0 <0 <1}, andlet f: A — X be
Fréchet differentiable on U, then the following mean value formula holds

I£() = ) < lle =yl swp [DF((1 = 0)z + )]

=0,
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For two Lebesgue integrable functions f,g : [a,b] — R, consider the Cebysev
functional:

T(f,9) = = [ f0g(dt 2 [ syt [ g(oyar

In 1934, G. Griss [4] showed that
1
(1) 7(7.)| < (M ~m)(N —n),

provided m, M,n, N are real numbers with the property —oo <m < f < M < o0
and —oo <n < g< N <oo ae. on [a,b]. The constant 1 is the best possible in the
sense that it cannot be replaced by a smaller quantity and is achieved for

() = gla) = sgn (e = “50).

2
The discrete version of (1.1) states that: if a < a; < A, b < b < B, i=1,..,n,
where a, A, b, B, a;, b; are real numbers, then

1 n

1 & 1&

where the constant i is the best possible for an arbitrary n > 1. Some refinements
of the discrete version of Griiss inequality (1.2) for inner product spaces are available
in [1,6].

Theorem 1.1. ([2, Theorem 2|). Let (H;(-,-)) and K be as above and
T = (x1,...,2,) € H", @ = (vq,...,0,) € K" and p = (p1,...,pn) a probability
vector. If v, X € H are such that

Re(X —x;j,x; —x) >0, forallie{l,...,n},

1
< JA—a)(B-b),

or, equivalently,

X 1
iy [ SIX =gl forallie {1, .. .n},

T; —

holds, then the following inequality holds

n n n
Z PiQ;T; — Z yZ18% Z PiT;
i=1 i=1 i=1

1 n n
< §||X — Zpi Q; — ijaj
i=1 j=1

n
Zpiai
i=1

The constant % in the first and second inequalities is the best possible.

1
272
i=1
In recent years several refinements and generalizations have been considered for the

Griiss inequality. We would like to refer the reader to [2-6,8,9] and references therein
for more information.

1 n
< SIX — 1 lzmaiﬁ -
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In this paper, for every Hilbert C*-module X over a C*-algebra A, some Griiss type
inequalities in semi-inner product C*-module D,(A, X™) are established. We also for
two arbitrary Banach x-algebras, define a norm and an involution map on D,(A, B)
and prove that D,(A, B) is a Banach *-algebra.

2. GRUSS TYPE INEQUALITIES FOR DIFFERENTIABLE MAPPINGS

Let A be a C*-algebra. A semi-inner product module over A is a right module X
over A together with a generalized semi-inner product, that is with a mapping (., .)
on X x X, which is A-valued and has the following properties:

(i) (x,y + 2) = (z,y) + (x, 2) for all x,y,z € X
(ii) (x,ya) = (z,y)a for z,y € X,a € A;

(iii) (z,y)* = (y,z) for all x,y € X;
(iv) (z, >>0f0rx€X

We will say that X is a semi-inner product C*-module. If, in addition,
(v) (z,z) =0 implies = = 0,

then (-,-) is called a generalized inner product and X is called an inner product
module over A or an inner product C*-module. An inner product C*-module which
. . . 1, .
is complete with respect to its norm ||z| = [|(z, z)||2, is called a Hilbert C*-module.
As we can see, an inner product module obeys the same axioms as an ordinary
inner product space, except that the inner product takes values in a more general
structure rather than in the field of complex numbers. If A is a C*-algebra and X is
a semi-inner product A-module, then the following Schwarz inequality holds:

(T, y)(y, 2) < [z, 2)[[{y, v), =yeX
(e.g., [7, Proposition 1.1]).

Theorem 2.1 ([3]). Let A be a C*- Algebra, X a Hilbert C*- module. If z,y,e € X,
(e, e) is an idempotent in A and «, 5, \, p are complex numbers such that

“ a+6 A+
r —

2

1
| <gla-a s <lp-u,

hold, then one has the following inequality:

Iz, y) = (z, e){e, y)|| < le|0< = BlA = pl.

Example 2.1. Let A be a C*-algebra and X be a semi-inner product C*-module
on a C*-algebra B. If functions f,g € D,(A, X), then function & : A — B as
k(a) = (f(a), g(a)) is differentiable in p € A and derivative of that is a linear mapping
Dk(p) : A — B defined by

Dk(p)(a) = (Df(p)(a*),g(p)) + (f(p), Dg(p)(a)).
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Because
(flp+h),9(p+n)) —(f(p), ())—(Df(p)( ) 9(p)) — (f(p), Dg(p)(h))
=(f(p+h),9(p+h)—g(p) — Dgp)(h))) + {f(p+h) — f(p), Dg(p)(h))
+(f(p+h") = f(p) = Df(p)(Rh"),9(p)) + (f(p+h) = f(p+1h"),9(p))

Let A be a C*-algebra and X a semi-inner product A-module. If f € D,(A, X) and
a € A, we define the function f, : A — X by f,(t) = f(t)a.

Theorem 2.2. Let X be a semi-inner product C*-module on C*-algebra A, and
pe Aeec X. If (e,e) is an idempotent element in A, and f,g € D,(A, X), then for
every a € A, the map [-,-|a : Dp(A, X) X Dy(A, X) — A with

£ 9l = (DF®)(@), Dgp)(@)), + (£(p).9(®)), = D{F(),90)), (P)(@),
is a generalized semi-inner product on D,(A, X), where
(f(a),g(a))r = (f(a),g(a)) — (f(a),e) (e, g(a)).

Proof. First, we show that f, € D,(A, X) and Df,(p) = (Df(p))a. There exists a
bounded convex set V(= B(p,r)) containing p such that V. C U. Let p,h € V, a € A,
then

[falp +h) = fa(p) = (DF(p)(R)all = [[f(p + h) = f(p) = Df(p)(h)]all
< |[[f(p+h) = flp) = Df(p)(M)lllall.

This implies that f, € D,(A, X).
A simple calculation shows

£ 9la =(Df(p)(a) = £(), Dg(p)(a) — 9(p))
— (Df(p)(a) = f(p),e){e, Dg(p)(a) — g(p))
—((DIO)N@ = 1)) = e(e. (DI )a) ~ FP))),

(Dg(p)(a) — g(p) ~ e{e. (Dg(p)la) ~ 9(p))) -

Therefore,
1. 1la ={(DI®)@) = F0) = (e, (Df ) (@) = FB)).
(DD = £0) = e{e. (DF@@) = F@)) = 0.
It is easy to show that [+, ], is a generalized semi-inner product on D,(4,X). O

Lemma 2.1. Let X be a semi-inner product C*-module on C*-algebra A, and p,a €
Aee X. If (e,e) is an idempotent element in A, f,g € D,(A, X) and o, 8,0/, 3, u,
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A\ 'y N are complex numbers such that

a+p

1
_ <oy —
R ]
a,—"_/B, ]‘ / /
D))~ T e b,
2 2
A p 1
_ AT R <2 =
i) - 252 <3
/_|_>\/ 1 , ,
D@ -5 <G -

then the following inequality holds

D) @), Do)+ (F(2). 9p))s — D{F(), 90, () a)
<l =B+ o’ = FD(A— ul + N = ).

Proof. Since [-,], is a generalized semi-inner product on D,(A, X), the Schwartz
inequality holds, i.e,

ILf, glall* < NILfs Flall g, glall
We know that

This inequality and Theorem 2.1 imply that
1 ! 112 1 2 1 / !
I1f: flall <7 lo" = F1° + Zla = B + 5lo” = Fle = 5]
1
=l =Bl + 1o’ = B>
Similarly,
1 / /2 1 2 1 !/ !/
llg: glall <IN = WP+ A = 6 + SV = 1A = g
1
=7 (A= pl+ N =) O

Let X be a semi-inner product C*-module over C*-algebra A. For every x € X, we
define the map #: A — X" by &(a) = (za,...,xa), a € A.
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Lemma 2.2. Let X be a semi-inner product C*-module, xq,yo,r1,y1 € X and
(ri,re,...,m) € R™ a probability vector. If p € A and f = (fi,---,[n),
g=1(91,---,9n) € Dy(A, X") such that

‘Df(p)—xo—;yo S‘%;yo
and
Dy(p) 1’1—2|‘Z/1 S‘m;@h ’
then for all a € A, we have
i=1 =1

1
< llwo = wollllzs = wmllllal*

Proof. For every a € A, we define the map (-, ) : Dp(A, X") x Dy(A, X") — A with

(19), = L r{ DE@@. Do) (e)) = ( D)), Do (p)(a))

i=1
The following Korkine type inequality for differentiable mappings holds:

n

1
(1:9),= 5 > ros{ DAp)a) = Dfs(p)la). Dos(p)(a) ~ Das(p)(a)),
i=1,j=1
Therefore, ( 1, f)a > 0. It is easy to show that (-, -)a is a generalized semi-inner
product on D,(A, X™).
A simple calculation shows that

(1.9), g r{ Dlp)a) - 20, Dap)(@) ~ “a)
- <Zani<p><a> SIS D))~ )
i=1 i=1
From Schwartz inequality, we have
[(7.9) " < v [Pt — 220 S Do) - 2o
i=1 -
— 2 L —
<|ps - 252 oot - TE] T

1
< 5 leo = wolPllzr = wal*lall™ N
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Corollary 2.1. Let X be a semi-inner product C*-module, xq,yo € X, (aq,..., ) €

C" and (r1,79,...,75) € R™ a probability vector. If p € A and f = (f1,...,[fn) €

D,(A, X™) such that

Zo + Yo
2

To — Yo

Df(p) — 5

Y

then for all a € A, we have

ZnalDfl Zna@ Zanz

r.

(2.1)

n n
ZT¢|O%|2 - ZTz‘Oéi
i=1 i=1

Proof. We have

;D fi(p Z Ty Z r:Dfi(p
=Zm(ai—zrja]) HDfxp)()— : ]
i=1 j=1
<> il = > oyl |IDf(p) — ot lal
i=1 j=1

Lo — Yo

%
ZTZO@ } ) O

Corollary 2.2. Let X be a semi-inner product C*-module, xo,y0 € X. If p € A and
f = (f17 s 7fn) S Dp(A7Xn> such that

[zn: ril o)

i=1

Zo + Yo

To —
Df(p) - < =52
then for all a € A, we have
(2.2)
n+1 z": < llallllzo = yolln { (n = D(n + 1) |2

Pt - 4 3 ’

and
n+1) 2n +1) &

(2.3 Dfe(p)(a) — ¢ L3 DAty

el ”fg\;gy"””wn —1)(n+1)(2n + 1)(8n + 11).

Proof. If we put ri = %, a; = k in inequality (2.1), then we get (2.2), and if ri =
L o; = k? in inequality (2.1), then we get (2.3). O
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3. DIFFERENTIABLE MAPPINGS ON BANACH *- ALGEBRAS

Theorem 3.1. Let A, B be two Banach *-algebras and p € A, then D,(A, B) is a
Banach x-algebra with the point-wise operations and the involution f*(a) = (f(a))*,
a € A, and the norm

If] := max {Sup 1D f ()], sup ||f(a)||} < 00.
zeU acA

Proof. First we show that the involution f — f* is differentiable and D f*(x)(h) =
(Df(x)(h*))*, z,h € U. It is trivial that Df*(x) is a bounded linear map with
[Df*(@) = [Df(z)] and
1f*(z 4+ ) = f*(z) = Df*(z)(h)]

= (f(a+h) = f(@) = Df() (W)

=[[f(z +h) - f(z) (@) (A7)

=[lf(z+h) = f(z) (x)(h) + D f(z)(h) = Df(x)(h")]]

<el|nll + 1D f () (h = )| < el[hll + 2[[Df () [|A]]-
From [[Df*(z)|| = [Df(z)| and [[f*(a)[| = [|f(a)|l, we obtain

Hfﬂ|=1nax{sup|u9f*@»u,supnf*aou}
zelU a€A

_Df
_Df

:mw{mmWﬂwwamwww}zww
xelU a€A

Now, we show that D,(A, B) is complete. There exists a bounded convex set V(=
B(p,r)) containing p such that V' C U. Suppose that (f,) is a Cauchy sequence in
D,(A,B), i.e.,
[fn(a) = fm(@)]| =0, a€A, and [|Dfo(z) = Dfm(z)| =0, zeV.
Since B is complete, therefore L(A, B) the space of all bounded linear maps from A
into B, is complete. So, there are functions f, g such that sup,c4 || fn(a) — f(a)|] = 0

and sup,cy |Dfn(z) — g(z)|| = 0. Given € > 0, we can find N € N such that for
m >n > N one has

1D = Diallse = sup 1D () = D) < 3,

(3.1) m-umkzﬁymm—nnuW<§

We may suppose that there exist a € A such that p 4+ a € V. Using Lipschitzian
functions f,, — f,., we obtain that

||fm(p+ CL) - fm(p> - (fn(p+ a’) - fn(p))H
< sup [|Dfulp+0a) = D (p +00) ] < 3 lal.
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Passing to the limit on m, we get

(3:2) 1£(p+a) = () = (fulp+ @) = fuP)) < lall
Utilizing differentiability fy and (3.1), we have
[fn(p+a) = fn(p) — 9@) ()|l < fn(p+a) = fn(p) — Dfn(p)(a)]

£ 5
(3.3) +IDfn(p)(a) = g(p)(a)ll < Sllall + 5lla]
From (3.2) and (3.3), we obtain
1f(p+a) = fp) — g(p)(a)|| < ellall.
Therefore, D,(A, B) is a Banach *-algebra. O

REFERENCES

[1] S.S. Dragomir, Advances in Inequalities of the Schwarz, Griss and Bessel Type in Inner Product
Spaces, Nova Science Publishers Inc., New York, 2005.

[2] S. S. Dragomir, A Griss type discrete inequality in inner product spaces and applications, J.
Math. Anal. Appl. 250 (2000), 494-511.

[3] A. G. Ghazanfari and S. S. Dragomir, Bessel and Griiss type inequalities in inner product
modules over Banach x-algebra, Linear Algebra Appl. 434 (2011), 944-956.

[4] G. Griiss, Uber das Mazimum des absoluten Betrages von f; f@)g(x)dx —
o [ f(@)dz [ g(x)dz, Math. Z. 39(1934), 215-226.

[5] D. Hisevi¢ and S. Varosanec, Griss type inequalities in inner Product modules, Proc. Amer.
Math. Soc. 133 (2005), 3271-3280.

[6] A. I Kechriniotis and K. K. Delibasis, On generalizations of Griss inequality in inner product
spaces and applications, J. Inequal. Appl. 2010 (2010), Article ID 167091, 18 pages.

[7] E. C. Lance, Hilbert C*-Modules, London Math. Soc. Lecture Note Ser. 210, Cambridge Uni-
versity Press, 1995.

[8] X. Li, R. N. Mohapatra and R. S. Rodriguez, Griiss-type inequalities, J. Math. Anal. Appl.
267(2) (2002), 434-443.

[9] D. S. Mitrinovié¢, J. E. Pedari¢ and A. M. Fink, Classical and New Inequalities in Analysis,
Kluwer Academic, Dordrecht, 1993.

IDEPARTMENT OF MATHEMATICS,
LORESTAN UNIVERSITY,

P.O. Box 465, KHORAMABAD,

IRAN

Email address: t.azadbakhat880gmail.com
Email address: ghazanfari.a@lu.ac.ir



	1. Introduction
	2. Grüss Type Inequalities for Differentiable Mappings
	3. Differentiable Mappings on Banach *-Algebras
	References

