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OSTROWSKI-GRUSS TYPE INEQUALITIES AND A 2D
OSTROWSKI TYPE INEQUALITY ON TIME SCALES INVOLVING
A COMBINATION OF A-INTEGRAL MEANS

SETH KERMAUSUOR! AND EZE R. NWAEZE?*

ABSTRACT. In this paper, we derived two Ostrowski—Griiss type inequalities on time
scales involving a combination of A-integral means. One of the inequalities is sharp.
We also obtained 2-dimensional Ostrowski type inequality involving a combination
of A-integral means. Our results extend some known results in the literature.
Furthermore, we apply our results to the continuous, discrete and quantum calculus
to obtain some interesting inequalities in these directions.

1. INTRODUCTION

In 1938, Alexander Ostrowski [23] provided a bound for the deviation of a function
from its integral mean. The inequality, which is today known in the literature as
Ostrowski inequality, states as follows.

Theorem 1.1. Let f : [a,b] — R be continuous on [a,b] and differentiable in (a,b)
and its derivative f': (a,b) — R is bounded in (a,b). If |f'(t)| < M for allt € [a,b],
then we have

b x — atb)’
T RLLE i+((b_)> b~ oM,

for all x € [a,b]. The inequality is sharp in the sense that the constant 1/4 cannot be
replaced by a smaller one.
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This inequality has received considerable attention over the past years (see for
example [9, 10, 19] and the references therein). In 1997, Dragomir and Wang [9]
obtained the following Ostrowski—Griiss type integral inequality.

Theorem 1.2. Let [ C R be an open interval, a,b € I, a < b. If f : I - R is a
differentiable function such that there exist constants v, I' € R, with v < f'(z) < T
for all x € [a,b], then we have

Fla) - — /bf(t)dt_f(b)—f(@)(x_aﬂ) 1

7(b—a)(T' =),

e

b—ala b—a 2
for all z € [a, b].

In 1988, the German mathematician Stefan Hilger [11] introduced the theory of time
scales to unify the continuous and discrete calculus in a consistent manner. Since then
many authors have studied several integral inequalities on time scales for functions of
a single variable (see [15,19,22,26] and the references therein) as well as for functions
of two independent variables (see [12,13,17,18,24,25] and the references therein). In
2008, Bohner and Matthews [2] extended Theorem 1.1 to an arbitrary time scale T
as follows.

Theorem 1.3. Leta, b, s, t €T, a<band [ :

(L) 0= 5t [ etnas

where hy(-,-) is defined by Definition 2.8 in Section 2 and M = sup,_,, | f2(t)] < .
Inequality (1.1) is sharp in the sense that the right-hand side cannot be replaced by a
smaller one.

a,b] = R be a differentiable. Then

[hQ(t7 CL) + hQ(t’ b)]v

<

In 2009, Liu and Ngo [20] used the Griiss inequality obtained by Bohner and
Matthews [2] to extend Theorem 1.2 to an arbitrary time scale as follows.

Theorem 1.4. Suppose a,b,x,t € T and f : |a,b] — R s differentiable. Suppose
fA€Crgandy < f2(z) <T forall z € [a,b] and some v, T € R. Then we have

L /abf(g(t))At — f((l;)__a];ga) (hQ(x, a) — ha(z, b)>

for all z € [a, b].

< 00— -9,

‘ﬂ@—

The same authors in [21] obtained a sharp bound for the inequality in Theorem 1.4.
Specifically, they proved the next theorem.

Theorem 1.5. Suppose a,b,x,t € T and f : [a,b] — R is differentiable. Suppose also
fAeCyandy < f2(x) <T for all v € [a,b] and some v, T € R. Then we have

1 f(b) — f(a

)= o [ stonae = HEED (1o,0) < hate)




OSTROWSKI-GRUSS AND A 2D OSTROWSKI TYPE INEQUALITY ON TIME SCALES 129

ho(z,a) — ha(z,b)

-~ b
<—-—~ | |K(z,t)— At
_2(b—a)/a (1) b—a ’ ’

for all x € [a,b], where
t—a, a<lt<wx

K(x,t)—{

<z,
t—0b, x<t<hb.

Motivated by the above works and the paper [17], we obtain two Ostrowski-Griiss
type inequalities on time scales involving a combination of A-integral means. The
results above then become particular case of our results. Also, we provide a 2D
Ostrowski type inequality for double integrals involving a combination of A-integral
means. The result in [17] then becomes a particular case of our result.

This paper is arranged in the following order: first, we present some time scale

essentials in Section 2. In Section 3, our first two results are formulated and proved.
Finally, we provide a 2D Ostrowski-type inequality in Section 4.

2. SOME BAsic NOTIONS OF TIME SCALES

In this section, we briefly recall some fundamental facts about the time scale theory.
For further details and proofs we invite the interested reader to Hilger’s Ph.D. thesis
[11], the books [4,5,16], and the survey [1].

Definition 2.1. A time scale is an arbitrary nonempty closed subset of the real
numbers R.

Throughout this work we assume T is a time scale and T has the topology that is
inherited from the standard topology on R. It is also assumed throughout that in T
the interval [a,b] means the set {t € T: a <t < b} for the points a < b in T. Since a
time scale may not be connected, we need the following concept of jump operators.

Definition 2.2. The forward and backward jump operators o, p : T — T are defined
by o(t) =inf{s € T:s >t} and p(t) =sup{s € T : s < t}, respectively.

The jump operators o and p allow the classification of points in T as follows.

Definition 2.3. If o(t) > t, then we say that ¢ is right-scattered, while if p(t) < ¢
then we say that t is left-scattered. Points that are right-scattered and left-scattered
at the same time are called isolated. If o(t) = ¢, then ¢ is called right-dense, and if
p(t) =t then t is called left-dense. Points that are both right-dense and left-dense are
called dense.

Definition 2.4. The graininess function p : T — [0, 00) is defined by u(t) = o(t) — t
for t € T. The set T* is defined as follows: if T has a left-scattered maximum m, then
Tk = T — {m}, otherwise, T* = T.

If T =R, then u(t) =0 and when T = Z, we have u(t) = 1.
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Definition 2.5. Let f : T — R and ¢t € T*. Then we define f2(¢) to be the num-
ber (provided it exists) with the property that for any given € > 0 there exists a
neighborhood U of ¢ such that

F(o(t) = f(s) = fA®) [o(t) = ]| < elo(t) — 5|, forall seU.

We call f2(t) the delta derivative of f at t. Moreover, we say that f is delta differ-
entiable (or in short: differentiable) on T* provided f2(t) exists for all t € T*. The
function f2 : T* — R is then called the delta derivative of f on T*.

In the case T = R, f2(¢) = df(t Inthecase T =7Z, f2(t) = Af(t) = f(t+1)—f(2),
which is the usual forward dlfference operator. If T = ¢, ¢ > 1 and Ny = NU {0},

then f4(1) = 2010,

Theorem 2.1. Assume f, g : T — R are differentiable at t € T*. Then the product
fg: T — R is differentiable at t with

(f9)™ (8) = fA(0)g(t) + f(a(£)g> (D).

Definition 2.6. The function f : T — R is said to be rd-continuous on T provided
it is continuous at all right-dense points ¢ € T and its left-sided limits exist at all
left-dense points ¢t € T. The set of all rd-continuous function f : T — R is denoted
by C,q4(T,R). Also, the set of functions f : T — R that are differentiable and whose
derivative is rd-continuous is denoted by C},(T,R).

It follows from [2, Theorem 1.74] that every rd-continuous function has an anti-
derivative.

Definition 2.7. Let F': T — R be a function. Then F': T — R is called the anti-
derivative of f on T if it satisfies F2(¢) = f(t) for any ¢t € T*. In this case, the Cauchy
integral

b
/f(t)At — F(b) — F(a), abeT.

Theorem 2.2. Ifa,b,c € T witha <c<b, a € R and f,g € Cpq(T, R), then
(i) fb[f( t) + g(t)]At = [; f( )At+ffg(t)At

(i) ) af ()AL= a [} f(t)At

(iif) :f< AL = — [ f(t)At

(iv) J. ff( )AL = [ f(H) AL+ fc ft)At

(v) |2 f(t >At\<f!f(>mt;

(vi) 2 F(H)g® (AL = (fg)(b) — (fg)(a) — [2 fA(t)g” (t)At.

Definition 2.8. Let hy : T> — R, k € Ny be defined by ho(t,s) =1 for all s,t € T
and then recursively by hy1 (t,5) = [L hy (7,8) A for all s,t € T.
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If T = R, then hy(t,s) = &= S) forall s,t e R. If T = Z then hy(t,s) = (tzs) for
t—

all s;t € Z. If T = ¢, ¢ > 1, then hy(t,s) = I = for all s,t € g™°.

,u 0
3. OSTROWSKI-GRUSS TYPE INEQUALITY INVOLVING A COMBINATION OF
A-INTEGRAL MEANS

To prove our theorems, we need the following lemmas. The first lemma was first
provided in [8] for the case T = R and extended to any arbitrary time scale in [14].

Lemma 3.1 (Montgomery identity involving a combination of A-integral means).
Let a,b,t € T, a < b and f : [a,b] — R be differentiable. Then for all x € [a,b], we
have

(3.1)
[ P2t = f) - — [ “ [ remars 2 [ ]

a+plr—ala

where a, B € R are nonnegative and not both zero, and

Q t—a
( ), a<t<u,

a+p\r—a
PE0=8 5 (b <t<b
a—i—ﬁ(b—x)’ r=t=0

The next lemma is the Griiss inequality on time scales obtained by Bohner and
Matthews [2].

Lemma 3.2. 2| Let a,b,s €T, f, g€ Crq and f, g : [a,b] — R. Then for
my < f(s) < My, mg < g(s) < My,

i o

4(M1 my)(My — ms).

we have

s)As /ab g°(s)As

We now state and prove our first theorem.

Theorem 3.1. Leta, b, t € T, a < b and f : [a,b] — R be differentiable. Suppose
fAeCyandy < f2(t) <T for allt € [a,b]. Then we have

‘f(x)_oﬁl—ﬁlxia/axf(( At—i_i/ ]
G e _WMH
<, (- a)T —7)
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for all x € [a, b].

Proof. Let My = sup,.,« P(x t) and m; = inf,;«p P(x,t). By the definition of
P(z,t) we have that M; = and m; = fﬁ. Thus, M; —m; =1 and

mq S P(I,t) S Ml.

Now by applying Lemma 3.2 to the functions f(t) := P(xz,t) and g(t) := f2(t), we
get

+,6’

‘b i - /abP(:c,t)fA(t)A (t)At /: p(x,t)At‘

< (M — )T = ),

Thus,
/bP(;z:,zt)fA At——/ () At/ (2,1) At‘
(32 <3 a)(T 7).
By a simple computation, we have
(3.3) [ 2 mae= ) - (@)
and
b 1 o B
(3.4) Lz%@wAp_a+ﬂx_a@@uo—b_x@ww).

The desired inequality is obtained by substituting (3.1), (3.3) and (3.4) into (3.2). O

Remark 3.1. We note that the inequality in Theorem 3.1 is not sharp. We will provide
the sharp version in our next theorem.

Remark 3.2. If we set « = v — a and f = b — x in Theorem 3.1, then we recapture
Theorem 1.4.

If we apply Theorem 3.1 to the continuous, discrete and quantum calculus, we
obtain some interesting inequalities which generalize the results in [20].

Corollary 3.1 (Continuous case). If we let T =R in Theorem 3.1, then we have the

inequality
1 o z
|f(x)_a+ﬂ[x—a/ dt_l_i/ ]

fo) = fla) 1
2(b— a) a+ﬁa@_®_5®_@‘
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for all x € [a, b].

Corollary 3.2 (Discrete case). If we let T = Z in Theorem 3.1, then we have the
inequality

o z—1 b—1
R P SRR S )]
f) = fla) 1
= aJrﬁ{a(x—a—l)—B(b—anl)H

1
< - a)r 1)
forallx € {a,a+1,...,b—1,b}.

Corollary 3.3 (Quantum case). If we let T = ¢, ¢ > 1 in Theorem 3.1, then we
have the inequality

0= s | [ i ;2 [ i
f(b) — f(a) 1
O et - s
<ib-a)r 1)
for all z € [a, b].

In our next theorem, we provide a sharp bound for the inequality in Theorem 3.1.
To do this, we need the following lemma which can be found in [21].

Lemma 3.3. ([2]‘]) Let a,b,x € T7 fag € Crd cmd f?g : [a7b] — R Then Zf
v <g(x) <T forall x € [a,b] and some v,I" € R, we have

/ F(H)g() At — 7/ At/abg(t)At‘

b—a/ J(s)As

Moreover, the inequalzty in (3.5) is sharp.

(3.5) At.

Theorem 3.2. Under the conditions of Lemma 3.1, we have the inequality

1 [ a s
P“”‘a+ﬂb—aﬂ~“ DAL+ L/ ]
_ f(bzig(@)aiﬁ{xfa@(x,a) - bthz(x,b)H
(3.6) b—aoﬂl—ﬁ xiah (z,a) — thg(a:,b) ‘At,
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for all x € [a,b]. Moreover, the inequality in (3.6) is sharp in the sense that the
constant % cannot be replaced by a smaller one.

Proof. By applying Lemma 3.3 to the functions f(t) := P(z,t) and g(t) := f2(t), we
have

bP(x t)fE(t) At — ; ! /bP(x,t)At/abfA(t)At‘

—
(3.7) a/bP(x,s)As At

Now, we observe that

39 [ 2 mae= ) - (@)

and

(3.9) /abP(:c,t)At: aiﬁ ol 0) — L ho(b, 7).

The desired inequality is obtained by substituting (3.1), (3.8) and (3.9) in (3.7). O

Remark 3.3. Let « = z—a and f = b—x in Theorem 3.2. Then we recapture Theorem

1.5. Note that in this case P(z,t) = @

a

We now apply Theorem 3.2 to the continuous, discrete and quantum time scales to
obtain some interesting inequalities which generalize the results in [21].

Corollary 3.4 (Continuous case). If we let T =R in Theorem 3.2, then we have the
inequality

’f(x)_aiﬁ[xga/jf dt+—/f dt}

f() = fla) 1
~ (b_a) a+ﬂ[a(x—a)—5(b—x)H

1 1
2b—a)a+p
for all x € |a, b]. Moreover, the inequality in (3.10) is sharp in the sense that the
constant % cannot be replaced by a smaller one.

(3.10)

[(m—m—ﬂ@—xﬂﬁ,

Corollary 3.5 (Discrete case). If we let T = Z in Theorem 3.2, then we have the
inequality

‘f(a:)— L [O‘aif(t+1)+b_ﬁxif(t+1)]

t=a t=x

i OH_B[a(m—a—l)—B(b—x—l—l)H
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! 1 1

P(x,t) — —a—1)—p8(b— 1

B T brari] (Gt A Uy )}’
forallz € {a,a+1,...,b—1,b}. Moreover, the inequality in (3.11) is sharp in the
sense that the constant % cannot be replaced by a smaller one.

(3.11)

Corollary 3.6 (Quantum case). If we let T = ¢™°, ¢ > 1, in Theorem 3.2, then we
have the inequality

‘f(x)—aiﬁlx_a/ Flathdgt + 2~ [ flatyd ]

) - f@) 1

NG ot = a0 - st - )
1

T AT

for all x € [a,b]. Moreover, the inequality in (3.12) is sharp in the sense that the
constant 1/2 cannot be replaced by a smaller one.

(3.12) Lo dyt,

) {a(w —qa) — B(gb — w)]

4. A 2-DIMENSIONAL OSTROWSKI INEQUALITY ON TIME SCALES INVOLVING A
COMBINATION OF A-INTEGRAL MEANS

In what follows, we will let T; and Ty denote two arbitrary time scales, with
forward jump orperators o; and o9 respectively. For an interval [a,b], [a,b]r, =
[a,b] N'T;, i =1, 2. For a < b and ¢ < d, we define the rectangle [a, b, X [¢,d]T, as
follows: [a,b]r, X [¢,d]r, = {(z,y) : © € [a,b]r,,y € [¢,d|1,}. For the sake of brevity,
we will simply write [a, b] instead of [a, b], and [c,d] instead of [c, d]r,. For more on
the two-variable time scale calculus, we invite the interested reader to the papers [6,7]
and the references therein.

To prove our next theorem, we need the following lemma.

Lemma 4.1. Let a,b,x,s € Ty, a < b, ¢,d,y,t € Ty, ¢ < d and let f : [a,b] X [¢,d] —

Of(sit) Bf(st) 2f(st) oyict and are continuous

R be such that the partial derivatives

Ays 7 Agt 7 AgtAgs
on la,b] x [¢,d]. Then we have
1 062061 / /
) — ) AgtA
fe) (a1 + Bi)(az + B2) | ( [ (z—a) (1(5), 0(t)) Bat s

+ 62@1 / / 0‘1 0’2 )AgtAls

(07
+ Qﬁbl_ {L‘ / / 0'1 0'2 )AQtAlS

g [ [roossss
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:(al n 51 . a / / PQ y, ) )AQtAls
(Ozl + 51 b - I / / P2 af 01 ) >A2tA1$
+ (a —}—6 C / / Pl Z, S S 02( ))AlsAgt
2 2 -

(@ —|—ﬂ d y / / Pl 23 8 S U2< >)A1$A2t
2 2

2
(4.1) +/c /a Pi(x,s)Ps(y, )if(Als)AlsAgt
for all x € [a,b] and y € [c,d], where
s—a
P o + 51 <3: — a>
1(1’, S o _Bl b—s
a1 + S (b — x)
(=)
Pyly.1) = O‘ZfﬁfQ 0

d_
a2+52<d—y>’ tely.d

a1, B1, as and By are nonnegative numbers with oy + 1 > 0 and as + P > 0.

Proof. By applying Lemma 3.1 to the partial map f(-,vy), y € [c,d], we have for
x € [a,b]

o = | [ e msis [ s
(4.2) + / 75 8~’;jsy)als
If we apply Lemma 3.1 to the maps f(oy(s), ) and 8% we have
e e— 52[ [ s+ 2 [ o, aad]
(4.3) +/ Py, 12 Ul ) Of(o1ls). D) oy
and
ajx;y) :OmlL&l o /y af(ij(t))AZH dfizy/yd af(ij(t))Aﬂ]

(4.4) + / Py )L A
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By substituting (4.3) and (4.4) into (4.2) we obtain,

. 1 (o7 x 1 (6% Y
tea) = o [ (a2 [ fo o) s

dﬁ_Qy/ydf(al(s),ag(t))Agt] +/Cdp2(y,t)WA2t>Als

+b€1x/:< 1 lazc/cyf(al(S)m(t))Agt

as+ Bo |y —

(3),02(t))A2t] + / ’ Pz(y,t)WAQt)Als

+/abP1(x,s)< ! [ O‘Qc/cy 01(s,02(1)) 5 4

ag + Pa |y — Aqs

Pr (7 0f(s,05(1)) a 0%f(s,t)
+d—y[/ Als Agt] +/C Pg(y, )AQ Als A2t>A18

+

| S

By rearranging the terms we get

f@y) :(Oq + 61)1(0@ + f2) [( a2ax1— a) / / F(1(s), 02(t)) Bat s

Qal / / 0'1 0'2 AgtAls
(d—y)(x—a)
04251
/ / f 0'1 0'2 AgtAls
)(b— )
4+ — - 62&1 / / f 0'1 0'2 AQtAlS
(d—y)(b—x)
0]‘ 0'1 ), t)
Py(y,t)—————">AgtA
Oé1+51 .T—Cl/a/c Qy’ 2 1
): 1)
Py(y,t) ————"—=AstA
&1+B1 b—%// 2y’ Agt 2 15
(s,09(t))
Pi( —————A1sAqt
O[Q‘f—ﬁg —C// IIS Als 1552

80'2 ))
Pi( ————L A s Aot
o= y//

0%f (s, 1)
(45) +/ / P1 I S P2 A2 Als Al Agt

The identity in (4.1) follows directly from (4.5). O
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Theorem 4.1. Under the conditions of Lemma 4.1, we have the inequality

fley) = (o1 + 51)1(042 + B2) [( _a2a1— /m /cy J(01(5), 02(8) BatAus

52&1 / / 0'1 0'2 AgtAls
(d—y)(x—a)

OQBl / / 0'1 0'2 AgtAls
b — )

d 5255—33 // 0'1 02 AgtAls]
M, [Oéz B2
ha(y.¢) + —2—h ,d}
_a2+ﬁgy—c2(yc) d_yz(y )
M,
Oé1—|—61 Tr—a
M;

(631
" (a1 + B1)(aa + B2) [95 - ahg(x,a) "

(81
2 ha(0) + 52 el )

aq

ho(, @) + flxhz(x, b)]

bélxhz(x’ b)]

X

Y

for all x € |a,b] and y € [c,d], where

0 t 0 t
Mlzsupm<oo, MQZSUPM<OO and
a<s<b Alé’ c<t<d AQt
0*f(s,t)
M; = su —— | < 0
’ a<s<b, ?<t<d AotAys

Proof. From Lemma 4.1, we have that

1 OégOél
f(a:,y) - (061 "‘61)(052"‘62 l x_ a /a /C 01 02 AztAls

620[1 / / 0'1 0'2 AgtAls
CYQBl / / 0'1 0'2 AQtAlS

)(b—x)
d ﬁQﬂg_m // 0'1 0'2 AQtAlS‘|
) 1)
a1+51 —a) /a/cpzya ———— " AgtAss

af 01 ), t)
Py(y, t) ————=AgtA
Ofl + 51 — .’L' / / 2 2t 19
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@ —l—ﬂ 3 / / Pi(z,s) )>A13A2t
2 2 -
(s,09())
0424—62 d y / / P1 13 S Als A1$A2t
(46) +/C /a P1 ZE S Pg Azf(A]_S)AISAQt'

By taking the absolute values on both sides of (4.6) and applying item (v) of Theorem
2.2, we obtain

ﬂ%”‘mﬁw&%+mﬂ<—fﬁ_a/ﬁfﬂ“@”ﬂW%mﬂ

ﬁ2041 / / 01 0'2 AQtAlS

(d—y)(x—a)
04251 / / 0'1 0'2 AgtAls
—C —JT
d 526; — x / / 0'1 0'2 AgtApS’]
ool [
Py( Aot A
041+51 ZE—CL |2y7 |2 1S
B Mo / /
Py(y,t)|AgtA
041+51 b—l‘ ‘2y7 |2 1S
OéQMl / /
+ Pi(z,s)|A1sAqt
(0424’62)( | 1 )‘ 1 2
B2 My / /
Pi(x,s)|A1sAqt
a2+62d Y) Fale s)ldisis

24, [ [ 1P ) [Paty, O] Avs ot
d b
:M2/ |P2(y,t)|A2t+M1/ Py (2, 5)|Ays

d rb
#05 [* [ 1A )| Po(y, D] Arst

That is,
(4.7)
1
flz,y) — (e + B)(az + ) [ / / f(o1(s), 0a(t)) Aot Ay s

B
- (d—y)(x—a) /a /y f(o1(s), 02(t)) At Ays
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i (j‘“)fb_ [ [ on(s)onf) datisss

= TN RCERCE

d rb
<M [ 1Py ) s + My [Py, 0]t + 05 [ [ 1P 9| Paly. 1] ArsLot.

The desired inequality follows from (4.7) by using the fact that

b 1 1 1
/a |P1(ZE,S)|A18 = 011"‘51 [xiahQ(x7a)+ éxh2(xub)‘|

and
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[ 1m0l = [ o+ 2

The following corollary is Theorem 4 in [17] but we state it here for completion.

Corollary 4.1 ([17]). Let a,b,x,s € Ty, a < b, ¢,d,y,t € Ty, ¢ < d and let f :

la,b] x [c,d] — R be such that the partial derivatives aJ;(f;t), 61;(;:), ‘222’1(2’2

are continuous on [a,b] X [¢,d]. Then we have the inequality

1 b pd
f(x’y)_(b—a)(d—c/a/cf<01(s)’02(t))A2tA18
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ha(y, d)] . O

exist and

M.
Sdijc[hz(y, ¢) + ha(y,d)] + bf[hQ(ﬂf a) + ha(z, b)]

M.

+ W(Sd_c)[hﬂ% a) + ha(2,0)][h2(y, ) + ha(y, d)],
for all x € [a,b] and y € [c,d], where
Of(s,t Of(s,t
M, = sup 9f(s,1) < oo, M,= sup f(s,t) < oo and
a<s<b| D18 e<t<d| Dol
0 f(s,1)
M, = CARASLAZN I
° a<s<Sltlcp<t<d AgtAys >

Proof. Let oy =x —a, 1 =b—x, s =y — cand 5 = d — y in Theorem 4.1. U

Now, we apply Theorem 4.1 to the continuous, discrete and quantum time scales
to obtain some interesting inequalities which generalize the results in [17].

Corollary 4.2 (Continuous case). If we let Ty = Ty = R in Theorem 4.1, then we

have
1 062051
|f(x,y) (o1 + B1) (g + B2) | ( [ (z —a) / / (5, t)dbds

+ 52&1 // stdtds+ 04261 // f(s,t)dtds
(d—y)(x—a) )(b—x)
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for all x € [a,b] and y € [c,d], where

M, = sup 9f(s,1) <00, My= sup 9f(s,t) < oo and
a<s<b 65 c<t<d 8t
0*f(s,t)
M; = | <
’ a<s<Sl%)<t<d dtos >
Corollary 4.3 (Discrete case). If we let Ty = Ty = Z in Theorem 4.1, then we have
flz,y) - ! [ 222 leyzlfsﬂtﬂ)
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+ fls+1,t4+1)+ ——F fls+1,t+1
=)= 2 b )
b—1d—1
+AZZJC s+ 1, t+1)H
(d y S=T t=y
M,
<— o —c—1)+ d—y+1
_2(042‘1'52)[ 2(y ) 62( Yy )]
M,
2(a1+61)[a1(x—a—1)+51(b—x+1)]
M;
+ la1(x —a—1)+ p1(b—a+1)]
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X as(y —c—1) + fo(d —y +1)],
forallxz € {a,a+1,...,b—1,b} andy € {c,c+1,...,d—1,d}, where
My = sup |f(8+]_,t)—f(8,t)| <00, My= sup |f(8,t+].>—f(8,t)| <0

a<s<b c<t<d
and

Ms= sup |f(s+1,t+1)— f(s+1,t)— f(s,t+1)+ f(s,t)] < 0.
a<s<b,c<t<d

Corollary 4.4 (Quantum case). If we let Ty = ¢\, ¢1 > 1 and Ty = ¢5°, ¢ > 1 in
Theorem 4.1, then we have
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for all x € [a,b] and y € [c,d] with

]\41 = sup f((hsyt) B f(S,t) < o0, M2 = sup f(S7Q2t) - f(S,t) < 00
a<s<b (QI - 1)5 c<t<d (QQ - 1)t
and M3 — sup f(Q1S7 th) - f(ql‘S? t) - f(87 q2t> + f(87t) < 00,
a<s<b,c<t<d (Ch - 1)(92 - ]-)St

5. CONCLUSION

In this work, we established some new Ostrowski-Griiss and 2D Ostrowski type
inequalities on time scales involving a combination of A-integral means. In addition,
we apply our results to the continuous, discrete and quantum calculus to obtain some
novel inequalites in this direction.
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