In this concept, we investigate the generalized Ulam-Hyers-Rassias stability for the new type of cubic functional equation of the form \begin{align*} &g eft( ax_1 + bx_2 + 2 cx_3 \right) + g eft( ax_1 + bx_2 - 2 cx_3 \right) + 8 a^3 g(x_1) + 8 b^3 g(x_2) =& 2 g(ax_1 + bx_2) + 4 eft( g(ax_1 + cx_3) + g(ax_1 - cx_3) + g(bx_2 + cx_3) + g(bx_2 - cx_3) \right) \end{align*} by using direct and fixed point alternative.