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ON GRADED 2-NIL-GOOD RINGS

EMIL ILIĆ-GEORGIJEVIĆ1

Abstract. In this paper we introduce and study the notion of a graded 2-nil-
good ring which is graded by a group. We discuss graded group ring and graded
matrix ring extensions of graded 2-nil-good rings. The question of when the 2-nil-
good property of the component, which corresponds to the identity element of the
grading group, implies the graded 2-nil-good property of the whole graded ring is
also examined.

1. Introduction

Ever since the introduction of clean rings in [20] as rings in which every element
can be written as a sum of an idempotent and a unit, many papers have been written
discussing the ring structure depending on the various ring element properties. In
particular, many results are obtained concerning nil clean rings introduced in [6]. For
instance, study of matrix rings over nil clean rings is related to the famous Köthe’s
Conjecture (see [16] and references therein). Nil-cleanness of group rings has also
attracted attention (see [17,21]).

Theory of graded rings has also been studied by many authors (see [13,19]). Graded
nil clean rings are introduced in [10], and in this paper we continue with studying rings
determined by various properties defined elementwise from the graded ring theory
point of view. Namely, we introduce and study graded 2-nil-good rings as a graded
version of the notion introduced recently in [1]. In [1], a 2-nil-good ring is defined as a
ring whose every element is a sum of two units and a nilpotent and the main results
deal with the question of when the matrix rings are 2-nil-good.

Here, by a graded 2-nil-good ring we mean a group graded ring whose every homoge-
neous element can be written as a sum of two homogeneous units and a homogeneous
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nilpotent. We start by giving the basic properties of graded 2-nil-good rings which
represent graded versions of results concerning 2-nil-good rings. We are also interested
in the question of when the (graded) group ring is (graded) 2-nil-good, which is the
content of several theorems. These yield an interesting question of how the graded
2-nil-good property of a group graded ring depends on the 2-nil-good property of the
component which corresponds to the identity element of the grading group. It is shown
that 2-nil-good property of the component corresponding to the identity element of
the grading group does not imply the graded 2-nil-good property of the whole graded
ring in general. However, under some additional assumptions, this implication does
hold true. Finally, we prove that the graded matrix ring over a crossed product, which
is graded 2-nil-good, is also a graded 2-nil-good ring.

2. Preliminaries

All rings are assumed to be associative with identity. If R is a ring, then, as usual,
J(R) denotes the Jacobson radical of R, and U(R) stands for the multiplicative group
of units of R.

Next we recall the notions of a group graded ring and module, and how the group
ring and the matrix ring over a group graded ring can be graded. For other graded
ring theory notions and further details, we refer to [13,19].

Let R be a ring, G a group with the identity element e, and let {Rg}g∈G be a family
of additive subgroups of R. R is said to be G-graded if R = ⊕

g∈GRg and RgRh ⊆ Rgh

for all g, h ∈ G. The set H = ⋃
g∈GRg is called the homogeneous part of R, elements

of H are called homogeneous, and subgroups Rg (g ∈ G) are called components. If
a ∈ Rg, then we say that a has the degree g.

A G-graded ring R = ⊕
g∈GRg is called a crossed product if U(R) ∩Rg 6= ∅ for all

g ∈ G.
A right ideal (left, two-sided) I of a G-graded ring R = ⊕

g∈GRg is called ho-
mogeneous or graded if I = ⊕

g∈G I ∩ Rg. If I is a two-sided homogeneous ideal
(homogeneous ideal in the rest of the paper), then R/I is a G-graded ring with com-
ponents (R/I)g = Rg/I ∩ Rg. A graded ring R is graded-nil if every homogeneous
element of R is nilpotent.

Let R = ⊕
g∈GRg be a G-graded ring, and observe the group ring R[G]. According

to [18], we have that R[G] is G-graded with the g-component (R[G])g = ∑
h∈GRgh−1h

and with the multiplication defined via the rule (rgg′)(rhh′) = rgrh(h−1g′hh′), where
g, g′, h, h′ ∈ G and rg ∈ Rg, rh ∈ Rh.

If H is a normal subgroup of G, then, according to [19], we may observe R[H] as
a G-graded ring ⊕g∈G(R[H])g, where (R[H])g = ⊕

h∈H Rgh−1h, and where the mul-
tiplication is given by (rgg′)(rhh′) = rgrh(h−1g′hh′), where g, h ∈ G, g′, h′ ∈ H and
rg ∈ Rg, rh ∈ Rh.

All of the group rings in this paper, if observed as graded rings, are assumed to be
graded in one of the above described ways.

If R is a G-graded ring and n a natural number, then the matrix ring Mn(R) can
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be made into a G-graded ring in the following manner. Let σ = (g1, . . . , gn) ∈ Gn,
λ ∈ G and Mn(R)λ(σ) = (aij)n×n, where aij ∈ Rgiλg

−1
j
, i, j ∈ {1, 2, . . . , n}. Then

Mn(R) = ⊕
λ∈GMn(R)λ(σ) is a G-graded ring with respect to the usual matrix addi-

tion and multiplication. This ring is usually denoted by Mn(R)(σ).
If R = ⊕

g∈GRg is a G-graded ring, then a right G-graded R-module is a right
R-module M such that M = ⊕

x∈GMx, where Mx are additive subgroups of M, and
such that MxRg ⊆ Mxg for all x, g ∈ G. A submodule N of a G-graded R-module
M = ⊕

x∈GMx is called homogeneous if N = ⊕
x∈GN ∩Mx.

A right G-graded R-module M is said to be graded irreducible if MR 6= 0 and if
the only homogeneous submodules of M are trivial submodules. The graded Jacobson
radical Jg(R) of a G-graded ring R is defined to be the intersection of annihilators
of all graded irreducible graded R-modules. It is known that Jg(R) coincides with
the intersection of all maximal homogeneous right ideals of R, and that it is left-right
symmetric.

3. Graded 2-Nil-Good Rings

Let G be a group with the identity element e.
Definition 3.1. A homogeneous element of a G-graded ring is said to be graded
2-nil-good if it can be written as a sum of two homogeneous units and a homogeneous
nilpotent. A G-graded ring is said to be graded 2-nil-good if every of its homogeneous
elements is graded 2-nil-good.
Example 3.1. Let p > 2 be a prime number, G = {e, g} a cyclic group of order 2,

and R =
(

Zp Zp
Zp Zp

)
. The ring Zp is a 2-nil-good ring (see [1, Example 2.1]). Then

R =
(

Zp 0
0 Zp

)
⊕
(

0 Zp
Zp 0

)
is a G-graded 2-nil-good ring.

Remark 3.1. Let us notice that if R = ⊕
g∈GRg is a G-graded ring which is graded

2-nil-good, then Re is a 2-nil-good ring. Namely, even if a ∈ Re is a nilpotent, we can
always write a = 1 + (−1) + a, and 1 ∈ Re. If g 6= e, for a nilpotent element a ∈ Rg,
we may have a different situation, that is, it may be the case that a is written as a
sum of itself and of two units which are not of degree g, for instance a = 1 + (−1) + a.
However, if we assume that R is a crossed product, then every homogeneous element
can be written as a sum of two homogeneous units and a homogeneous nilpotent, all
of which are of the same degree.

In [22], 2-good rings are defined as rings in which every element can be written as a
sum of two units. Since 2-good rings are closely related to 2-nil-good rings, as every
2-good ring is 2-nil-good, it is natural to introduce the following notion as well.
Definition 3.2. A homogeneous element of a G-graded ring is said to be graded
2-good if it can be written as a sum of two homogeneous units. A G-graded ring is
said to be graded 2-good if every of its homogeneous elements is graded 2-good.
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Remark 3.2. Let us notice that all graded 2-good rings are crossed products. Also,
obviously, every graded 2-good ring is graded 2-nil-good. Example 3.1 also serves as
an example of a graded 2-good ring.

In [1] it is proved that R is a 2-nil-good ring if and only if R/I is 2-nil-good,
whenever I is a nil ideal of R. Here we have the following result.

Theorem 3.1. Let R be a G-graded ring and I a graded-nil ideal of R. Then R is
graded 2-nil-good if and only if R/I is graded 2-nil-good.

Proof. If R is graded 2-nil-good, then R/I is also graded 2-nil-good as a graded
homomorphic image of R.

Conversely, let R/I be a graded 2-nil-good ring and let x̄ = x+ I ∈ Rg/Ig, where
g ∈ G. Then x̄ = ū + v̄ + w̄, where ū, v̄ are homogeneous units of R/I, and w̄
is a nilpotent element of degree g in R/I. Since I is graded-nil, we have that w is
a homogeneous nilpotent of degree g in R. Also, since I, as a graded-nil ideal, is
contained in the graded Jacobson radical Jg(R), homogeneous units lift modulo I (see
[19, Proposition 2.9.1]), and the claim follows. �

Corollary 3.1. Let R = ⊕
g∈GRg be a G-graded ring, where G is a finite group, and

Re is a PI-ring. Also, let I ⊆ J(R) be a homogeneous ideal of R such that Ie is nil.
Then R is graded 2-nil-good if and only if R/I is graded 2-nil-good.

Proof. Since G is finite and Re is a PI-ring, by [12] we know that R is also a PI-ring.
This and the fact that I ⊆ J(R) is a homogeneous ideal with Ie nil together imply
that I is nil by [14, Lemma 5]. In particular, I is graded-nil, and the claim follows by
the previous theorem. �

Definition 3.3 ([10]). A homogeneous element a of a G-graded ring is said to be
graded strongly π-regular if it can be written as a sum of a homogeneous idempotent
element f and a homogeneous unit u such that fa = af and faf is nilpotent.

Naturally, by a graded strongly π-regular ring we mean a G-graded ring whose every
homogeneous element is graded strongly π-regular.

The following result represents a graded version of [1, Theorem 2.1].

Theorem 3.2. Let R = ⊕
g∈GRg be a graded strongly π-regular ring. The following

statements are equivalent:
i) R is graded 2-nil-good;
ii) 1 = u+ v for some units u, v from Re.

Proof. i)⇒ii) If R is a graded 2-nil-good ring, it follows that Re is 2-nil-good. Since
1 ∈ Re, the claim follows by [1, Theorem 2.1] applied to the ring Re.

ii)⇒i) Again, if we apply [1, Theorem 2.1] to the ring Re, we have that Re is
2-nil-good. Let 0 6= x ∈ Rg, where g 6= e. Then, since R is graded strongly π-
regular, it follows that x is a unit. Since 1 = u+ v, with u, v ∈ U(Re), we have that
x = 1x = ux+ vx+ 0, hence x is graded 2-nil-good. �
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By [3, Proposition 10], if R is a clean ring with 2 ∈ U(R), then R is 2-good. We
end this section with a graded version of this result.
Theorem 3.3. Let R = ⊕

g∈GRg be a G-graded ring. If R is graded clean and
2 ∈ U(R), then R is graded 2-good.
Proof. By assumption, R is graded clean, which means that Re is clean (see [10]).
Since 2 ∈ Re, we have that Re is 2-good by [3, Proposition 10]. Now, let 0 6= x ∈ Rg,
where g 6= e. Since R is by assumption graded clean, we have that x is a unit. Therefore
x/2 6= 0 is a homogeneous unit u of degree g. Hence x = 2u = u + u, and so, R is
graded 2-good. �

4. Extensions of Graded 2-Nil-Good Rings

4.1. Group rings. In this subsection we investigate graded 2-nil-good property of
graded group rings. However, we first establish some sufficient conditions for a group
ring to be 2-nil-good.
Theorem 4.1. Let R be a 2-nil-good ring, and let p be a prime number which is
nilpotent in R. If G is a locally finite p-group, then R[G] is a 2-nil-good ring.
Proof. As in the proof of [21, Theorem 2.3], we may assume that G is a finite p-group.
Since p is nilpotent, by [5, Theorem 9], we have that the augmentation ideal ∆(R[G])
is nilpotent. Since R[G]/∆(R[G]) and R are isomorphic as rings, by [1, Theorem 2.2],
we then have that R[G] is a 2-nil-good ring. �

Remark 4.1. One example of a 2-nil-good ring satisfying the assumptions of the
previous theorem is Zp, where p > 2 is a prime number.
Theorem 4.2. Let R be a clean ring with 2 ∈ U(R). If p > 2 is a prime number
belonging to J(R), and G a locally finite p-group, then R[G] is 2-nil-good.
Proof. Since R is clean, G a locally finite p-group and p ∈ J(R), according to [24,
Theorem 4], we have that R[G] is clean. Also, since 2 is a unit in R, it is also a unit
in R[G]. By [3, Proposition 10], R[G] is 2-good, and therefore, 2-nil-good. �

Theorem 4.3. Let R = ⊕
g∈GRg be a G-graded ring, where G is a finite group. If R

is a semilocal ring with 2 ∈ U(R), then R[G] is a 2-nil-good ring.
Proof. If R is semilocal with 2 ∈ U(R), then by [23, Proposition 2.10] we have that
R is 2-good, and therefore 2-nil-good. Now, by [18, Proposition 2.1(4)], we have
that (R[G])e and R are isomorphic as rings. Therefore (R[G])e is a semilocal ring.
According to [2], we have that R[G] is semilocal too. Also, as 2 is a unit in R it is
also a unit in R[G]. Hence, R[G] is 2-good, and therefore 2-nil-good. �

Next we deal with the graded 2-nil-good property of graded group rings. It is
convenient now to recall that if G is a group, and H a normal subgroup of G, then a
G-graded ring R = ⊕

g∈GRg can be viewed as a G/H-graded ring R = ⊕
C∈G/H RC ,

where RC = ⊕
x∈C Rx (see, for instance, [13,19]).
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Theorem 4.4. Let R = ⊕
g∈GRg be a G-graded ring, where G is a locally finite

p-group, and let H be a normal subgroup of G. Also, let us assume that p is nilpotent
in R. If R is graded 2-nil-good as a G/H-graded ring, then R[H] is graded 2-nil-good
as a G/H-graded ring.

Proof. Again, as in the proof of [21, Theorem 2.3], we may assume that H is a
finite p-group. We know from [19], page 180, that R[H]/∆(R[H]) and R are graded
isomorphic as G/H-graded rings. Since p is nilpotent, according to [5, Theorem 9], we
have that ∆(R[H]) is nilpotent, and in particular, graded-nil. Hence, by Theorem 3.1,
R[H] is graded 2-nil-good as a G/H-graded ring. �

Theorem 4.5. Let R be a G-graded ring and H a normal subgroup of G. Also, let
R be graded clean as a G/H-graded ring with 2 ∈ U(R). If p > 2 is a prime number
belonging to the H-component of the graded Jacobson radical JG/H(R) of R, regarded
as a G/H-graded ring, and G a locally finite p-group, then R[H] is graded 2-nil-good
as a G/H-graded ring.

Proof. According to our assumptions, since R is graded clean as a G/H-graded ring,
we have that R[H] is graded clean as a G/H-graded ring. This follows by Theorem 4.1
in [E. Ilić-Georgijević, On graded clean group rings, preprint]. We give here a short
proof for readers’ convenience. We may assume that G is a finite p-group. Since
R[H]/∆(R[H]) and R are graded isomorphic as G/H-graded rings, we have that
R[H]/∆(R[H]) is graded clean. In particular, (R[H]/∆(R[H]))H is clean, that is,
R[H]H ∼= RH is clean by [19, Proposition 6.2.1]. Since G is finite, JG/H(R)H ⊆
Jg(R) ⊆ J(R), by [4, Theorem 4.4]. Now, by [24, Lemma 2], we have that ∆(R[H])
is contained in J(R[H]). By [4, Theorem 4.4], we have that ∆(R[H]) ⊆ JG/H(R[H]).
This, together with the fact that R[H]H ∼= RH , and [19, Proposition 2.9.1vi)], implies
that R[H] is a graded clean G/H-graded ring. Now, as 2 is a unit in R, we have that
2 is also a unit in R[H]. Therefore by Theorem 3.3, R[H] is graded 2-nil-good as a
G/H-graded ring. �

Theorem 4.6. Let R = ⊕
g∈GRg be a G-graded ring, where G is a locally finite 2-

group, and let H be a normal subgroup of G. Also, let us assume that Re is a nil clean
ring. If R is graded 2-nil-good as a G/H-graded ring, then R[H] is graded 2-nil-good
as a G/H-graded ring.

Proof. We again can assume that H is finite. We know from [19], page 180, that
R[H]/∆(R[H]) and R are graded isomorphic as G/H-graded rings. Since Re is by
assumption nil clean, we have that 2 is nilpotent by [6, Proposition 3.14] applied
to Re. Hence, according to [5, Theorem 9], ∆(R[H]) is nilpotent, and in particular,
graded-nil. Now, by Theorem 3.1, it follows that R[H] is graded 2-nil-good ring as a
G/H-graded ring. �

Let us return to Theorem 4.1 for a moment. Since R and (R[G])e are isomorphic as
rings, we have that (R[G])e is 2-nil-good. If we moreover assume that the units and
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nilpotents of R[G] are all homogeneous, then we of course get that R[G] is graded
2-nil-good. Also, let us take a look at the following example.

Example 4.1. Let S be a 2-nil-good ring, G = {e, g} a cyclic group of order 2,

and R =
(
S S
0 S

)
. Then R =

(
S 0
0 S

)
⊕
(

0 S
0 0

)
is a G-graded ring whose e-

component Re =
(
S 0
0 S

)
is a 2-nil-good ring, and also R is a graded 2-nil-good ring

since elements of Rg =
(

0 S
0 0

)
are nilpotent and therefore, graded 2-nil-good, as

every
(

0 a
0 0

)
can be written as

(
0 a
0 0

)
=
(

1 0
0 1

)
+
(
−1 0
0 −1

)
+
(

0 a
0 0

)
.

These observations lead to the question of when the following implication holds
true
(4.1) Re is 2-nil-good⇒ R =

⊕
g∈G

Rg is graded 2-nil-good.

The following example proves that the above implication does not hold in general.

Example 4.2. Let R be a commutative 2-good ring which is moreover reduced, and
let R[x] be a polynomial ring with indeterminate x. Then R[x] is Z-graded with
i-component Rxi if i ≥ 0 and 0 if i < 0 (see for instance [19]). Then R0 = R is
a 2-nil-good ring. Also, since R is reduced, we have that U(R[x]) = U(R) by [11,
Corollary 1.7]. Hence if x is graded 2-nil-good, then x = u+ v+w, where u, v ∈ U(R)
and w ∈ N(R[x]). In other words, x−u−v is nilpotent, which is impossible. Therefore
R[x] is not graded 2-nil-good.

Theorem 4.7. Let R = ⊕
g∈GRg be a G-graded PI-ring which is graded local, that

is, it has a unique maximal homogeneous right ideal, and let G be a finite group such
that the order of G is a unit in R. Also, let RgRg−1 = 0 for every g ∈ G \ {e}. If Re

is 2-nil-good ring with nil Jacobson radical J(Re), then R is graded 2-nil-good.

Proof. Assumptions on Re imply that Re/J(Re) is a 2-nil-good ring. Further, [4,
Corollary 4.2, Theorem 4.4] and [14, Theorem 3] together imply that J(R) is a
graded-nil ideal of R. According to [10, Theorem 3.27] (see also the proof of [9,
Theorem 3.2]), we have that every homogeneous element of R/J(R) is a 2-nil-good
element of Re/J(Re). Hence R/J(R) is graded 2-nil-good, and thus by Theorem 3.1,
R is graded 2-nil-good. �

Theorem 4.8. Let R = ⊕
g∈GRg be a G-graded ring of finite support, where G is a

torsion free group. Also, let R be a semiprimary ring with Re local and 2 ∈ U(R).
Then R is graded 2-nil-good.

Proof. Since 2 ∈ Re, and Re is local, by [23, Proposition 2.10] we know that Re is
2-nil-good. It follows that Re/J(Re) is 2-nil-good. By [19, Proposition 9.6.4], we have
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that Jg(R) = J(R) and that R/J(R) = Re/J(Re). Since R is semiprimary, J(R) is
nil and so the claim follows by Theorem 3.1. �

4.2. Matrix rings. Since graded 2-good rings are graded 2-nil-good, let us start with
the question of whether the graded matrix ring over a graded 2-good ring is also a
graded 2-good ring. In [23] this is answered in affirmative for the classical, that is,
ungraded case. Their proof relies on the technique which can be seen in the proof of
[8, Lemma], that is, they prove (see [23, Proposition 3.6]) that a ring R is 2-good if
the corner rings, with respect to some idempotent of a ring, are 2-good. The following
theorem represents a graded version of that result.

Theorem 4.9. Let R = ⊕
g∈GRg be a G-graded ring and f ∈ Re an idempotent. Let

us write f̄ = 1− f. If fRf and f̄Rf̄ are graded 2-good rings, then R is also a graded
2-good ring.

Proof. Since graded 2-good rings are crossed products, the proof of [23, Proposi-
tion 3.6] can be easily modified to our setting. We give a sketch of the proof. Let

R =
(
fRf fRf̄
f̄Rf f̄Rf̄

)
be the Pierce decomposition of R, and let A =

(
a x
y b

)
∈ Rg,

where g ∈ G. Since fRf is by assumption graded 2-good ring, and graded 2-good rings
are crossed products, there exist u1, u2 ∈ U(fRf) ∩ Rg such that a = u1 + u2. Now,
b− yu−1

2 x ∈ f̄Rf̄ . Again, by assumption, f̄Rf̄ is a graded 2-good ring, and as it is a
crossed product, there exist v1, v2 ∈ U(f̄Rf̄)∩Rg such that b− yu−1

2 x = v1 + v2. The
rest of the proof goes as in the proof of [23, Proposition 3.6] (see also [8, Lemma]). �

This theorem by mathematical induction implies the following corollaries.

Corollary 4.1. Let R = ⊕
g∈GRg be a G-graded ring. If 1 = f1 + · · · + fn in R,

where fi ∈ Re are orthogonal idempotents and each fiRfi is graded 2-good, then R is
graded 2-good.

Corollary 4.2. Let R = ⊕
g∈GRg be a G-graded ring. If R is graded 2-good and n a

natural number, then Mn(R)(σ) is graded 2-good for every σ ∈ Gn.

In order to obtain a similar result for graded 2-nil-good rings, we first give a graded
version of [1, Theorem 4.1].

However, let us first recall from [7] what a G-graded Morita context is. So, let
A = ⊕

g∈GAg and B = ⊕
g∈GBg be G-graded rings, and let V = ⊕

g∈G Vg and W =⊕
g∈GWg be G-graded A−B and B − A-bimodules, respectively. Then a quadruple

(A, V,W,B) is a G-graded Morita context if (A, V,W,B) is a Morita context and if

VgWh ⊆ Agh and WhVg ⊆ Bhg for all g, h ∈ G (see [7]). The ring R =
(
A V
W B

)
can

be G-graded with respect to any σ ∈ G2 as it is described in Preliminaries (see [19])
and then it will be denoted by R(σ) = ⊕

λ∈GRλ(σ).
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Theorem 4.10. Let (A, V,W,B) be a G-graded Morita context. If A and B are
graded 2-nil-good rings which are crossed products, then R(σ) is a graded 2-nil-good
ring for every σ = (g1, g2) ∈ G×G.

Proof. First, let us notice that, since A and B are crossed products, that R(σ) is

also a crossed product. Let M ∈ Rλ(σ), where λ ∈ G. Then M =
(
a x
y b

)
, where

a ∈ Ag1λg
−1
1
, x ∈ Vg1λg

−1
2
, y ∈ Wg2λg

−1
1
, b ∈ Bg2λg

−1
2
. Since A and B are moreover

crossed products, there exist ua1, ua2 ∈ U(A) ∩ Ag1λg
−1
1
, and ub1, u

b
2 ∈ U(B) ∩ Bg2λg

−1
2

such that a = ua1 + ua2 + na and b = ub1 + ub2 + nb for some nilpotents na ∈ Ag1λg
−1
1
,

nb ∈ Bg2λg
−1
2
. Therefore M =

(
ua1 x
0 ub1

)
+
(
ua2 0
y ub2

)
+
(
na 0
0 nb

)
is a graded

2-nil-good element. �

Corollary 4.3. Let R = ⊕
g∈GRg be a crossed product. If R is graded 2-nil-good and

n a natural number, then Mn(R)(σ) is graded 2-nil-good for every σ ∈ Gn.

Proof. This follows by the previous theorem by using mathematical induction
(cf. [1, Corollary 4.2]). �
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