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BASIC PROPERTIES OF AN EIGENPARAMETER-DEPENDENT
q-BOUNDARY VALUE PROBLEM

F. AYCA CETINKAYA1

Abstract. This paper is devoted to study a q-fractional boundary value problem
that includes q-Jackson derivative in the differential equation and an eigenvalue
parameter in the boundary condition. We introduced a modified Hilbert space and
a symmetric operator. We illustrated the examined boundary value problem as a
spectral problem for this operator. Properties of the eigenvalues and eigenfunctions
are investigated and the Green’s function is constructed.

1. Introduction and Preliminaries

In this paper, we study the q-fractional boundary value problem (qFBVP) which
consists the differential equation

(1.1) l(u) := −1
q
Dq−1Dqu(x) + v(x)u(x) = µu(x), x ∈ [0, π] ,

and the boundary conditions
V1(u) :=u(0) = 0,(1.2)
V2(u) :=α1u(π) + α2Dq−1u(π) + µ [α3u(π) + α4Dq−1u(π)] = 0,(1.3)

where q ∈ (0, 1) is fixed, v(·) is a real valued function defined on [0, π] and continuous
at zero, µ is a spectral parameter and αi 6= 0, i = 1, 2, 3, 4, are any given real numbers.

There has recently been a considerable attention on q-calculus and many papers sub-
ject to the boundary value problems consisting a q-Jackson derivative in the differential
equation have appeared. In [8,10] the authors studied a q-analogue of Sturm-Liouville
eigenvalue problems and formulated a self-adjoint q-difference operator in a Hilbert
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space. Their results are applied and developed in different aspects. In [1, 7], for in-
stance, sampling theory associated with q-difference equations of the Sturm-Liouville
type is considered. In [6, 26] a regular q-fractional Sturm-Liouville problem which in-
cludes the left-sided Riemann-Liouville and right-sided Caputo q-fractional derivatives
of the same order is formulated and the properties of eigenvalues and eigenfunctions
are investigated. In [5] a Parseval equality and an expansion formula in eigenfunctions
for a singular q-Sturm-Liouville operator on the whole line are established. In [3]
the eigenvalues and the spectral singularities of non-selfadjoint q-difference equations
of second order are investigated. In [14] a boundary value problem consisting of
a second-order q-difference equation together with Dirichlet boundary conditions is
reduced to an eigenvalue problem for a second-order Euler q-difference equation by
separation of variables and in [17] a q-Sturm-Liouville boundary value problem with
a spectral parameter in the boundary condition is considered.

For further studies related to the spectral analysis of q-differential equations, the
readers are directed to [9, 12, 22] and the references therein. Applicable problems
involving mathematical pyhsical problems are extensively studied in [2,4,15,16,20,24,
28,29].

Now we introduce some of the q-notations which will be used throughout the paper.
We use the standart notations found in [8] and [11]. A set S ⊆ R is called q-geometric
if, for every x ∈ S, qx ∈ S. Let u be a real or complex valued function defined on a
q-geometric set S. The q-difference operator is defined by

Dqu(x) := u(x)− u(qx)
x(1− q) , x 6= 0.

If 0 ∈ S, the q-derivative at zero is defined as

Dqu(0) := lim
n→∞

u(xqn)− u(0)
xqn

, x ∈ S,

if the limit exists and does not depend on x. Since the formulation of self-adjoint
eigenvalue problems requires Dq−1 , we define it for x ∈ S to be

Dq−1u(x) :=


u(x)− u(q−1x)
x(1− q−1) , x 6= 0,

Dqu(0), x = 0,

provided that Dqu(0) exists. A right inverse, q-integration of the q-difference operator
Dq is defined by Jackson [23] as∫ x

0
u(t)dqt := x(1− q)

∞∑
n=0

qnu(xqn), x ∈ S,

provided that the series converges. In general the below equation is valid:∫ b

a
u(t)dqt :=

∫ b

0
u(t)dqt−

∫ a

0
u(t)dqt, a, b ∈ S.
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There is no unique canonical choice for the q-integration over [0,∞). Hahn [21]
defined the q-integration for a function u over [0,∞) by∫ ∞

0
u(t)dqt = (1− q)

∞∑
n=−∞

qnu(qn),

while Matsuo [27] defined q-integration on the interval [0,∞) with∫ ∞
0

u(t)dqt := b(1− q)
∞∑
−∞

qnu(bqn), b > 0,

provided that the series converges.
Consequently, the q-integration of a function u defined on R can be defined as∫ ∞/b

−∞/b
u(t)dqt = 1− q

b

∞∑
−∞

qn (u(qn/b) + u(−qn/b)) , b > 0

provided that the series converges absolutely.

Definition 1.1. Let u be a function defined on a q-geometric set S. We say that u
is q-integrable on S if and only if

∫ x
0 u(t)dqt exists for all x ∈ S.

For a detailed analysis of classical Sturm-Liouville problems with eigenparameter-
dependent boundary conditions one can refer to [13,18,19,30] and the references cited
there. The purpose of this paper is to extend some results obtained in [25] to the case
of q-fractional boundary value problem (1.1)-(1.3).

The structure of the paper is as follows. In Section 2, we establish an operator-
theoretic formulation for the qFBVP (1.1)–(1.3) in the Hilbert space L2

q(0, π) ⊕ C
and we give some of the virtues of eigenvalues and eigenfunctions and Section 3 is
devoted to construct the Green’s function for the inhomogeneous q-fractional boundary
value problem corresponding to the qFBVP (1.1)–(1.3) and to mention some of its
properties.

2. Properties of the Eigenvalues and Eigenfunctions

In this section, we give the operator-theoretic formulation for the qFBVP (1.1)–(1.3)
in the Hilbert space L2

q(0, π)⊕ C. We formulate a symmetric q-difference operator in
this Hilbert space and we discuss some characteristics of eigenvalues and eigenfunc-
tions.

In the Hilbert space H := L2
q(0, π)⊕ C an inner product is defined by

(f, g) :=
∫ π

0
f1(x)g1(x)dqx+ f2g2

χ
,

where

f =
(
f1(x)
f2

)
∈ H, g =

(
g1(x)
g2

)
∈ H, χ = α1α4 − α2α3 > 0.
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Let us define the operator A

A(f) :=

 −1
q
Dq−1Dqf1(x) + v(x)f1(x)
α1f1(π) + α2Dq−1f1(π)

 ,
with the domain D(A) which consists all the functions u(x) ∈ H that satisfy (1.2),
(1.3) such that Dqu(x) is q-regular at zero and D2

qu(x) lies in L2
q(0, π). Thus A is

the operator generated by the differential expression l(u) = µu and the boundary
conditions (1.2), (1.3).

Lemma 2.1. Let f(·) and g(·) be the elements of H which is defined on [0, q−1π].
Then for x ∈ (0, π] we have

Dqg(xq−1) =Dq−1g(x) = Dq,xq−1g(xq−1),

(Dqf, g) =f(π)g(πq−1)− lim
n→∞

f(πqn)g(πqn−1) +
(
f,−1

q
Dq−1g

)
,(2.1) (

−1
q
Dq−1f, g

)
= lim
n→∞

f(πqn−1)g(πqn)− f(πq−1)g(π) + (f,Dqg),(2.2)

Proof. The proof can be done similar to [10]. �

Theorem 2.1. The operator A is symmetric in the Hilbert space H.

Proof. For each f, g ∈ D(A) we have

(Af, g)− (f, Ag) =
∫ π

0
Af1(x)g1(x)dqx+ Af2g2

χ

−
∫ π

0
f1(x)Ag1(x)dqx−

f2Ag2

χ

=
∫ π

0

(
−1
q
Dq−1Dqf1(x) + v(x)f1(x)

)
g1(x)dq(x)

−
∫ π

0
f1(x)

(
−1
q
Dq−1Dqg1(x) + v(x)g1(x)

)
dq(x)

+ Af2g2

χ
− f2Ag2

χ
.

Using (2.1) with f(x) = Dqf1(x), g(x) = g1(x) to the first integral gives us

(Af, g)− (f, Ag) = lim
n→∞

(Dqf1)(πqn−1)g1(πqn)− (Dqf1)(πq−1)g1(π)

+ 〈Dqf1, Dqg1〉 −
∫ π

0
f1(x)

(
−1
q
Dq−1Dqg1(x)

)
dqx

+ Af2g2

χ
− f2Ag2

χ
,
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where 〈·, ·〉 denotes the usual inner product in L2
q(0, π). Applying (2.2) with

f(x) = f1(x), g(x) = Dqg1(x) to the term 〈Dqf1, Dqg1〉 in the above equation yields

(2.3) (Af, g)− (f, Ag) = [f1, g1] (π)− lim
n→∞

[f1, g1] (πqn) + Af2g2

χ
− f2Ag2

χ
,

where
[f, g](x) := f(x)Dq−1g(x)−Dq−1f(x)g(x).

The definition for the domain of the operator A concludes Af2g2
χ
− f2Ag2

χ
= 0 and

thus equation (2.3) becomes

(Af, g)− (f, Ag) = [f1, g1] (π)− lim
n→∞

[f1, g1] (πqn).

Since f1(x), g1(x) ∈ C2
q (0) satisfy the boundary condition (1.2) we have

(2.4) f1(0) = 0, g1(0) = 0.

The continuity of the functions f1(x), g1(x) at zero implies

lim
n→∞

[f1, g1](πqn) = [f1, g1](0),

and thus we have

(Af, g)− (f, Ag) = [f1, g1](π)− [f1, g1](0).

It follows from (2.4) that

[f1, g1](0) = f1(0)Dq−1g1(0)−Dq−1f1(0)g1(0) = 0.

Likewise,
[f1, g1](π) = f1(π)Dq−1g1(π)−Dq−1f1(π)g1(π) = 0.

Hence, the equation (Af, g)−(f, Ag) = 0 is satisfied and this completes the proof. �

Definition 2.1. A µ which the qFBVP (1.1)–(1.3) has a nontrivial solution is called
an eigenvalue, and the corresponding solution, an eigenfunction. The multiplicity of an
eigenvalue is defined to be the number of linearly independent solutions corresponding
to it. In particular an eigenvalue is simple if and only if it has only one linearly
independent solution.

Corollary 2.1. The eigenvalues of the qFBVP (1.1)–(1.3) are real.

The eigenfunctions of the operator A are in the form of

Φ(x, µn) = Φn :=
(

ϕ(x, µn)
α3ϕ(π, µn) + α4Dq−1ϕ(π, µn)

)
.

Corollary 2.2. Two eigenfunctions Φ1 and Φ2 corresponding to the different eigen-
values are orthogonal.
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Now, let us denote

∆(µ) :=
∣∣∣∣∣V1(φ1) V1(φ2)
V2(φ1) V2(φ2)

∣∣∣∣∣ ,
where φ1(·, µ) and φ2(·, µ) are linearly independent solutions of (1.1) determined by
the initial conditions

Dj−1
q φi(·, µ) = δij, i, j = 1, 2,

as δij refers to the Kronecker delta. The function ∆(µ) is the characteristic function
of the qFBVP (1.1)-(1.3). It is an entire function with respect to µ and thus the
eigenvalues of the qFBVP (1.1)-(1.3) has an at most countable set of {µn} with no
finite limit points.

In the following theorem, we prove that the eigenvalues of the qFBVP (1.1)–(1.3)
are the simple zeros of the characteristic function ∆(µ).

Theorem 2.2. The eigenvalues of the qFBVP (1.1)-(1.3) coincide with the simple
zeros of ∆(µ).

Proof. Let us define the functions θ1(·, µ) and θ2(·, µ) as

(2.5)
{
θ1(x, µ) := U1(φ2)φ1(x, µ)− U1(φ1)φ2(x, µ),
θ2(x, µ) := U2(φ2)φ1(x, µ)− U2(φ1)φ2(x, µ).

The functions θ1(·, µ) and θ2(·, µ) are the two solutions of equation (1.1) which satisfy
the conditions

(2.6)
{
θ1(0, µ) = 0, Dq−1θ1(0, µ) = −1,
θ2(π, µ) = α2 + µα4, Dq−1θ2(π, µ) = − (α1 + µα3) .

It can easily be seen that the below equation holds for the functions θ1(·, µ) and
θ2(·, µ):

(2.7) Wq (θ1(·, µ), θ2(·, µ)) = ∆(µ)Wq (φ1(·, µ), φ2(·, µ)) (x) = ∆(µ),

where the q-Wronskian of two functions y1(x) and y2(x) is defined as

Wq(y1, y2)(x) := y1(x)Dqy2(x)− y2(x)Dqy1(x), x ∈ [0, π]

(see [10], pg.60). Now, let µ0 be an eigenvalue of the qFBVP (1.1)-(1.3). Equation
(2.7) leads us to the fact that the functions θi(x, µ0), i = 1, 2, are linearly dependent:

θ1(x, µ0) = k0θ2(x, µ0), k0 6= 0.

Using (2.5) and (2.6) implies{
θ1(π, µ0) = k0θ2(π, µ0) = k0(α2 + µα4),
Dq−1θ1(π, µ0) = k0Dq−1θ2(π, µ0) = −k0(α1 + µ0α3).
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By applying the q-Lagrange identity (see [10], page 81) to the functions θ1(x, µ)
and θ1(x, µ0) we obtain

(µ− µ0)
∫ π

0
θ1(x, µ)θ1(x, µ0)dqx =θ1(π, µ)Dq−1θ1(π, µ0)−Dq−1θ1(π, µ)θ1(π, µ)

=k0 (θ1(π, µ)Dq−1θ2(π, µ0)− θ2(π, µ0)Dq−1θ1(π, µ))
=k0Wq (θ1(·, µ), θ2(·, µ0)) (q−1π)
=k0∆(µ).

Since ∆(µ) is an entire function of µ, we have the opportunity to write the expression
below:

(2.8) d

dµ
∆(µ) = lim

µ→µ0

∆(µ)−∆0(µ)
µ− µ0

= 1
k0

∫ π

0
θ2

1(x, µ0)dqx 6= 0.

The simplicity of the zeros of the function ∆(λ) is the direct result of (2.8). �

3. Construction of the q-Type Green’s Function

The q-type Green’s function arises when we pursue a solution of the inhomogeneous
qFBVP

l(u) :=− 1
q
Dq−1Dqu(x) + {−µ+ v(x)}u(x) = f(x), x ∈ [0, π] ,(3.1)

V1(u) :=u(0) = 0,(3.2)
V2(u) :=α1u(π) + α2Dq−1u(π) + µ [α3u(π) + α4Dq−1u(π)] = f2,(3.3)

as f(x) ∈ L2
q(0, π).

Theorem 3.1. Assume that µ is not an eigenvalue of the qFBVP (1.1)-(1.3). Let
φ(·, µ) satisfy the q-difference equation (3.1) and the boundary conditions (3.2)-(3.3)
where f(x) ∈ L2

q(0, π). Then

(3.4) φ(x, µ) =
∫ π

0
G(x, t, µ)f(t)dqt+ f2 (α3G(0, ·, µ) + α4Dq−1G(0, ·, µ))

χ
,

where G(x, t;µ) is the Green’s function of the boundary value problem (1.1)-(1.3)
defined by

G(x, t;µ) = − 1
∆(µ)

{
θ2(x, µ)θ1(t, µ), t ≤ x,
θ1(x, µ)θ2(t, µ), x ≤ t.

Conversely, the function φ(x, µ) defined by (3.4) satisfies (3.1) and (3.2), (3.3).

Proof. We shall search the solution of the boundary value problem (3.1)-(3.3) as
(3.5) φ(x, µ) = c1(x)θ1(x, µ) + c2(x)θ2(x, µ)
where the functions c1(x) and c2(x) are the solutions of the system of equations

(3.6)
{
Dq,xc1(x)θ1(x, µ) +Dq,xc2(x)θ2(x, µ) = 0,
Dq,xc1(x)Dq,xθ1(x, µ) +Dq,xc2(x)Dq,xθ2(x, µ) = f(x).
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If the functions Dq,xci(x) (i = 1, 2) are q-integrable on [0, t] then

lim
n→∞

tqnθi
(
tqn+1, λ

)
f(tqn+1) = 0, i = 1, 2,

holds. Now, let us define the q-geometric set Sf by

Sf :=
{
x ∈ [0, π] : lim

n→∞
xqn |f(xqn)|2 = 0

}
.

Since f ∈ L2
q(0, π) the set Sf is a q-geometric set containing {aqm : m ∈ N0}. There-

fore, the functions Dqci(·) (i = 1, 2) are q-integrable on [0, x] for all x ∈ Sf and the
solutions of (3.6) are

(3.7)


c1(x) = c̃1 + q

∆(µ)

∫ x

0
θ2(qt, µ)f(qt)dqt,

c2(x) = c̃2 + q

∆(µ)

∫ π

x
θ1(qt, µ)f(qt)dqt,

where c̃1, c̃2 are unknown constants and x ∈ Sf . Substituting (3.7) into (3.5) and
taking (3.2), (3.3) into consideration leads us to (3.4). Conversely, if φ(x, µ) is given
by (3.4), then it is a solution of (3.1) which satisfies the boundary conditions (3.2),
(3.3) and this completes the proof. �

The theorem which is given below lists a number of properties of the Green’s
function.

Theorem 3.2. Green’s function has the following properties:
(a) G(x, t, µ) is continuous at the point (0, 0);
(b) G(x, t, µ) = G(t, x, µ);
(c) for each fixed t ∈ (0, qπ], G(x, t, µ) satisfies the q-difference equation (3.1) in

the intervals [0, t), (t, π] and it also satisfies the boundary conditions (3.2)-(3.3).

Proof. The proof can easily be obtained by using a similar procedure to [10]. �
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