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ON GENERALIZED ROTER TYPE MANIFOLDS
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Dedicated to the memory of Professor Witold Roter

Abstract. In the literature of Riemannian geometry there are many conditions for
the equivalency of semisymmetric (resp., pseudosymmetric) and Ricci-semisymmetric
(resp., Ricci-pseudosymmetric) manifolds. The object of the present paper is to
investigate a sufficient condition for the equivalency of semisymmetric (resp., pseu-
dosymmetric) and Ricci-semisymmetric (resp., Ricci-pseudosymmetric) manifolds.
It is shown that generalized Roter type condition is a sufficient condition for the
equivalency of such structures. Also we obtain alternative proofs of the theorems as
given by Deszcz and his coauthors ([5] and [36]) for the equivalency of such struc-
tures. Finally the existence of manifolds satisfying generalized Roter type condition
is ensured by some non-trivial examples.

1. Introduction

Let M be a smooth and connected semi-Riemannian manifold of dimension n ≥ 3
with semi-Riemannian metric g (throughout the paper we will consider all the mani-
folds with such considerations, unless otherwise stated). Let∇, R, S, κ, C and C∞(M)
be respectively the Levi-Civita connection, the Riemann-Christoffel curvature tensor,
the Ricci tensor, the scalar curvature, the Weyl conformal curvature tensor and the
ring of all smooth functions on M respectively. In semi-Riemannian geometry, many
curvature restricted geometric structures are formed by imposing some restrictions on
various curvature tensors. For various curvature restricted geometric structures we
refer the reader to see [3,4,10,11,21–24,52,55,59–65,69,70] and also references therein.
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Again a particular restriction imposed on different curvature tensors gives rise to
different structures. Recently, in [56] the present authors studied the equivalency of
these structures and also obtained their classification. If we impose a certain restric-
tion on R and S then it yields different structures, such as, (i) local symmetry and
Ricci-symmetry, (ii) semisymmetry and Ricci-semisymmetry, (iii) pseudosymmetry
and Ricci-pseudosymmetry etc. If the restriction operator commutes with contrac-
tions, the structure due to R implies the same due to S but not conversely, in general
(see [7, 18, 56]). Hence in all the three cases the first one implies the second but
not conversely, in general. Consequently it is interesting to investigate the sufficient
conditions under which the above pairs of structures are equivalent. In this direction
there are many works in the literature, e.g., P. J. Ryan Problem [48], named Ryan’s
problem [46] (Chapter 12.7), which states the equivalency of semisymmetry and Ricci-
semisymmetry on hypersurfaces in Euclidean spaces, as well as semi-Euclidean spaces
(see, e.g., [1, 17,18,26,30,36,37] and also references therein).

The main objective of this paper is to investigate a sufficient condition for which
semisymmetry (resp., pseudosymmetry) and Ricci-semisymmetry (resp., Ricci-pseudo-
symmetry) are equivalent, and it is proved that if a manifold satisfies generalized Roter
type condition then such structures are equivalent. It may be mentioned that under
generalized Roter type condition various curvature restricted geometric structures are
equivalent, e.g., C ·R = 0 and C · S = 0 are equivalent.

In 1998 Arslan et al. ([5], Theorem 5.2) proved the equivalency of semisymmetric
and Ricci-semisymmetric manifolds under certain conditions stated as follows.
Theorem I. Let M , n ≥ 4, be a semi-Riemannian Ricci-semisymmetric manifold
satisfying R · R = Q(S,R). If M is a manifold with pseudosymmetric Weyl tensor
then R ·R = 0 on US =

{
x ∈M : S − κ

n
g 6= 0 at x

}
.

Some extensions of the above mentioned result are given in [28] (see Proposition
3.2 and Theorem 3.3, as well as Theorem 4.4 and Corollary 4.5).

Again in 1999 Deszcz et al. ([36], Theorem 4.1) investigated equivalency of pseu-
dosymmetric and Ricci-pseudosymmetric manifolds and proved the following.
Theorem II. Let M , n ≥ 4, be a semi-Riemannian Ricci-pseudosymmetric man-
ifold (i.e., R · S = LSQ(g, S) on US) satisfying R · R − Q(S,R) = L1Q(g, C) and
R · C = L2Q(S,C) for some scalars L1 and L2 on UC = {x ∈ M : C 6= 0 at x} and
U1 = {x ∈ M : Q(S,C) 6= 0 at x}, respectively. Let x ∈ U = US ∩ U1. Assume that
LS = κ

n
L2 at x, LS 6= 0. Then R ·R = LSQ(g,R) holds at x.

The paper is organized as follows. Section 2 deals with various rudimentary facts
of different curvature restricted geometric structures. Section 3 is devoted to the
study of generalized Roter type condition and proved that under such condition the
curvature restricted geometric structures obtained by a commutative C∞(M)-linear
operator imposed on R and S are equivalent. Hence as a particular case, on a Roter
type manifold semisymmetry (resp., pseudosymmetry) and Ricci-semisymmetry (resp.,
Ricci-pseudosymmetry) are equivalent. As the consequence of our result it follows
that on a semi-Riemannian manifold satisfying generalized Roter type condition,
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(i) D ·R = 0⇔ D · S = 0 and
(ii) D ·R = LQ(g,R)⇔ D · S = LQ(g, S),

where L is a smooth function on US and D is any one of R,C,W,K. In this section
we obtain alternative proofs of Theorem I and Theorem II. We also obtain a suffi-
cient condition for which a generalized Roter type condition turns into a Roter type
condition. The last section deals with the proper existence of manifolds satisfying
generalized Roter type condition.

2. Preliminaries

Let us consider a connected semi-Riemannian manifold M of dimension n ≥ 3 with
semi-Riemannian metric g. Let Trk(M) be the space of all smooth tensor fields of
type (r, k) on M , r, k ∈ N ∪ {0}. For A,E ∈ T0

2(M), their Kulkarni-Nomizu product
([26,30,34,41]) A ∧ E is given by

(A ∧ E)(X1, X2, Y1, Y2) =A(X1, Y2)E(X2, Y1) + A(X2, Y1)E(X1, Y2)
− A(X1, Y1)E(X2, Y2)− A(X2, Y2)E(X1, Y1),

where X1, X2, Y1, Y2 ∈ χ(M), χ(M) being the Lie algebra of all smooth vector fields
on M . Throughout the paper we consider X, Y,Xi, Yi ∈ χ(M), i = 1, 2, . . ..
Again, if A ∈ T0

2(M) and T ∈ T0
k(M), then the generalized Kulkarni-Nomizu product

([6, 27]) is defined as (0, k + 2) tensor A ∧ T given by
(A ∧ T )(X1, X2, Y1, Y2, · · · , Yk)

=A(X1, Y2)T (X2, Y1, · · · , Yk) + A(X2, Y1)T (X1, Y2, . . . , Yk)
− A(X1, Y1)T (X2, Y2, · · · , Yk)− A(X2, Y2)T (X1, Y1, . . . , Yk).

If A ∈ T0
2(M) and A is symmetric, then a C∞(M)-linear endomorphism A, called the

corresponding endomorphism operator, is defined as
g(AX, Y ) = A(X, Y ).

The k-th level tensor of A, k ≥ 1, denoted by Ak, of the same order with corresponding
endomorphism operator Ak is defined as follows: A1 = A and

Ak(X, Y ) = g(AkX, Y ) = A(Ak−1X, Y ), k ≥ 2.
We also have A0 =identity and A0 = g. Thus the second, third and fourth level Ricci
tensor S2, S3, S4 are respectively given as follows:

S(X, Y ) = g(SX, Y ), S2(X, Y ) = g(S2X, Y ) = S(SX, Y ),
S3(X, Y ) = g(S3X, Y ) = S(S2X, Y ),
S4(X, Y ) = g(S4X, Y ) = S(S3X, Y ).

A tensor D of type (1, 3) onM is said to be a generalized curvature tensor ([26,30,34]),
if

(i) D(X1, X2)X3 +D(X2, X3)X1 +D(X3, X1)X2 = 0;
(ii) D(X1, X2)X3 +D(X2, X1)X3 = 0;
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(iii) D(X1, X2, X3, X4) = D(X3, X4, X1, X2);
where D(X1, X2, X3, X4) = g(D(X1, X2)X3, X4) for all X1, X2, X3, X4 ∈ χ(M). Here
we use the same symbol D for the generalized curvature tensor of type (1, 3) and
(0, 4). Moreover if D satisfies the second Bianchi like identity, i.e.,

(∇X1D)(X2, X3)X4 + (∇X2D)(X3, X1)X4 + (∇X3D)(X1, X2)X4 = 0,
then D is called a proper generalized curvature tensor. Some most useful generalized
curvature tensors are the Gaussian curvature tensor G, the Weyl conformal curvature
tensor C, the concircular curvature tensor W and the conharmonic curvature tensor
K, which are respectively given by

G =1
2(g ∧ g),

C =R− 1
(n− 2)(g ∧ S) + κ

2(n− 1)(n− 2)(g ∧ g),

W =R− κ

2n(n− 1)(g ∧ g),

K =R− 1
(n− 2)(g ∧ S).

We can easily operate an C∞(M)-linear endomorphism H over χ(M), on a (0, k)-
tensor T , k ≥ 1, and get the tensor HT , given by ([26,30,34])

(HT )(X1, X2, . . . , Xk) = −T (HX1, X2, . . . , Xk)− · · · − T (X1, X2, . . . ,HXk).
Now for D ∈ T0

4(M) and given two vector fields X, Y ∈ χ(M) one can define an
endomorphism D(X, Y ) by

D(X, Y )(X1) = D(X, Y )X1, for all X1 ∈ χ(M).
Again if X, Y ∈ χ(M) then for a symmetric (0, 2)-tensor A one can define an endo-
morphism X ∧A Y , by

(X ∧A Y )X1 = A(Y,X1)X − A(X,X1)Y, for all X1 ∈ χ(M).
It is clear that the endomorphisms D(X, Y ) and X ∧A Y both are C∞(M)-linear.

For T ∈ T0
k(M), k ≥ 2, and D ∈ T0

4(M), one can define a tensor D · T ∈ T0
k+2(M)

given by ([26,30,34,56])
D · T (X1, X2, . . . , Xk;X, Y ) = (D(X, Y ) · T )(X1, X2, . . . , Xk)

=− T (D(X, Y )X1, X2, . . . , Xk)− · · · − T (X1, X2, . . . ,D(X, Y )Xk)
and for A ∈ T0

2(M) one can also define a tensor Q(A, T ) ∈ T0
k+2(M) as follows

([26,30,34,56,68])
Q(A, T )(X1, X2, . . . , Xk;X, Y ) = ((X ∧A Y ) · T )(X1, X2, . . . , Xk)

=− T ((X ∧A Y )X1, X2, . . . , Xk)− · · · − T (X1, X2, . . . , (X ∧A Y )Xk).
From the above discussion, we can state the following.
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Lemma 2.1. Let H be an endomorphism over the Lie algebra χ(M) of a semi-
Riemannian mannifold M , n ≥ 3, and A, E be two (0, 2)-tensors on M . Then

H(A ∧ E) = (A ∧HE) + (E ∧HA).

Lemma 2.2 (see, e.g., [32]). On a semi-Riemannian manifoldM , n ≥ 3, the following
conditions hold:

g ∧Q(g, S) = Q(g, g ∧ S) = −1
2Q(S, g ∧ g) = −Q(S,G).

Definition 2.1. [9, 56, 67] For T ∈ T0
k(M) and D ∈ T0

4(M), a semi-Riemannian
manifold M , n ≥ 3, is said to be T -semisymmetric type if D · T = 0.

In particular, for D = R and T = R (resp., S, P , C, W , K), the manifold is called
semisymmetric (resp., Ricci, projectively, conformally, concircularly, conharmonically
semisymmetric).

Definition 2.2. [2, 20, 22, 56] For T ∈ T0
k(M) and D1, D2, . . . , Dr ∈ T0

4(M), a semi-
Riemannian manifold M , n ≥ 3, is said to be T -pseudosymmetric type if the tensors
D1 · T , D2 · T , . . ., Dr · T are linearly dependent.

In particular, if r = 2, D1 = R, D2 = G and T = R (resp., S, P , C, W , K), then
the manifold is called Deszcz pseudosymmetric (resp., Ricci, projectively, conformally,
concircularly, conharmonically pseudosymmetric). Especially, if r = 2, D1 = C,
D2 = G and T = C, then M is called a manifold of pseudosymmetric Weyl tensor.
Again if r = 2, D1 = R, D2(X, Y ) = X ∧S Y and T = R, then the manifold is called
Ricci generalized pseudosymmetric. Thus a manifold is Deszcz pseudosymmetric,
Ricci-pseudosymmetric [5, 22], manifold of pseudosymmetric Weyl tensor [5, 22] and
Ricci generalized pseudosymmetric [15,16,22] respectively if and only if

R ·R =LRQ(g,R) holds on UR =
{
x ∈M : R− κ

n(n− 1)G 6= 0 at x
}
,

R · S =LRQ(g, S) holds on US =
{
x ∈M : S − κ

n
g 6= 0 at x

}
,

C · C =LCQ(g, C) holds on UC = {x ∈M : C 6= 0 at x} and
R ·R =LQ(S,R) holds on U1 = {x ∈M : Q(S,R) 6= 0 at x}.

We note that US ∪ UC = UR. We mention that Deszcz pseudosymmetric manifolds
are also named as pseudosymmetric in the sense of Ryszard Deszcz [71, 73] or Deszcz
symmetric spaces (see, e.g., [12, 14,72,73]).

Definition 2.3 ([23–25], see also [7, 42, 43, 51]). A semi-Riemannian manifold M ,
n ≥ 4, is said to be a Roter type manifold if its curvature tensor can be expressed as

(2.1) R = N1g ∧ g +N2g ∧ S +N3S ∧ S,

where N1, N2, N3 ∈ C∞(M) and such a manifold is denoted by RTn.
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For details about RTn we refer the reader to see [24, 28, 38–40, 42, 44, 45] and also
references therein. It seems that [47] is the first paper containing results on semi-
Riemannian manifolds satisfying (2.1). For any (0, 4) tensor T and any two (0, 2)
tensors A,E on the manifold M , the tensor W (T,A,E), given by

W (T,A,E) = T −N1A ∧ A−N2A ∧ E −N3E ∧ E
is said to be a Roter type tensor. If W (T,A,E) vanishes identically on M , then the
manifold is said to satisfy Roter type condition. Especially, if W (R, g, S) = 0 on M ,
then M is called Roter type manifold.

Some comments on pseudosymmetric manifolds (Deszcz symmetric spaces) and
Roter type manifolds (named also Roter spaces) are given in Section 1 of [14]: “From
a geometric point of view, the Deszcz symmetric spaces may well be considered to
be the simplest Riemannian manifolds next to the real space forms.” and “From
an algebraic point of view, Roter spaces may well be considered to be the simplest
Riemannian manifolds next to the real space forms.”

Definition 2.4. [51] A semi-Riemannian manifold M , n ≥ 4, is said to be a general-
ized Roter type if its curvature tensor can be expressed as
(2.2) R = L1g ∧ g + L2g ∧ S + L3S ∧ S + L4g ∧ S2 + L5S ∧ S2 + L6S

2 ∧ S2,

where Li ∈ C∞(M), i = 1, 2, . . . , 6 and such a manifold is denoted by GRTn.

For any (0, 4) tensor T and any three (0, 2) tensors A,E, F on M , the tensor
GW (T,A,E, F ), given by
GW (T,A,E, F ) = T −L1A∧A−L2A∧E−L3E∧E−L4A∧F −L5E∧F −L6F ∧F
is said to be a generalized Roter type tensor. If GW (T,A,E, F ) vanishes identically
onM , then the manifold is said to satisfy generalized Roter type condition. Especially,
if GW (R, g, S, S2) = 0 on M , then M is called generalized Roter type manifold.

A RTn (resp., GRTn) manifold is called proper if it is a non-conformally flat manifold
(resp., a not RTn manifold). We mention that proper GRTn manifold was already
investigated in [49] (see also [43], eq. (5.5)) and recently in [31–33,35,50,51,57] and
[58]. But the name “generalized Roter type” was first used in [51]. We mention that in
[57] the present authors studied the characterization of a warped product generalized
Roter type manifold.

Definition 2.5. [8] A semi-Riemannian manifold M , n ≥ 3, is said to be Einstein if
its Ricci tensor S is linearly dependent with its metric tensor g.

For an Einstein manifold we have S = κ
n
g.

Contracting (2.1) and (2.2), we get some generalizations of Einstein manifold.

Definition 2.6. [8] A semi-Riemannian manifold M , n ≥ 3, is said to be an Einstein
manifold of level 2, 3 and 4 (briefly, Ein(2), Ein(3) and Ein(4)) if

S2 + a1S + a2g = 0,
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S3 + a3S
2 + a4S + a5g = 0

and
S4 + a6S

3 + a7S
2 + a8S + a9g = 0,

holds respectively for some ai ∈ C∞(M), i = 1, 2, . . . , 9.

We note that an Einstein manifold is Ein(1) and conversely. We also note that
every proper GRTn is Ein(4) and every proper RTn is Ein(2).

Definition 2.7. A semi-Riemannian manifold M , n ≥ 3, is said to be of quasi-
constant curvature ([13], [53] and also references therein) if R can be expressed as

R = γG+ δg ∧ (µ⊗ µ),
where γ, δ ∈ C∞(M) and µ ∈ T0

1(M).
Again, a semi-Riemannian manifold M , n ≥ 3, is said to be quasi-Einstein (see,

e.g., [12, 30,37,54,66] and also references therein) if its Ricci tensor is given by
S = αg + βη ⊗ η,

where α, β ∈ C∞(M) and η ∈ T0
1(M).

3. Semi-Riemannian Manifolds Satisfying Generalized Roter Type
Condition

Proposition 3.1. A semi-Riemannian Ein(2) manifold M is a GRTn if and only if
it is a RTn.

Proof. Let M be a GRTn. Since M is an Ein(2) manifold, S2 can be expressed as a
linear combination of S and g. Thus putting the value of S2 in terms of S and g in
(2.2) we get our assertion. The converse part is obvious. �

Proposition 3.2. A semi-Riemannian manifoldM satisfying the Roter type condition
(2.1) with N3 6= 0, also realizes the generalized Roter type condition (2.2) such that

L1 =− b2L6 + 2bL4N3 − 4N1N
2
3

4N2
3

,

L2 =− abL6 + aL4N3 + bL5N3 − 2N2N
2
3

2N2
3

and

L3 =− a2L6 + 2aL5N3 − 4N3
3

4N2
3

,

where a = (n− 2)N2 + 2N3κ and b = 2(n− 1)N1 +N2κ.

Proof. Contracting the equation (2.1), we get
a1g + a2S + a3S

2 = 0,
where a1 = 2N1(n − 1) + N2κ, a2 = N2(n − 2) + 2N3κ, a3 = −2N3. Again since
N3 6= 0, a3 6= 0, and hence we can evaluate S2 in terms of S and g ([28] and [29]).
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Now putting the value of S2 in terms of S and g in (2.2) we get another Roter type
condition. Then comparing this Roter type condition with (2.1) we get the result. �

Note. It is obvious that a semi-Riemannian manifold satisfying (2.1) satisfies (2.2)
with L1 = N1, L2 = N2, L3 = N3 and L4 = L5 = L6 = 0, which can be obtained from
the above proposition as a special case.

Similarly as the proof of Proposition 3.2, we can obtain the following.

Proposition 3.3. A non flat semi-Riemannian manifold M of constant curvature
fulfills (2.1) such that

N1n
2 + κ(N2n+N3κ)

n
= κ

2(n− 1) .

It also satisfies (2.2) such that

L1n
4 + κ{L2n

3 + κ[n2(L3 + L4) + L5nκ+ L6κ
2]}

n3 = κ

2(n− 1) .

Proposition 3.4. A semi-Riemannian manifold M satisfying generalized Roter type
condition is a manifold of constant curvature if and only if it is Einstein.

Proof. If M is Einstein, then S2 =
(
κ
n

)2
g. Hence from (2.2), we get

R = 2
n4

{
L1n

4 + κ[L2n
3 + κ((L3 + L4)n2 + L5nκ+ L6κ

2)]
}
G,

which implies that the manifold is of constant curvature. The converse is obvious. �

Proposition 3.5. A semi-Riemannian manifold M satisfying generalized Roter type
condition is a manifold of quasi-constant curvature if and only if it is quasi-Einstein.

Proof. If M is a quasi-Einstein, then S2 = α2g + β(2α + β||η||2)η ⊗ η. Hence from
(2.2), we get

R = γG+ δg ∧ (η ⊗ η),
where γ = 2 [L1 + α(L2 + α(L3 + L4 + α(L5 + L6α)))] and δ = β[L2 +α(2(L3 +L4) +
3L5α+ 4L6α

2) + (L4 + α(L5 + 2L6α))β||η||2]. Thus the manifold is of quasi-constant
curvature. The converse part is obvious. �

If an operator is linear over R only, then it is called 1st type, and if it linear over
C∞(M) also, then it is called 2nd type (see [56]). Again if the operator commutes
with contraction then it is called commutative. For details about the classification of
such curvature restriction operators, we refer the reader to see [56].

Theorem 3.1. Let M be a semi-Riemannian manifold satisfying generalized Roter
type condition. Then the structures defined by a commutative 2nd type restriction
imposed on R and S are equivalent.
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Proof. Consider a commutative 2nd type restriction operator L. Then the corre-
sponding geometric structure due to a tensor T is given by L(T ) = 0. Now as L

is commutative so by contracting L(R) = 0, we get L(S) = 0. Hence to prove the
theorem it is sufficient to show L(S) = 0⇒ L(R) = 0.

Let us now consider L(S) = 0. Then from Lemma 2.1,
L(S ∧ S) = 2S ∧ LS = 0.

Since L is commutative, contracting the above, we get
L(S2 − (n− 2)S) = 0⇒ L(S2) = 0.

Again since L is of 2nd type and commutative, applying L on (2.2) and using Lemma
2.1, we have

L(R) =0 + L2g ∧ L(S) + 2L3S ∧ L(S) + L4g ∧ L(S2)
+ L5S

2 ∧ L(S) + L5S ∧ L(S2) + 2L6S
2 ∧ L(S2) = 0.

This proves the theorem. �

Since the curvature restriction operators of semisymmetric and pseudosymmetric
structures are commutative and of 2nd type, we can state the following.

Corollary 3.1. On a GRTn, semisymmetry and Ricci-semisymmetry are equivalent.

Corollary 3.2. On a GRTn, pseudosymmetry and Ricci-pseudosymmetry are equiv-
alent.

Corollary 3.3 (see [19] and references therein). On a RTn or a conformally flat
manifold, the semisymmetry (resp., pseudosymmetry) and Ricci-semisymmetry (resp.,
Ricci-pseudosymmetry) are equivalent.

Corollary 3.4. If D1 and D2 are two generalized curvature tensors on a GRTn, then
(i) D1 ·R = 0⇔ D1 · S = 0 and
(ii) D1 ·R = LD2 ·R⇔ D1 · S = LD2 · S,

where L is a smooth function on {x ∈M : D2 · S 6= 0 at x}.

Remark 3.1. We note that on a GRTn to study any 2nd type commutative semisym-
metric type or pseudosymmetric type condition imposed on R, it is sufficient to study
the condition on S.

Corollary 3.5. If D is a generalized curvature tensor on a GRTn, then
(i) D · S = 0⇒ D ·R = 0 and hence D · C = 0;
(ii) D · S = LSQ(g, S)⇒ D ·R = LSQ(g,R) and hence D · C = LSQ(g, C).

Especially, if D is R, C, W and K, then we can obtain the consequent results.

Proposition 3.6. [16] Let M , n ≥ 3, be a semi-Riemannian manifold. Let A be
a non-zero symmetric (0, 2)-tensor and B be a generalized curvature tensor. If at
x ∈M , Q(A,B) = 0, then
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(i) B and A ∧ A are linearly dependent if A(X, Y ) 6= 1
A(V,V )A(V,X)A(V, Y );

(ii) ∑X,Y,Za(X)B(X, Y ) = 0 if A(X, Y ) = 1
A(V,V )A(V,X)A(V, Y );

where V is a vector at x such that A(V, V ) 6= 0 and
∑
X,Y,Z

denotes the cyclic sum.

Moreover we have the following.

Proposition 3.7 ([43], Theorems 2.8 and 2.9). Let A be a symmetric (0, 2)-tensor
and B be a generalized curvature tensor at a point x of a semi-Riemannian manifold
M , n ≥ 4. Moreover, let rank (A − ρ g) > 1 for any ρ ∈ R. Then the Tachibana
tensors Q(g,B), Q(g, g ∧A), Q(g, A ∧A) and Q(A,B) are linearly dependent at x if
and only if the tensor B has at this point a decomposition of the form

B = α

2 A ∧ A+ β g ∧ A+ γ G,

where α, β, γ ∈ R.

Proposition 3.8. [36] Let M , n ≥ 3, be a semi-Riemannian manifold. If at a point
x in M,

S = µg + ρa⊗ a and
∑
X,Y,Z

a(X)B(X, Y ) = 0,

for some non-zero vector a, where B(X, Y ) is the corresponding endomorphism of
B = R− γG and µ, ρ, γ ∈ R. Then at x, we have

R ·R = κ

n(n− 1)Q(g,R) and R ·R = Q(S,R)− (n− 2)κ
n(n− 1)Q(g, C).

Proof of Theorem II. It is given that
R · S = LSQ(g, S),

R ·R−Q(S,R) = L1Q(g, C) and
R · C = L2Q(S,C).

Now comparing last two results we get

Q(S,R) + L1Q(g, C)− 1
n− 2R · g ∧ S = L2Q(S,C)

⇒ Q(S,R) + L1

[
Q(g,R)− 1

n− 2Q(g, g ∧ S)
]
− 1
n− 2g ∧ (R · S)

= L2

[
Q(S,R)− 1

n− 2Q(S, g ∧ S) + κ

2(n− 1)(n− 2)Q(S, g ∧ g)
]

⇒ Q(S,R) + L1

[
Q(g,R) + 1

2(n− 2)Q(S, g ∧ g)
]
− LS
n− 2Q(g, g ∧ S)

= L2

[
Q(S,R) + 1

2(n− 2)Q(g, S ∧ S) + κ

2(n− 1)(n− 2)Q(S, g ∧ g)
]

(by using the Lemma 2.2)
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⇒(1− L2)Q(S,R) + L1Q(g,R) + 1
2(n− 2)

[
L1 + LS −

L2κ

n− 1

]
Q(S, g ∧ g)

− L2

2(n− 2)Q(g, S ∧ S) = 0.

Then we can write

α1Q(S,R) + α2Q(g,R) + α3Q(S, g ∧ g) + α4Q(g, S ∧ S) = 0,

where α1 = 1− L2, α2 = L1, α3 = 1
2(n−2)

[
L1 + LS − L2κ

n−1

]
and α4 = − L2

2(n−2) .
Again as LS = κ

n
L2 at x, LS 6= 0, under given hypothesis of the theorem, from

Remark 3.1 of [36] we have LS = κ
n(n−1) and L2 = 1

n−1 6= 1 and thus α1 6= 0. We
note that LS 6= 0 implies κ 6= 0. Therefore we restrict our consideration to the set
U = US ∩ U1. Hence the above equation can be written as

Q
(
α1S + α2g,R + α3

α1
g ∧ g − α4

α1
g ∧ S

)
= 0.

Let us now consider the above situation as Q(A,B) = 0, where A = α1S + α2g and

B = R + α3

α1
g ∧ g − α4

α1
g ∧ S.

Then two cases arise.
Case 1. Let x ∈M , rank(A) > 1. Then from Proposition 3.6 (also from Proposition
3.7) we have

B = λ1A ∧ A,
i.e., M satisfies Roter type condition at x. Then from Theorem 3.1 and also by Corol-
lary 3.2, we can conclude that the manifold satisfies the pseudosymmetry condition
at x, since M is a Ricci-pseudosymmetric manifold.
Case 2. Let x ∈ M , rank(A) = 1 and A 6= 0. Then there exists some V ∈ Tx(M)
such that A(V, V ) 6= 0 and by Proposition 3.6, we have

α1S + α2g = 1
ρ
a⊗ a

and
a(X)B(Y, Z) + a(Y )B(Z,X) + a(Z)B(X, Y ) = 0,

where a(X) = A(X, V ) and ρ = A(V, V ). Thus B is some linear combination of R, G
and g ∧ (a⊗ a), say,

B = β1R + β2G+ β3g ∧ (a⊗ a).
Since B̃ = g ∧ (a⊗ a) always satisfies the condition

a(X)B̃(Y, Z) + a(Y )B̃(Z,X) + a(Z)B̃(X, Y ) = 0,

B̄ = β1R + β2G satisfies

a(X)B̄(Y, Z) + a(Y )B̄(Z,X) + a(Z)B̄(X, Y ) = 0.
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Thus by Proposition 3.8, we have R · R = κ
n(n−1)Q(g,R) on U . This completes the

proof.

Proof of Theorem I. If κ = 0, then the result easily follows from Theorem 4.2 of
[5]. Next consider κ 6= 0. Since M is Ricci-semisymmetric and R ·R = Q(S,R), from
Proposition 5.1 of [5] we have

C · C = n− 3
n− 2R ·R + 1

n− 2

(
κ

n− 1 − τ
)
Q(g, C),

where τ = tr(S2)
κ

. Again since C · C = LQ(g, C) for some scalar L (say), we obtain
n− 3
n− 2Q(S,R) + 1

n− 2

(
κ

n− 1 − τ
)
Q(g, C) = LQ(g, C)

⇒n− 3
n− 2Q(S,R) + 1

n− 2

(
κ

n− 1 − τ − L(n− 2)
) [
Q(g,R)− 1

n− 2Q(g, g ∧ S)
]

= 0

⇒n− 3
n− 2Q(S,R) + 1

n− 2

(
κ

n− 1 − τ − L(n− 2)
) [
Q(g,R) + 1

n− 2Q(S,G)
]

= 0

(by using the Lemma 2.2)
⇒Q(α1S + α2g,R + α3G) = 0,

where α1 = n−3
n−2 , α2 = 1

n−2

[
κ

n−1 − τ − L(n− 2)
]
and α3 = α2

(n−3) . Since n > 3, α1 6= 0
and hence similar to the proof of the Theorem II, we get our assertion.

Theorem 3.2. Let M be a semi-Riemannian manifold satisfying a generalized Roter
type condition such that the associated scalars are constants or constant multiple of κ.
Then the geometric structures defined by a commutative 1st type restriction imposed
on R and S are equivalent.

Proof. The proof is similar to the proof of the Theorem 3.1. �

Corollary 3.6. If the associated scalars of a GRTn manifold M are constants or
constant multiple of κ, then

(i) ∇R = 0⇔ ∇S = 0 and
(ii) ∇R = Φ⊗R⇔ ∇S = Φ⊗ S, where Φ is an 1-form on M .

Corollary 3.7. On a conformally flat manifold M , n ≥ 4, we have:
(i) ∇R = 0⇔ ∇S = 0 and
(ii) ∇R = Φ⊗R⇔ ∇S = Φ⊗ S, where Φ is an 1-form on M .

4. Examples

Example 4.1. Let M1 be a 5-dimensional connected semi-Riemannian manifold en-
dowed with the semi-Riemannian metric

ds2 = f
[
(dx1)2 + (dx2)2 + (dx3)2 + (dx4)2 + h(dx5)2

]
,
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where f is a smooth function of x1 and h is a smooth function of x1 and x2 such that
f and h are non-zero at each point of M1. The local components of the Riemann-
Christoffel curvature tensor and the Ricci tensor (upto symmetry) which may not
vanish identically are the following:

R1212 =R1313 = R1414 = (f ′)2 − ff ′′

2f , R2323 = R2424 = R3434 = −(f ′)2

4f ,

R1515 =1
4

(
−2hf ′′ − h1f

′ + 2h (f ′)2

f
+ fh2

1
h
− 2fh11

)
, R1525 = 1

4f
(
h1h2

h
− 2h12

)
,

R2525 =1
4f

(
−f

′ (hf ′ + fh1)
f 2 + h2

2
h
− 2h22

)
, R3535 = R4545 = −f

′ (hf ′ + fh1)
4f ,

S11 =
−f 2h2

1 + fhh1f
′ + 2h

[
4fhf ′′ + f 2h11 − 4h (f ′)2

]
4f 2h2 , S12 = −h1h2 − 2hh12

4h2 ,

S22 =
h
[
2fhf ′′ + 2f 2h22 + fh1f

′ + h (f ′)2
]
− f 2h2

2

4f 2h2 ,

S33 =S44 = 2fhf ′′ + h (f ′)2 + fh1f
′

4f 2h
,

S55 =
−f 2 (h2

1 + h2
2) + 2fh [2h1f

′ + f (h11 + h22)] + h2
[
2ff ′′ + (f ′)2

]
4f 2h

,

where f ′ = df
dx1 , f ′′ = d

dx1

(
df
dx1

)
, h1 = ∂h

∂x1 , h2 = ∂h
∂x2 , h11 = ∂

∂x1

(
∂h
∂x1

)
, h12 = ∂

∂x1

(
∂h
∂x2

)
and h22 = ∂

∂x2

(
∂h
∂x2

)
.

Again the scalar curvature κ and the local components of the Weyl conformal
curvature tensor (upto symmetry) which may not vanish identically are given by:

κ =−
f 2 (h2

1 + h2
2)− 2fh (2h1f

′ + f (h11 + h22)) + 2h2
(
(f ′)2 − 4ff ′′

)
2f 3h2 ,

C1212 =− C3434 = f (−h2
1 − h2

2 + 2hh11 + 2hh22)
24h2 ,

C1313 =C1414 = −C2323 = −C2424 = f (−h2
1 + h2

2 + 2hh11 − 2hh22)
24h2 ,

C1323 =C1424 = f (2hh12 − h1h2)
12h2 , C2525 = f (−h2

1 + 3h2
2 + 2hh11 − 6hh22)

24h ,

C1515 =− f (−3h2
1 + h2

2 + 6hh11 − 2hh22)
24h , C1525 = −f (2hh12 − h1h2)

6h ,

C3535 =C4545 = f (−h2
1 − h2

2 + 2hh11 + 2hh22)
24h .
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Then by straightforward calculations we can obtain the components of S2, S3, S4,
g ∧ g, g ∧ S, S ∧ S, g ∧ S2, S ∧ S2 and S2 ∧ S2. Now we discuss the results by taking
restrictions on the functions f and h.

(i) If h1 and h2 are non-zero functions and f is a non-constant function, then the
manifold is Ein(4) but not GRT5.

(ii) If f and h both are non-constant functions of x1 only, then M1 is Ein(3) and
GRT5.

(iii) If f is non-constant such that 15(f ′)3− 18ff ′f ′′ + 4f 2f (3) 6= 0 and h = c1(f ′)2

f3 ,
c1 is any arbitrary constant, then the manifold is proper RT5 and hence also
satisfies Ein(2) condition.

(iv) If f is non-constant such that 15(f ′)3 − 18ff ′f ′′ + 4f 2f (3) = 0 and h = c1(f ′)2

f3 ,
then the manifold is proper conformally flat, where 21(f ′)3−22ff ′f ′′+4f 2f (3),
33(f ′)3 − 46ff ′f ′′ + 12f 2f (3) and −9(f ′)3 − 2ff ′f ′′ + 4f 2f (3) are not zero
simultaneously. In particular, if f(x1) = (x1)−4, x1 > 0 or x1 < 0, then the
above required conditions hold and the manifold is proper conformally flat.

(v) If f is non-constant and h = c1(f ′)2

f3 and also 21(f ′)3 − 22ff ′f ′′ + 4f 2f (3) =
33(f ′)3 − 46ff ′f ′′ + 12f 2f (3) = −9(f ′)3 − 2ff ′f ′′ + 4f 2f (3) = 0, then M1 is
non-flat and is of constant curvature. In particular, if f(x1) = (x1)−2, x1 > 0
or x1 < 0, then the above required conditions hold and the manifold is of
non-zero constant curvature.

(vi) Finally if both f and h are constants, then the manifold is flat.
Note 1. The inclusion relations among the various classes of manifolds of dimension
≥ 4 indicated by box are given as follows:

Flat ⊂ constant curvature ⊂ conformally flat ⊂ proper RTn ⊂ proper GRTn

and Ricci Flat ⊂ Einstein ⊂ Ein(2) ⊂ Ein(3) ⊂ Ein(4)
The above example ensures that the above inclusions are all proper.

Example 4.2. Let M2 be an open connected subset of R6, where x5 > 0, endowed with
the Riemannian metric

ds2 = (dx1)2 + ex
1(dx2)2 + ex

1(dx3)2 + (dx4)2 + ex
4(dx5)2 + ex

4(x5 + 1)2(dx6)2.

Then we can easily deduce the non-zero components of Riemann-Christoffel curvature
tensor, Ricci tensor and scalar curvature (upto symmetry) as:

R1212 =R1313 = −e
x1

4 , R2323 = −1
4e

2x1
, R4545 = −e

x4

4 ,

ex
4
R4646 =R5656 = −1

4e
2x4 (

x5 + 1
)2
,

S11 =S44 = 1
2 , S22 = S33 = ex

1

2 , S55 = ex
4

2 , S66 = 1
2e

x4 (
x5 + 1

)2
, κ = 3.



ON GENERALIZED ROTER TYPE MANIFOLDS 485

Again the non-zero components of Weyl conformal curvature tensor are given by

C1212 =C1313 = −3
2C2424 = −3

2C3434 = −3ex1

20 , C1414 = 1
10 ,

3
2C1515 =− C4545 = 3ex4

20 , C2525 = C3535 = 1
10e

x1+x4
,

3
2C1616 =− C4646 = 3

20e
x4 (

x5 + 1
)2
, C2323 = −3e2x1

20 ,

C2626 =C3636 = 1
10e

x1+x4 (
x5 + 1

)
2, C5656 = − 3

20e
2x4 (

x5 + 1
)2
.

Now it is easy to check that the manifold is Einstein and also Ein(2), Ein(3) and
Ein(4) as

a0g2 + a1S2 + a2S
2
2 =0,

a3g2 + a4S2 + a5S
2
2 + a6S

3
2 =0,

a7g2 + a8S2 + a9S
2
2 + a10S

3
2 + a11S

4
2 =0,

where a2 = −2(2a0 + a1), a6 = −2(4a3 + 2a4 + a5), a11 = −16a7 − 8a8 − 4a9 − 2a10
and a0, a1, a3, a4, a5, a7, a8, a9, a10 are arbitrary scalars.

We can easily check that the manifold is not a GRT6. Although we get some
dependency of g ∧ g, g ∧ S, S ∧ S, g ∧ S2, S ∧ S2 and S2 ∧ S2, given below:

L0g ∧ g + L1g ∧ S + L2S ∧ S = 0,

L3g ∧ g + L4g ∧ S + L5S ∧ S + L6g ∧ S2 + L7S ∧ S2 + L8S
2 ∧ S2 = 0,

where L2 = −4(L0+L1), L8 = −4(4L3+4L4+L5+2L6+L7) and Li, i = 0, 1, 3, 4, 5, 6, 7
are arbitrary scalars. We also note that M2 is a semisymmetric manifold.

Note 2. From Note 1 and Example 4.2, we can conclude that the following inclusion
relations among the various classes of manifolds of dimension ≥ 4 are all proper

constant curvature ⊂ C = 0 ⊂ proper RTn ⊂ proper GRTn
∩ ∩ ∩

Einstein or Ein(1) ⊂ Ein(2) ⊂ Ein(3) ⊂ Ein(4) .

Example 4.3. Let M3 be an open connected subset of R6 such that x1 < x4 endowed
with the Riemannian metric

ds2 = ex
1 [(dx1)2 + (dx2)2 + (dx3)2

]
+ ex

4 [(dx4)2 + (dx5)2 + (dx6)2
]
.

Then its non-zero Riemann-Christoffel curvature tensor, Ricci tensor, scalar curvature
and conformal curvature tensor components (upto symmetry) are the following:

R2323 = −e
x1

4 , R5656 = −e
x4

4 , S22 = S33 = S55 = S66 = 1
4 , κ = 1
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and

C1212 =C1313 = 1
80e

x1−x4 (3ex4 − 2ex1)
, C1515 = C1616 = 1

80
(
3ex1 − 2ex4)

,

−3
2C1414 =C2525 = C2626 = C3535 = C3636 = 3

80
(
ex

1 + ex
4)
,

C2323 =− 1
40e

x1−x4 (
ex

1 + 6ex4)
, C2424 = C3434 = − 1

80
(
2ex1 − 3ex4)

,

C4545 =C4646 = − 1
80e

x4−x1 (2ex4 − 3ex1)
, C5656 = − 1

40e
x4−x1 (6ex1 + ex

4)
.

Then by a straightforward calculation we get R · R = 0 and thus the manifold is
semisymmetric. Now the non-zero components (upto symmetry) of S2 and S3 are

S2
22 = S2

33 = e−x
1

16 , S2
55 = S2

66 = e−x
4

16
and

S3
22 = S3

33 = 1
64e

−2x1
, S3

55 = S3
66 = 1

64e
−2x4

.

Then we can easily calculate g∧ g, g∧S, S ∧S, g∧S2, S ∧S2 and S2∧S2, and check
that the manifold is not RTn but special GRTn and Ein(3) such that:

S3 − ex
1 + ex

4

4ex1+x4 S
2 + 1

16ex1+x4 S = 0

and

R = 2(e3x1 + e3x4)
(ex1 − ex4)2 S∧S− 16ex1+x4(e2x1 + e2x4)

(ex1 − ex4)2 S∧S2 + 32e2(x1+x4)(ex1 + ex
4)

(ex1 − ex4)2 S2∧S2.

Example 4.4. Let M4 be an open connected semi-Riemannian manifold endowed with
the semi-Riemannian metric

(4.1) ds2 = (f +1)(dx1)2 +f(dx2)2 +f(dx3)2 + (f ′)2

f(f + 1)
[
(dx4)2 + (dx5)2 + (dx6)2

]
,

where f is a non-constant function of x1 such that f(f + 1) 6= 0 at any point. Then
by some straightforward calculation we can get the local components of the Riemann-
Christoffel curvature tensor, the Ricci tensor, the Weyl conformal curvature tensor
(upto symmetry) which may not vanish identically and the scalar curvature as follows:

R1212 =R1313 = 1
4

(
(2f + 1) (f ′)2

f(f + 1) − 2f ′′
)
,

R1414 =R1515 = R1616

=
f ′
[
−(10f 2 + 9f + 3)(f ′)3 − 4(f 2 + f)2f (3) + 2f(f + 1)(7f + 3)f ′f ′′

]
4f 3(f + 1)3 ,

R2424 =R2525 = R2626 = R3434 = R3535 = R3636
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=
(f ′)2

[
(2f + 1) (f ′)2 − 2f(f + 1)f ′′

]
4f 2(f + 1)3 ,

R2323 =− (f ′)2

4f + 4 , R4545 = R4646 = R5656 = −

[
(2f + 1) (f ′)3 − 2f(f + 1)f ′f ′′

]2
4f 4(f + 1)5

and

S11 =(26f 2 + 21f + 7) (f ′)3 + 12f 2(f + 1)2f (3) − 2f(f + 1)(19f + 7)f ′f ′′
4f 2(f + 1)2f ′

,

S22 =S33 =
8(f + 1)f ′′ +

(
− 3
f
− 7

)
(f ′)2

4(f + 1)2 ,

S44 =S55 = S66 = 1
4f 3(f + 1)4

[
8f 2(f + 1)2(f ′′)2 + (14f 2 + 11f + 3)(f ′)4

− 2f(f + 1)(13f + 5)(f ′)2f ′′ + 4f 2(f + 1)2f (3)f ′
]
,

κ = 1
2f 2(f + 1)3 (f ′)2

[
12f 2(f + 1)2 (f ′′)2 + (f(27f + 17) + 5) (f ′)4

−2f(f + 1)(25f + 7) (f ′)2
f ′′ + 12f 2(f + 1)2f (3)f ′

]
and

C1212 =C1313 = 3
80f(f + 1)2 (f ′)2

[
− 8f 2 (f ′′)2 + 27f (f ′)4 + 10 (f ′)4 − 8f 4 (f ′′)2

− 16f 3 (f ′′)2 + 24f (3)f 3f ′ − 44f 2 (f ′)2
f ′′ − 14f (f ′)2

f ′′

+ 27f 2 (f ′)4 + 12f (3)f 4f ′ − 30f 3 (f ′)2
f ′′ + 12f (3)f 2f ′

]
,

C1414 =C1515 = C1616 = − 1
40f 3(f + 1)3

[
− 8f 2 (f ′′)2 + 27f (f ′)4 + 10 (f ′)4

− 8f 4 (f ′′)2 − 16f 3 (f ′′)2 + 24f (3)f 3f ′ − 44f 2 (f ′)2
f ′′

− 14f (f ′)2
f ′′ + 27f 2 (f ′)4 + 12f (3)f 4f ′ − 30f 3 (f ′)2

f ′′ + 12f (3)f 2f ′
]
,

C2323 =C2424 = C2525 = C2626 = C3434 = C3535 = C3636 = −1
80f 2(f + 1)3

×
[
− 16f 2 (f ′′)2 − 21f (f ′)4 − 10 (f ′)4 − 16f 3 (f ′′)2

+ 4f 3f (3)f ′ + 30f 2 (f ′)2
f ′′ + 22f (f ′)2

f ′′ + 4f 2f (3)f ′
]
,

C4545 =C4646 = C5656 = (f ′)2

40f 3(f + 1)5

[
− 24f 2 (f ′′)2 − 12f (f ′′)2 + 3f (f ′)4
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− 2 (f ′)4 − 12f 3 (f ′′)2 + 8f 3f (3)f ′ + 8ff (3)f ′

+ 4f (f ′)2
f ′′ + 4 (f ′)2

f ′′ + 16f 2f (3)f ′
]
.

Then in view of the values of the components of R and the metric tensor g we
can easily calculate R ·R and Q(g,R) and we see that these two tensors are linearly
dependent if
(4.2) (3f 2 + 3f + 1)(f ′)3 + f 2(f + 1)2f (3) − 2f(f + 1)(2f + 1)f ′f ′′ = 0.
Again from g and S, we can easily calculate S2, S3, S4, g ∧ g, g ∧ S, S ∧ S, g ∧ S2,
S ∧ S2 and S2 ∧ S2. Then we can check that the manifold is an Ein(3)-manifold and
also a GRT6. We note that in [24] it was shown that every RTn is pseudosymmetric.
Now this manifold is RTn if it is Ein(2), i.e., f satisfies one of the following:
(4.3) (33f 2 + 31f + 10)(f ′)3 + 12f 2(f + 1)2f (3) − 2f(f + 1)(23f + 11)f ′f ′′ = 0,

− 4f 2(f + 1)2(f ′′)2 + (6f 2 + 5f + 2)(f ′)4 − 2f(f + 1)(3f + 1)(f ′)2f ′′(4.4)
+ 4f 2(f + 1)2f (3)f ′ = 0,
8f 2(f + 1)2 (f ′′)2 + 3(7f 2 + 7f + 2)(f ′)4 − 2f(f + 1)(17f + 9)(f ′)2f ′′(4.5)
+ 4f 2(f + 1)2f (3)f ′ = 0.

Thus if f satisfies (4.2) but not satisfies any one of (4.3), (4.4) and (4.5), then the
metric given in (4.1) is pseudosymmetric, non-Roter type but of generalized Roter type.
We note that if f(x1) = tan2(x1), x1 ∈ (0, π2 ), then f satisfies the above conditions. In
this case the non-zero components of the metric tensor, Riemann-Christoffel curvature
tensor, Ricci tensor, scalar curvature and conformal curvature tensor (upto symmetry)
as follows:

4g11 =g44 = g55 = g66 = 4 sec2
(
x1
)
, g22 = g33 = tan2

(
x1
)
,

4R1212 =4R1313 = 4R2323 = R2424 = R2525 = R2626 = R3434

=R3535 = R3636 = 1
4R4545 = 1

4R4646 = 1
4R5656 = −4 tan2

(
x1
)

sec2
(
x1
)
,

R1414 =R1515 = R1616 = −4 sec4
(
x1
)
,

S11 =5 sec2
(
x1
)
, S22 = S33 = 5 sec2

(
x1
)
− 4,

S44 =S55 = S66 = 4
(
5 sec2

(
x1
)
− 2

)
, κ = 25− 3 cos(2x1) + 2 csc(x1)2

and

C1212 =C1313 = 3
20
(
3 sec2

(
x1
)
− 2

)
,

C1414 =C1515 = C1616 = 8
5
(
cos

(
2x1

)
− 2

)
csc2

(
2x1

)
,

C2323 =− 3
20
(
cos

(
2x1

)
+ 3

)
tan2

(
x1
)
,
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C2424 =C2525 = C2626 = C3434 = C3535 = C3636 = −1
5
(
sec

(
x1
)
− 2

) (
sec

(
x1
)

+ 2
)
,

C4545 =C4646 = C5656 = −8
5
(
csc2

(
x1
)
− 2 sec2

(
x1
))
.

ThenM4 satisfies R·R = Q(g,R), i.e.,M4 is non-semisymmetric but pseudosymmetric
and a generalized Roter type manifold.

Example 4.5 (Example 5.5 of [51]). LetM5 be an open connected subset of R5 endowed
with the semi-Riemannian metric

ds2 = dx2 + dy2 + du2 + dv2 + ρ2(xdu− ydv + dz)2,

where ρ is a non-zero constant. In [51] it is shown that this manifold is neither a
GRT5 nor a RT5 but it is a pseudosymmetric manifold satisfying R ·R = −ρ2

4 Q(g,R).

Note 3. It is well-known that every RTn is GRTn as well as pseudosymmetric. From
Example 4.4 and Example 4.5, we can conclude that these two generalizations of RTn
are proper and independent.

5. Conclusion

The present paper is based on the study of generalized Roter type manifolds and
obtained the sufficient conditions for which a GRTn turns into a RTn, conformally flat
manifold, manifold of constant-curvature and manifold of quasi-constant curvature.
It is shown that generalized Roter type condition is sufficient for equivalency of
various curvature restricted geometric structures, such as (i) semisymmetry and Ricci-
semisymmetry, (ii) pseudosymmetry and Ricci-pseudosymmetry. More generally, on a
GRTn the two geometric structures formed by a commutative 2nd type restriction (i.e.,
the defining restriction operator commute with contraction and linear over C∞(M))
imposed on R and S are equivalent. Alternative proofs of some theorems given in [5]
and [36] for the equivalency of such structures are presented here. It is also shown that
special type of generalized Roter type condition is sufficient for equivalency of (i) local
symmetry and Ricci-symmetry, (ii) recurrent and Ricci recurrent. We can conclude
that if we extend the generalized Roter type condition to higher Ricci level, then the
equivalency of above structures are also hold. The existence of non-conformally flat
Roter type manifolds, non-Roter type pseudosymmetric manifolds, non-Roter type
but generalized Roter type manifolds, non-Ricci flat Einstein manifolds, non-Einstein
but Ein(2) manifolds, non-Ein(2) but Ein(3) manifolds and non-Ein(3) but Ein(4)
manifolds are ensured by suitable examples. Also the independent existence of non-
GRTn pseudosymmetric and non-pseudosymmetric GRTn manifolds are ensured by
some suitable examples.
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