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EXISTENCE RESULTS AND NUMERICAL SOLUTIONS FOR A
MULTI-TERM FRACTIONAL INTEGRO-DIFFERENTIAL

EQUATION

N. AGHAZADEH1, E. RAVASH1, AND SH. REZAPOUR1∗

Abstract. We investigate numerical solutions for a multi-term fractional integro-
differential equation by using the collocation method. In this way, we handle Alpert’s
multi-wavelet to procure an approximation solution for the problem. We provide
two examples to illustrate our main results.

1. Introduction

As you know, fractional calculus is one of the interest problems in mathematics
and engineering and is a beneficial tool for modeling of different types of scientific
phenomena (see for example, [13,14] and [15]). The analytic results on the existence
and uniqueness of solutions to the fractional differential equations have been inves-
tigate by many authors ([1, 2, 5]). In general, it is not easy to derive the analytical
solution to most of the fractional differential equations and the numerical solution
of fractional differential equations has attached considerable attention from many
researchers. During the past decades, an increasing number of numerical schemes
are being developed. These methods include finite difference approximation method
([6,21]), fractional linear multi-step method ([9]), collocation method [19,20], the Ado-
mian decomposition method [16,18], variational iteration method [17] and operational
matrix method [23].

Recently, the idea of approximating the solution of fractional differential equations
by orthogonal family of basis functions have been widely used and the most commonly
used orthogonal function are block pulse function, Chebyshev polynomials, Legendre
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and Laguerre polynomials. Wavelets are localized function, which form the basis for
L2(R), so that localized pulse problem can easily be approached and analyzed [11].
They are successfully applied in system analysis, signal analysis, optimal control and
many more areas (see [22]). However, wavelets are just another basis set which offers
considerable advantage over alternative basis sets and allows us to tackle problems not
accessible with conventional numerical methods, these main advantages are discussed
in [10]. Different variation of wavelet bases (orthogonal, bi-orthogonal, multiwavelets)
have been presented and the design of the corresponding wavelet and scaling function
have been addressed [7, 8]. Multiwavelets are generated by more than one scaling
function [12]. The advantage of multiwavelets , as extensions from scaler wavelets,
and their promising characteristics have resulted in an increasing trend to study them.
characteristics such as orthogonality, symmetry, compact support, vanishing moments
and simple structure make the multiwavelets useful both in theory and applications.
In this paper, we investigate numerical solutions for a multi-term fractional integro-
differential equation by using Alpert’s multi-wavelets. These multi-wavelets have been
constructed in [3] and also have been considered in [25].

The Riemann-Liouville fractional integral of order γ > 0 for a function f is defined
by [13]

Iγf(t) =
∫ t

0

(t− s)γ−1

Γ(γ) f(s)ds.

The Caputo fractional derivative of order α for a continuous function f is defined by

cDγf(t) =
∫ t

0

(t− s)n−γ−1

Γ(γ) f (n)(s) ds,

where n = [γ] + 1 [13].

Lemma 1.1. [21] Let γ > 0 and n = [γ] + 1. The fractional differential equation
cDγu(t) = 0 has solution in the form u(t) = c0 + c1t+ c2t

2 + · · ·+ cn−1t
n−1 and also

IγcDγu(t) = u(t) + c0 + c1t+ c2t
2 + · · ·+ cn−1t

n−1, where c0, c1, . . . , cn ∈ R are some
constants.

By following main idea of [4] and [26], we are going to study the existence and
uniqueness of solution for the multi-term fractional integro-differential equation

(1.1) cDγx(t) = f(t, x(t), Iβx(t), cDδx(t)),

with boundary condition x(o) + x(1) = a and Iβx(ε) + Iβx(η) = b
∫ 1

0 x(s)ds in two
different ways and under some assumptions, where 1 ≤ γ < 2, β > 0, 0 ≤ δ < 1,
ε > 0, η > 0, a, b ∈ R, t ∈ I := [0, 1] and f : I × R3 → R satisfies some conditions.
In fact, the work [26] use the Krasnoselskii’s fixed point theorem while we use a new
fixed point result. Also, we use different boundary value conditions respect to [26].
In second part of this work, we investigate the problem (1.1) by using the Alpert’s
multi-wavelet for approximating its solution. In this way, we consider the Banach
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space C([0, 1],R) endowed with the norm
‖ x− y ‖= sup

t∈I
|x(t)− y(t)|+ sup

t∈I
|cDδx(t)− cDδy(t)|.

Denote by Ψ the family of nondecreasing functions ψ : [0,∞)→ [0,∞) such that∑+∞
n=1 ψ

n <∞ for all t > 0. It is easy to see that ψ(t) < t for all t > 0. Let(X, d) be a
metric space, T a selfmap on X, α : X ×X → [0,∞) a map and ψ ∈ Ψ. We say that
T is α-ψ-contraction on X whenever α(x, y)d(Tx, Ty) ≤ ψ(d(x, y)) for all x, y ∈ X
[24]. Also, T is called α-admissible whenever α(x, y) ≥ 1 implies α(Tx, Ty) ≥ 1 [24].
We need the following result.

Theorem 1.1. [24] Let (X, d) be a complete metric space, α : X × X → [0,∞) a
map, ψ ∈ Ψ and T an α-admissible and α-ψ-contraction selfmap on X. Assume that
there exists x0 ∈ X such that α(x0, Tx0) ≥ 1 and for each sequence xn in X with
α(xn, xn+1) ≥ 1 for all n and xn ∈ x we have α(xn, x) ≥ 1 for all n. Then, T has
a fixed point. If for each x, y ∈ X there exists z ∈ X such that α(x, z) ≥ 1 and
α(y, z) ≥ 1, then T has a unique fixed point.

2. Main Results

Now, we are ready to provide our main results about the existence and uniqueness
of solution for the multi-term fractional integro-differential equation (1.1).

Lemma 2.1. Let 1 < γ ≤ 2, β > 0, ε > 0, η > 0, a, b ∈ R and y ∈ C([0, 1],R).
The unique solution of the boundary value problem cDγx(t) = y(t) with boundary
conditions x(0) + x(1) = a and Iβx(ε) + Iβx(η) = b

∫ 1
0 x(s)ds is given by

x(t) =Iγy(t) + 1
ϕ1 − ϕ2

[ϕ1(1− t)Iγy(1) + b(1− t)Iγ+1y(1)

+ (t− 1)(Iγ+βy(η) + Iγ+βy(ε)) + aϕ1(t− 1)],

where ϕ1 = −b+ εβ+ηβ
Γ(β+1) and ϕ2 = −b

2 + εβ+1+ηβ+1

Γ(β+2) .

Proof. It is known that the solution of the equation cDγx(t) = y(t) is given by
(2.1) x(t) = Iγy(t) + c0 + c1t,

where c0, c1 ∈ R are some constants. By using the boundary conditions, we get
Iγy(1) + 2c0 + c1 = a

and

Iγ+βy(ε) + Iγ+βy(η) + c0
εβ + ηβ

Γ(β + 1) + c1
εβ+1 + ηβ+1

Γ(β + 2) = bIγ+1 + bc0 + b
c1

2 .

Therefore, we have

c0 = 1
ϕ1 − ϕ2

(
ϕ1

Γ(γ)

∫ 1

0
(1− s)γ−1f(s, x(s), Iβx(s),cDδx(s))ds
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+ b

Γ(γ + 1)

∫ 1

0
(1− s)γf(s, x(s), Iβx(s),cDδx(s))ds

− 1
Γ(γ + β)

(∫ η

0
(η − s)γ+β−1f(s, x(s), Iβx(s),cDδx(s))ds

+
∫ ε

0
(ε− s)γ+β−1f(s, x(s), Iβx(s),cDδx(s))ds

)
− aϕ1

)
and

c1 = 1
ϕ1 − ϕ2

(
− ϕ1

Γ(γ)

∫ 1

0
(1− s)γ−1f(s, x(s), Iβx(s),cDδx(s))ds

− b

Γ(γ + 1)

∫ 1

0
(1− s)γf(s, x(s), Iβx(s),cDδx(s))ds

+ 1
Γ(γ + β)

(∫ η

0
(η − s)γ+β−1f(s, x(s), Iβx(s),cDδx(s))ds

+
∫ ε

0
(ε− s)γ+β−1f(s, x(s), Iβx(s),cDδx(s))ds

)
+ aϕ1

)
.

By substituting c0 and c1 in (2.1), we obtain x(t). �

Consider the operator T : C(I)→ C(I) defined by

Tx(t) = 1
Γ(γ)

∫ t

0
(t− s)γ−1f(s, x(s), Iβx(s),cDδx(s)) ds

+ 1
ϕ1 − ϕ2

[
ϕ1(1− t) 1

Γ(γ)

∫ 1

0
(1− s)γ−1f(s, x(s), Iβx(s),cDδx(s)) ds

+ b(1− t) 1
Γ(γ + 1)

∫ 1

0
(1− s)γf(s, x(s), Iβx(s),cDδx(s)) ds

+ (t− 1)
(

1
Γ(γ + β)

∫ η

0
(η − s)γ+β−1f(s, x(s), Iβx(s),cDδx(s)) ds

+ 1
Γ(γ + β)

∫ ε

0
(ε− s)γ+β−1f(s, x(s), Iβx(s),cDδx(s)) ds

)
+ aϕ1(t− 1)

]
,(2.2)

for all t ∈ [0, 1].

Theorem 2.1. Assume that there exist a function ξ : R2 → R and a map ψ ∈ Ψ
such that |f(t, x, p, u) − f(t, y, q, v)| ≤ Mψ(|x − y| + |u − v|), for all t > 0 and
x, y, p, q, u, v ∈ R with ξ(x, y) ≥ 0, where M = 1

M1 +M2
> 0 is such that

1
Γ(γ) + |ϕ1|

|ϕ1 − ϕ2|Γ(γ) + |b|
|ϕ1 − ϕ2|Γ(γ + 1) + ηγ+β + εγ+β

|ϕ1 − ϕ2|Γ(γ + β) < M1

and
1

Γ(γ − δ) + |ϕ1|
|ϕ1 − ϕ2|Γ(γ − δ) + |b|

|ϕ1 − ϕ2|Γ(γ + 1− δ)
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+ ηγ+β−δ + εγ+β−δ

|ϕ1 − ϕ2|Γ(γ + β − δ) < M2.

Suppose that there exists x0 ∈ C(I) such that ξ(x0(t), Tx0(t)) ≥ 0, for all t ∈ I and
for each x, y ∈ C(I), with ξ(x(t), y(t)) ≥ 0 for all t ∈ I, we have ξ(Tx(t), T y(t)) ≥ 0
for all t ∈ I. Assume that for each sequence xn in C(I) with xn → x in C(I) and
ξ(xn(t), xn+1(t)) ≥ 0, for all n and t ∈ I, we have ξ(xn(t), x(t)) ≥ 0, for all n and
t ∈ I. Then the problem (1.1) has a solution.

Proof. Let x, y ∈ X and t ∈ I be given. Then, we have

|Tx(t)− Ty(t)| =
∣∣∣∣∣ 1
Γ(γ)

∫ t

0
(t− s)γ−1f(s, x(s), Iβx(s),cDδx(s)) ds

+ 1
ϕ1 − ϕ2

[
ϕ1(1− t) 1

Γ(γ)

∫ 1

0
(1− s)γ−1f(s, x(s), Iβx(s),cDδx(s)) ds

+ b(1− t) 1
Γ(γ + 1)

∫ 1

0
(1− s)γf(s, x(s), Iβx(s),cDδx(s)) ds

+ (t− 1) 1
Γ(γ + β)

∫ η

0
(η − s)γ+β−1f(s, x(s), Iβx(s),cDδx(s)) ds

+ 1
Γ(γ + β)

∫ ε

0
(ε− s)γ+β−1f(s, x(s), Iβx(s),cDδx(s)) ds) + aϕ1(t− 1)

]

−
[

1
Γ(γ)

∫ t

0
(t− s)γ−1f(s, y(s), Iβy(s),cDδy(s)) ds

+ 1
ϕ1 − ϕ2

[
ϕ1(1− t) 1

Γ(γ)

∫ 1

0
(1− s)γ−1f(s, y(s), Iβy(s),cDδy(s)) ds

+ b(1− t) 1
Γ(γ + 1)

∫ 1

0
(1− s)γf(s, y(s), Iβy(s),cDδy(s)) ds

+ (t− 1) 1
Γ(γ + β)

∫ η

0
(η − s)γ+β−1f(s, y(s), Iβy(s),cDδy(s))ds

+ 1
Γ(γ + β)

∫ ε

0
(ε− s)γ+β−1f(s, y(s), Iβy(s),cDδy(s)) ds) + aϕ1(t− 1)

]]∣∣∣∣∣
≤ 1

Γ(γ)

∫ t

0
|t− s|γ−1|f(s, x(s), Iβx(s),cDδx(s))− f(s, y(s), Iβy(s),cDδy(s))|ds

+ 1
|ϕ1 − ϕ2|

[
|ϕ1||(1− t)|

1
Γ(γ)

×
∫ 1

0
(1− s)γ−1|f(s, x(s), Iβx(s),cDδx(s))− f(s, y(s), Iβy(s),cDδy(s))|ds

+ |b|(1− t) 1
Γ(γ + 1)

∫ 1

0
(1− s)γ|f(s, x(s), Iβx(s),cDδx(s))
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− f(s, y(s), Iβy(s),cDδy(s))ds+ |t− 1| 1
Γ(γ + β)

×
∫ η

0
(η − s)γ+β−1|f(s, x(s), Iβx(s),cDδx(s))− f(s, y(s), Iβy(s),cDδy(s))|ds

+ 1
Γ(γ + β)

×
∫ ε

0
(ε− s)γ+β−1|f(s, x(s), Iβx(s),cDδx(s))− f(s, y(s), Iβy(s),cDδy(s))| ds


≤
(

1
Γ(γ) + |ϕ1|

|ϕ1 − ϕ2|Γ(γ) + |b|
|ϕ1 − ϕ2|Γ(γ + 1) + ηγ+β + εγ+β

|ϕ1 − ϕ2|Γ(γ + β)

)
× |f(s, x(s), Iβx(s),cDδx(s))− f(s, y(s), Iβy(s),cDδy(s))|

<M1 sup
t∈I
|f(s, x(s), Iβx(s),cDδx(s))− f(s, y(s), Iβy(s),cDδy(s))|

and

|cDδTx(t)− cDδTy(t)| =
∣∣∣∣∣ 1
Γ(γ − δ)

∫ t

0
(t− s)γ−δ−1f(s, x(s), Iβx(s),cDδx(s)) ds

+ 1
ϕ1 − ϕ2

[
ϕ1(1− t) 1

Γ(γ − δ)

∫ 1

0
(1− s)γ−δ−1f(s, x(s), Iβx(s),cDδx(s)) ds

+ b(1− t) 1
Γ(γ − δ + 1)

∫ 1

0
(1− s)γ−δf(s, x(s), Iβx(s),cDδx(s)) ds

+ (t− 1) 1
Γ(γ + β − δ)

∫ η

0
(η − s)γ+β−δ−1f(s, x(s), Iβx(s),cDδx(s)) ds

+ 1
Γ(γ + β − δ)

∫ ε

0
(ε− s)γ+β−δ−1f(s, x(s), Iβx(s),cDδx(s)) ds) + aϕ1(t− 1)

]

−
[

1
Γ(γ − δ)

∫ t

0
(t− s)γ−δ−1f(s, y(s), Iβy(s),cDδy(s)) ds

+ 1
ϕ1 − ϕ2

[
ϕ1(1− t) 1

Γ(γ − δ)

∫ 1

0
(1− s)γ−δ−1f(s, y(s), Iβy(s),cDδy(s)) ds

+ b(1− t) 1
Γ(γ − δ + 1)

∫ 1

0
(1− s)γ−δf(s, y(s), Iβy(s),cDδy(s)) ds

+ (t− 1) 1
Γ(γ + β − δ)

∫ η

0
(η − s)γ+β−δ−1f(s, y(s), Iβy(s),cDδy(s)) ds

+ 1
Γ(γ + β − δ)

∫ ε

0
(ε− s)γ+β−δ−1f(s, y(s), Iβy(s),cDδy(s)) ds) + aϕ1(t− 1)

]]∣∣∣∣∣
≤ 1

Γ(γ − δ)
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×
∫ t

0
|t− s|γ−δ−1|f(s, x(s), Iβx(s),cDδx(s))− f(s, y(s), Iβy(s),cDβy(s))|ds

+ 1
|ϕ1 − ϕ2|

|ϕ1||(1− t)|
1

Γ(γ − δ)

×
∫ 1

0
(1− s)γ−δ−1|f(s, x(s), Iβx(s),cDδx(s))− f(s, y(s), Iβy(s),cDδy(s))|ds

+ |b|(1− t) 1
Γ(γ − δ + 1)

×
∫ 1

0
(1− s)γ−δ|f(s, x(s), Iβx(s),cDδx(s))− f(s, y(s), Iβy(s),cDδy(s))ds|

+ |t− 1| 1
Γ(γ + β − δ)

×
∫ η

0
(η − s)γ+β−δ−1|f(s, x(s), Iβx(s),cDδx(s))− f(s, y(s), Iβy(s),cDδy(s))|ds

+ 1
Γ(γ + β − δ)

∫ ε

0
(ε− s)γ+β−δ−1|f(s, x(s), Iβx(s),cDδx(s))

− f(s, y(s), Iβy(s),cDδy(s))|ds


≤
(

1
Γ(γ − δ) + |ϕ1|

|ϕ1 − ϕ2|Γ(γ − δ) + |b|
|ϕ1 − ϕ2|Γ(γ − δ + 1)

+ ηγ+β−δ + εγ+β−δ

|ϕ1 − ϕ2|Γ(γ + β − δ)

)
× |f(s, x(s), Iβx(s),cDδx(s))− f(s, y(s), Iβy(s),cDδy(s))|

<M2 sup
t∈I
|f(s, x(s), Iβx(s),cDδx(s))− f(s, y(s), Iβy(s),cDδy(s))|.

Thus, we get

|Tx(t)− Ty(t)|+ |cDδTx(t)−c DδTy(t)|
<(M1 +M2) sup

t∈I
|f(s, x(s), Iβx(s),cDδx(s))− f(s, y(s), Iβy(s),cDδy(s))|

=ψ(|x− y|+ |cDδx−c Dδy|)

and so ‖ Tx− Ty ‖≤ ψ(‖ x− y ‖), for all x, y and t ∈ I with ξ(x(t), y(t)) ≥ 0. Now,
define the map α : C(I) × C(I) → [0,∞) by α(x, y) = 1 whenever ξ(x(t), y(t)) ≥ 0,
for all t and α(x, y) = 0 otherwise. This implies that α(x, y)d(Tx, Ty) ≤ ψ(d(x, y))
for all x, y ∈ C(I) and so T is α-ψ-contraction. One can easily to check that T is
α-admissible and there exists x0 ∈ C(I) such that α(x0, Tx0) ≥ 1. Now by using
Theorem 1.1, T has a fixed point which is a solution for the problem (1.1). �

By using different assumptions, we review again the problem (1.1) in next result.
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Theorem 2.2. Assume that f : [0, 1]×R×R×R→ R is a continuous function and
there exists a constant K > 0 such that

|f(t, x, p, y)− f(t, u, q, v)| ≤ K(|x− u|+ |y − v|),
for all x, y, p, q, u, v ∈ R and t ∈ [0, 1]. Then the problem (1.1) has a unique solution
whenever Ω < 1, where

Ω =K
[(

1
Γ(γ) + |ϕ1|

|ϕ1 − ϕ2|Γ(γ) + |b|
|ϕ1 − ϕ2|Γ(γ + 1) + ηγ+β + εγ+β

|ϕ1 − ϕ2|Γ(γ + β)

)

+
(

1
Γ(γ − δ) + |ϕ1|

|ϕ1 − ϕ2|Γ(γ − δ) + |b|
|ϕ1 − ϕ2|Γ(γ − δ + 1)

+ ηγ+β−δ + εγ+β−δ

|ϕ1 − ϕ2|Γ(γ + β − δ)

)]
.

3. Alpert’s Multi-Wavelet Bases

In this section, we reviewed a class of wavelet basis that constructed by Alpert for
L2[0, 1] ([3]). We present a brief review of Alpert’s multiwavelet ([25]).

For function φm ∈ L2(R), m = 0, 1, . . . , r, consider a reference subspace V0 be
generated as the L2-closure of the linear span of the integer translation of φm:

V0 = 〈φm(.− k) : k ∈ Z, m = 0, 1, . . . , r〉
and, let other subspace

Vj = 〈φmj,k = φm(2jx− k) : k ∈ Z, m = 0, 1, . . . , r, j ∈ Z〉.

Definition 3.1. Function φm ∈ L2(R), are said to generate a multiresolution analysis
(MRA), if they generate a nested sequence of closed subspace Vj that satisfies:

1. · · · ⊂ V−2 ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ V2 ⊂ · · · ;
2. ∪j∈ZVj is dense in L2(R);
3. ∩j∈ZVj = {0};
4. f(x) ∈ Vj ⇔ f(x+ 2−j) ∈ Vj ⇔ f(2x) ∈ Vj+1;
5. {φm(.− k)}k∈Z is an Riesz basis of V0.

If φm generate an MRA, thus φm are nominated scaling functions. When the
different integer translates of φm are orthogonal, namely:

φm(· − k) ⊥ φm
′(· − k′), for m 6= m′, k 6= k′,

the scaling function are named orthogonal scaling functions. Because the subspace Vj
are nested, there exist complementary orthogonal subspaces Wj such that

Vj+1 = Vj
⊕

Wj, j ∈ Z,

This gives an orthogonal decomposition of L2(R):
L2(R) =

⊕
j∈z

Vj =
⊕
j∈z

Wj.
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Definition 3.2. Functions ψm ∈ L2(R) are called wavelets, if they supply the com-
plementary orthogonal subspaces Wj of an MRA, namely:

Wj = 〈ψmj,k = ψm(2jx− k) : k ∈ Z, m = 0, 1, . . . ,m, j ∈ Z〉.

Evidently, ψmj,k ⊥ ψ′m
′

j′,k′ for j 6= j′, k 6= k′, m 6= m′, thus ψm are called orthonormal
wavelets.

Alpert’s multiwavelets systems with multiplicity r consist of r + 1 scaling func-
tions and r + 1 wavelets. The rth order scaling functions are the r + 1 functions
φ0(x), . . . , φr(x) where φi(x) is a polynomial of ith order and allφ,s form orthonormal
basis, for i = 0, 1, . . . , r,

(3.1) φi(x) =
i∑

k=0
aikx

k, for aik ≥ 0,
∫ 1

0
φi(x)φk(x) = δi,k.

The two-scale relation for scaling functions of order r, are in the form:

(3.2) φi(x) =
r∑

k=0
ci,jφ

j(2x) +
r∑

k=0
ci,r+j+1φ

j(2x− 1).

The cofficients {c} are assigned uniquely by substituting equatin (3.1) in to (3.2).
The two-scale relations for the rth order multiwavelets are in the form:

ψi(x) =
r∑

k=0
di,jφ

j(2x) +
r∑

k=0
di,r+j+1φ

j(2x− 1).

In order to find 2(r+ 1)2 unknown cofficients {di,j}, we applying the followin 2r(r+ 1)
vanish moment condition and 2r(r + 1) orthonormal conditions.

1. Vanishing moments:∫ 1

0
ψi(x)xj = 0, for i = 0, 1, . . . , r, j = 0, 1, . . . , i+ r.

2. Orthonormality∫ 1

0
ψi(x)ψj(x) = δi,j, for i, j = 0, 1, . . . , r.

For example, a basis for space V 2
1 is given by

V 2
1 = {φ0(t) = 1, φ1(t) =

√
3(2t− 1), ψ0(t), ψ1(t)},

where ψ0(t) =
√

3(−4t + 1) whenever 0 < t < 1
2 , ψ

0(t) =
√

3(4t − 3) whenever
1
2 < t < 1 and ψ1(t) = 6t− 1 whenever 0 < t < 1

2 , ψ
1(t) = 6t− 5 whenever 1

2 < t < 1.
In the following, we represent a theorem that show this approximation is conver-

gence.

Theorem 3.1. Suppose Qk
m be the orthonormal projection of L2[0, 1] on to V k

m. If
f ∈ Ck[0, 1], thus:

‖ Qk
mf − f ‖≤ 2−mk 2

4kk! sup
x∈[0,1]

|f (k)(x)|.
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Any function x(t) which is square integrable in the interval [0, 1] can be expanded
in to the scaling function as [3, 25]:

x(t) ≈
2J−1∑
k=0

r∑
m=0

cJ,kφ
m
J,k(t) = CTΦJ(t)

and the corresponding wavelet functions as:

(3.3) x(t) ≈
r∑

m=0
{cm0,0φm0,0(t) +

J−1∑
j=0

2j−1∑
k=0

dmj,kψ
m
j,k(t)} = DTΨJ(t),

where
cmJ,k =

∫ 1

0
x(t)φmJ,k(t)dt, dmj,k =

∫ 1

0
x(t)ψmj,k(t)dt

and C, D are n× 1, (n = (r + 1)2J) matrices, given by
C =[c0

J,0, . . . , c
r
J,0, . . . , c

0
J,2J−1, . . . , c

r
J,2J−1]T ,

D =[c0
0,0, . . . , c

r
0,0, d

0
0,0, . . . , d

r
0,0, . . . , d

0
J−1,0, . . . , d

r
J−1,0, . . . , d

0
J−1,2J−1−1,

. . . , drJ−1,2J−1−1]T .

If we want to approximate the x(t) by (3.3), for simplicity, we write (3.3) as

x(t) ≈
r∑

k′=0
dk′ψk′(t) = DTΨ(t).

Lemma 3.1. Suppose α > 0 be given. Then for k = 0, 1, . . . , [α]− 1 we have:
cDα(xk) = 0

and for k ≥ [α] we have

cDα(xk) = Γ(k + 1)
Γ(k + 1− α)x

k−α.

Hence, for the Riemann-Liouville fractional integral, we get

Iαxk = Γ(k + 1)
Γ(k + 1 + α)x

k+α.

The approximations x(t) is sought in the form of the truncated series:

(3.4) x(t) '
r∑

k′=0
dk′ψk′(t),

where ψk′(t) are Alpert’s multi-wavelet basis.
By substitution of formule (3.4) in the problem (1.1) and by applying lemma (3.1),

we obtain
r∑

k′=0
dk′

cDγ(ψk′(t)) = f

(
t,

r∑
k′=0

dk′ψk′(t),
r∑

k′=0
dk′I

α(ψi(t)),
r∑

k′=0
dk′

cDδ(ψk′(t))
)
.
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Since, cDγ(xk) = 0 for k = 0, 1, . . . , [γ]− 1, we get
(3.5)

r∑
k′=dγe

dk′
cDγ(ψk′(t)) = f

t, r∑
k′=0

dk′ψk′(t),
r∑

k′=0
dk′I

α(ψk′(t)),
r∑

k′=dδe
dk′

cDδ(ψk′(t))
 .

Now, we collocate equation (3.5) at (r − dγe) point tp as
r∑

k′=dγe
dk′

cDγ(ψk′(tp)) = f

t, r∑
k′=0

dk′ψk′(tp),
r∑

k′=0
dk′I

α(ψk′(tp)),
r∑

k′=dδe
dk′

cDδ(ψk′(tp))
 .

By using the boundary conditions, we obtain
r∑

k′=0
di(ψk′(0) + ψk′(1)) = a

and

Iβ
(

r∑
k′=0

dk′ψk′(ε)
)

+ Iβ
(

r∑
k′=0

dk′ψk′(η)
)

= b
∫ 1

0

(
r∑

k′=0
dk′ψk′(s)

)
ds.

We can find dγe+1 equations. Consequently, we have (r+1) nonlinear equation which
can be solved, for unknown coefficients dj by using the Newton’s iterative method.

Here, we provide two computational examples.

Example 3.1. Consider the problem

cD
3
2x(t) = f(t) + 0.29633

(
x(t) +

∫ t

0

∫ ϑ1

0
x(ϑ)dϑdϑ1

)
,

with boundary conditions I(2)x
(

1
2

)
+ I(2)x

(
1
3

)
= 0.01871113

∫ 1
0 x(s)ds and x(0) +

x(1) = 1, where f(t) = 4
Γ( 1

2 )

√
t − 0.29633

(
t2 + t4

12

)
. Put γ = 3

2 , β = 2, δ = 0, a = 1,
b = 0.01871113, ε = 1

2 , η = 1
3 , ϕ1 = 0.161844425 and ϕ2 = 0.017650607. Consider the

maps ψ(t) = t

2 for all t ≥ 0 and ξ(t, s) = t for all t, s ∈ R. If M1 = M2 = 2.72158,
then M = 0.1837168.

Let T be the defined operator in (2.2). One can check that Tx(t) = 1.69765x(t) +
0.723468

(
1−

√
x(t)

)
x(t) 1

4 whenever x ∈ C(I), with x(t) ≥ 0 for all t ∈ I, |f(t, x, p, u)
− f(t, y, q, v)| ≤Mψ(|x− y|+ |u− v|) for all t > 0 and x, y ∈ R with ξ(x, y) = x ≥ 0
and f ∈ C(I ×R2,R). Now by using Theorem 2.1, we conclude that the problem has
a solution. In fact, x(t) = t2 is a solution for the problem. Finally by choosing the
collocation points from equally spaced of subdivisions, we obtain the Table 1.

Example 3.2. Consider the fractional integro-differential problem
(3.6) cD

5
4x(t) = f(t) + 0.027(x(t) + I(3)x(t)),

with boundary conditions I(3)x
(

1
2

)
+ I(3)x

(
1
4

)
= 0.0000130208

∫ 1
0 x(s)ds and x(0) +

x(1) = 1, where f(t) = 6
Γ( 11

4 )t
7
4 − 0.027

(
t3 + t6

120

)
. Now, put γ = 5

4 , β = 3, a = 1,
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Table 1. x(t) = t2

ti The coefficient value Error with Alpert multiwavelet V 8
0

0 0.333333 5.16164e− 06
0.142 0.288676 6.50827e− 06
0.285 0.745356 5.91668e− 07
0.428 −1.64297e− 09 4.00517e− 07
0.571 3.17629e− 06 1.59465e− 07
0.714 −2.42931e− 06 2.96244e− 06
0.857 −2.64283− 06 1.69162e− 07

1 2.08127e− 06 9.52886e− 06

b = 0.000130208, ε = 1
2 , η = 1

4 , ϕ1 = 0.02342448 and ϕ2 = 0.00054704. But,
f(t, x, Iβx) = 6

Γ( 11
4 )t

7
4 − 0.027

(
t3 + t6

120 − x(t)− Iβx(t)
)
. If K = 0.027, then Ω =

0.12278349 < 1. Now by using Theorem 2.2, one can find that the problem (3.6) has
a unique solution. In fact, the exact solution of the problem is x(t) = t3. Finally by
choosing the collocation points from equally spaced of subdivisions, we obtain the
Table 2.

Table 2. x(t) = t3

ti The coefficient value Error with Alpert multiwavelet V 8
0

0 0.269146 1.01052e− 06
0.142 0.273465 1.9791e− 07
0.285 0.1064475 2.65242e− 06
0.428 0.0221049 3.14649e− 06
0.571 1.93177e− 5 3.58952e− 07
0.714 1.06004e− 5 3.89971e− 07
0.857 3.97509e− 6 5.40425e− 07

1 6.17575e− 8 1.95951e− 06
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