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NEW CLASSES OF SIMULTANEOUS COSPECTRAL GRAPHS
FOR ADJACENCY, LAPLACIAN AND NORMALIZED
LAPLACIAN MATRICES

A. DAS! AND P. PANIGRAHI!

ABSTRACT. Butler [2] constructed simultaneous cospectral graphs for the adjacency
and normalized Laplacian matrices, and asked the same for all three matrices, namely,
adjacency, Laplacian and normalized Laplacian. In this paper, we determine the full
adjacency, Laplacian and normalized Laplacian spectrum of the Q-vertex join and
Q-edge join of a connected regular graph with an arbitrary regular graph in terms of
their respective eigenvalues. Applying these results we construct some non-regular
A-cospectral, L-cospectral and L-cospectral graphs which gives a partial answer of
the question asked by Butler [2]. Moreover, we determine the number of spanning
trees and the Kirchhoff index of the newly constructed graphs.

1. INTRODUCTION

All graphs considered in this paper are simple and undirected. Let G = (V(G),
E(G)) be a graph with vertex set V(G) and edge set E(G). The adjacency matriz of
G, denoted by A(G), is an n X n symmetric matrix such that A(u,v) =1 if and only
if vertex u is adjacent to vertex v and 0 otherwise. If D(G) is the diagonal matrix of
vertex degrees of G, then the Laplacian matriz L(G) and normalized Laplacian matriz
L(G) are defined as L(G) = D(G) — A(G) and £(G) = I — D(G)"Y?A(G)D(G)~'/2,
respectively. For a given matrix M of size n, we denote the characteristic polynomial
det(zl, — M) of M by fa(z). The eigenvalues of A(G) (respectively L(G) and £(G))
are denoted by A (G) > \(G) > -+ > N\ (G) (respectively 0 = 11(G) < ua(G) <

- < pp(G@) and 0 = 6(G) < 02(G) < -+ < 0,(G)) and the multiset of these
eigenvalues is called as the adjacency spectrum (respectively Laplacian spectrum and
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normalized Laplacian spectrum). Two graphs are said to be A-cospectral, L-cospectral
and L-cospectral if they have the same A-spectrum, L-spectrum and L-spectrum
respectively.

There are several kinds of graph operations in the literature. One of these is join
of two graphs. The join [8] of two graphs is their disjoint union together with all
the edges that connect all the vertices of the first graph with all the vertices of the
second graph. The @Q-graph Q(G) [5] of a graph G is the graph obtained from G by
inserting a new vertex into every edge of G and then joining by edges those pair of
new vertices which lie on adjacent edges of G. The set of such new vertices is denoted
by I(G), i.e., I(G) = V(Q(G))\V(G). We define Q-vertex join and (Q-edge join of
graphs which are given below.

Definition 1.1. Let GG; and G5 be two vertex-disjoint graphs with number of vertices
ny and ny, and edges m; and ms, respectively. Then

(i) the Q-vertez join of Gy and G, denoted by G1V oG, is the graph obtained from
Q(G1) and G4 by joining each vertex of V(G1) with every vertex of V(G3). The
graph G1VoG3 has ny + ny + my vertices.

(ii) the Q-edge join of Gy and G, denoted by G ¥ Gs, is the graph obtained from
Q(G1) and G4 by joining each vertex of [(G1) with every vertex of V(Gy). The
graph G Yg G5 has ny + ng + my vertices.

Example 1.1. Let us consider two graphs G; = C; and G5 = (3. The Q-vertex join
and (Q-edge join of GG; and G are given in Figure 1, respectively.

O O
FIGURE 1. Q-vertex join and Q-edge join of Cy and Cj

In [10], Indulal computed adjacency spectra of subdivision-vertex join and subdivisi-
on-edge join for two regular graphs in terms of their spectra. In [12], Liu et al.
formulated the resistance distances and Kirchhoff index of R-vertex join and R-edge
join respectively. Huang and Li [9] formulated the normalized laplacian characteristic
polynomial of Q(G) in terms of the normalized laplacian characteristic polynomial of G.
Motivated by these works, here we determine the adjacency, Laplacian and normalized
Laplacian spectrum of ()-vertex join and ()-edge join for a connected regular graph G
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and an arbitrary regular graph G in terms of the corresponding eigenvalues of GG; and
(GG5. Using these spectra we construct some non-regular A-cospectral, L-cospectral
and L-cospectral graphs.

For two matrices A and B, of same size m x n, the Hadamard product A e B of A
and B is a matrix of the same size m x n with entries given by (A e B);; = (A);; - (B);;
(entrywise multiplication). Hadamard product is commutative, that is Ae B = Be A.

To prove our results we need Lemma 1.1 and 1.2 below.

Lemma 1.1 (Schur Complement [5]). Suppose that the order of all four matrices M,
N, P and Q satisfy the rules of operations on matrices. Then we have,

M N| {|QHM — NQ7'P|, ifQ is a non-singular square matrir,
P Q|

Lemma 1.2. [5] Let A be an n x n real matriz, and Jsy; denote the s x t matriz with
all entries equal to one. Then

det(A + adpyy) = det(A) + alladj(A)1,,

where o is an real number and adj(A) is the adjugate matriz of A.

IM||Q — NM~'P|, if M is a non-singular square matriz.

The following results are also useful in the sequel.

Lemma 1.3. For any real numbers c,d > 0, we have

1 d

I, —d =] _ .
(C n Jan) c n + C(C — nd) Jan

Proof.

(el — dy) -t =28 = dnn) e = nd) 4 "
n nxn

~det(el, — dJuxn) e —nd)
1 d

=1+ ——Juxn- U
c * clc—nd)" "

For a graph G with n vertices and m edges, the wertez-edge incidence matrix
R(G) [6] is a matrix of order n x m, with entry r;; = 1 if the i*" vertex is incident
to the j*® edge, and 0 otherwise. The line graph [6] of a graph G is the graph
[(G), whose vertices are the edges of G and two of these are adjacent in I(G) if
and only if they are incident on a common end vertex in G. It is well known [5]
that R(G)"R(G) = A(l(Q)) + 21,,. In particular, if G is an r-regular graph then
R(GR(G)T = A(G) +rl, =2rl, — L(G) = r(2I, — L(Q)).

Lemma 1.4. [5] Let G be an r-reqular graph. Then the eigenvalues of A(I(G)) are
the eigenvalues of A(G) + (r — 2)1,, and —2 repeated m — n times.

If G is an r-regular graph, then L(G) = rl, — A(G) and £(G) = I, — LA(G).
Therefore, by Lemma 1.4, we get representations of A(I(G)) in terms of L(G) and
L(G) as given below.
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Lemma 1.5. For an r-reqular graph G,
(a) the eigenvalues of A(I(GQ)) are the eigenvalues of 2(r — 1)I,, — L(G) and —2
repeated m — n times;
(b) the eigenvalues of A(I(G)) are the eigenvalues of 2(r — 1)I,, — rL(G) and —2
repeated m — n times.

Let t(G) denote the number of spanning trees of G. It is well known [4] that if G

is a connected graph on n vertices with Laplacian spectrum 0 = 1 (G) < u2(G) <
- < pn(G), then t(G) = M

The Kirchhoff index of a graph G, denoted by K f(G), is defined as the sum of
resistances between all pairs of vertices [1,11] in G. For a connected graph G onn
vertices, the Kirchhoff index [7] can be expressed as K f(G) =n> I, )

In this paper we compute full adjacency, Laplacian and normahzed Laplacian
spectra of Q)-vertex join and ()-edge join of a connected regular graph with an arbitrary
regular graph. Applying these results we answer partially a question “Is there an
example of two non-regular graphs which are cospectral with respect to the adjacency,
combinatorial Laplacian and normalized Laplacian at the same time?” asked by Butler
[2]. We also find Kirchhoff index and Spanning tree of the newly constructed graphs.

2. OUR RESULTS

Throughout the paper for any integer k, I denotes the identity matrix of size k,
1, denotes the column vector of size & whose all entries are 1 and J,,«,, denotes
ny X ng matrix whose all entries are 1. The M-coronal I'jy/(z) of an n X n matrix
M is defined [3,13] to be the sum of the entries of the matrix (zI,, — M)™!, that is,
Cy(z) =15 (2l, — M)7'1,,.

Lemma 2.1. [3] If M is an n x n matriz with each row sum equal to a constant t,
then T'p(x) = .

r—t
For an n vertex graph GG, matrices B and C of sizes n x n and n x 1 respectively,
and a parameter x, we have the notation: xq(B,C,z) = CT(xl, — (L(G) e B))1C.
We note that the notation is similar to the notion ‘coronal’. Let G; be a graph with
n; vertices and m; edges. Let V(Gy) = {v1,va, ..., 05, }, [(G1) = {e1,€2,...,m, },
V(Gs) = {u1,uz, ..., un,}. Then V(G1)UI(G1)UV(G2) is a partition of V(G1VoG2)
and V(G Yq Gy).

2.1. Spectra of @)-vertex join. Let G; be an r;-regular graph on n; vertices and m;
edges for i = 1,2. Then the degrees of the vertices of G1V G5 are da,voa, (Vi) = r1+ns,
dayvoa,(€i) = 2r and dg,v,a, (Ui) = 12 + Ny

2.1.1. A-spectra of Q-vertex join. The adjacency matrix of G1VgGsy can be expressed
as:
. On1 R(Gl) Jn1 Xno
A<G1\/QG2) = R( ) ( )) Oml Xn2
Jngxn1 On2><m1 A<G2)



NEW CLASSES OF SIMULTANEOUS COSPECTRAL GRAPHS 307

Theorem 2.1. For i = 1,2, let G; be an r;-reqular graph with n; vertices and m;
edges. Then the adjacency spectrum of G1VgoGse consists of:

(i) the eigenvalue \;j(Gs) for every eigenvalue \;, j =2,3,...,ng, of A(G2);
(ii) the eigenvalue —2 with multiplicity my — ny;
(iii) two roots of the equation x* — (11 — 2+ \(G1))z — r1 — Ni(Gh) = 0 for each
eigenvalue \;, i = 2,3,...,nq, of A(Gy);
(iv) three roots of the equation
23— (2r1 + 1o —2)w2 — (2r1 + 2ry +nyng — 27179 T + 211 o + 2r1nyny — 2n1ny = 0.

Proof. The adjacency characteristic polynomial of G;VgGs is
fA(leQGQ)(x) = det(xjn1+n2+m1 - A(leQGQ))
ZUInl —R(G1) _Jm X1n2
=det | —R(G1)T zI,, — A(l(GY)) Omlxm
_J’nQX’I'Ll O’anml :U - A(G2>

= det(z1,, — A(G2)) det(S H{x — Xj(G2)}det(S),

where
g — IInl —R(Gl)
~\—-R(G)T zI,, — AI(GY))

_ (—men2> (zI,, — A(Gg))_l (—mem OTLQX’ITU)

Om1 X1
_ (I = L) (%) Ty s —R(Gy)
—R(Gh)" 2l — A(GY)) )

Then we have
det(S) =det(xln, — Taay) (@) Jny xn1)
x det (21, = A(U(G1)) = R(G1) (1, = D) (@) Jonson) ' R(GY))

=z™ (1 - FA(GQ)(ZL“)T;I) det 2L, — A(I(G1))

1 I
—RK%F{th+ 46y(2)

N >>“’"“”1}R<G”

r(x — Ty (z

xl,, — A(l(G1))

[ a(a) ()
z(r —mlae,)(2))

(1 —Tagey (@ )nl)

=g (1 — FA(GQ)(Z')H;) det

— SR(GY)TR(G) -

R(Gl)TJm ><n1R(Gl)]
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4L Ay () J ]
mi1Xm
z(x —mTaqy(z)

x det [l’]ml — A(Z(Gl)) — iR(Gl)TR(Gl) -

(1 —Tay)( )n ) [det (x]ml —A(l(Gy)) — ;R(Gl)TR(G1)>

4FA(G2)( )
:17(3: — T (x) ™

17 Ladj (x]ml — A(l(Gy)) — ;R(Gl)TR(G1)> 1m1]

= (1= Tagn (@)™ et (1, — AG(C) ~ T RG)TRIC))

" [ B 4 Ay () 1T
z(x — T gy (x) ™

« (a:[ml —AU(G)) — 1z~z<G1)TR(Gl))_1 1m1]

- (1 Ty (@)™ ) det (( i) L, — (1 + i) A(l<G1))>

« ll 4FA G2)<x>FA I(G1))+= R(Gl)TR(Gl)( )]
z(x — T a,)(2))

(4 gy (1 _ W)

x(x — 1)

x det ((:L’ — i) I, — (1 + i_) (11 —2+ A(Gl)))

< |1 4m1n2
oo —ra)la = 22) (e 2= 2r, = 2)

2
_xnl(q: + 2>m1*n1 <:L‘ — "X — nln?)

x(x — o)

xH{x——(lJr;) (T1—2+)\1(G1))}

%< |1 4m1n2
(22 — rox — nyny) (22 + 22 — 2rx — 211)

and

2?2 — rox — nyng \ 2
N el ) It - vi620)

(x —ry)

xﬁ{x—2—<1+i)(7”1—2+/\i(G1))}

< 1 4dminsg
(2 — rox — nyng) (2% 4+ 22 — 2ryx — 2rq)
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(e + 2™ [ — A (Ca)}

=2

x [[{z* = (r1 = 2+ N(G1))z — r1 — N(Gr) Ha? — (2r1 + ry — 2)2”
=2

— (211 + 2y + nang — 2r1re)x + 2117 + 2rning — 2n4ng}. O

2.1.2. L-spectra of Q-vertex join. The Laplacian matrix of G1VoG> can be written

as:
(7"1 + n2>[n1 —R(Gl) _JanTLQ
L(Gl\/QGg) = —R(Gl)T 2T1[m1 — A(Z(Gl)) Om1><n2
_Jnanl O'rLngl TLIITLQ + L(G2>

Theorem 2.2. For 1 = 1,2, let G; be an r;-reqular graph with n; vertices and m;
edges. Then the Laplacian spectrum of G1VoGa consists of:
(i) the eigenvalue ny + p;(Ga) for every eigenvalue i, j =2,3,...,n92, of L(Gs);
(i) the eigenvalue 2 + 2ry with multiplicity my — ny;
(iii) two roots of the equation x* — (2411 +ng+ i (G1))x+2n9 + i (Gy) +r116(Gy) +
nopti(G1) = 0 for each eigenvalue p;, i = 2,3, ...,n1, of L(Gy);
(iv) three roots of the equation x® — (2411 +ny + ng)x? — (2ny + 2ny +ring)x = 0.

Proof. The Laplacian characteristic polynomial of G1V oG is

fL(G1\7QG2)(x) = det(x[n1+n2+m1 - L(Gl\/QG2>>

(1’ -7 — TLQ)I R(Gl) Jann2
= det ( R(Gl)T (x —2r1) I, + A(L(G1)) Om1 Xng )
Jn2><n1 On2><m1 ('T - nl) (GQ)
= det((z — ny)I,, — L(G2)) det(S H{$ —ny — pi(Ga)} det(S),

where

_ (13 -7 — n2)[n1 R(G1>
y ‘( RGO (=20 L, +A<Z<Gl>>>

Jn1><’n2

- <Om1><n2> ((SL’ _n1> - <G2)) ( ngxni OnQXml)

<(:1c — 11— n2)n, — o) (@ — 11) Jny xny R(Gh) )
R(Gy)T (x = 2r)) I, + A(L(G1)) )~

Then, we have

det(S) =det((z —r1 —n9)ln, — Iigo) (@ — n1)Jn, xn, ) det ((:1: —2r) 1, + A(l(Gy))

— R(G)"((x — r1 — n2) L, — ez — nl)Jnlxm)lR(Gl))
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n
=z —1r —n)™ {1 — T (@ — nl)l}

r—T1 — N9
1
— - T -
x det [(x 2r)Ln, + A(l(G1)) — R(Gh) {x o — M In,
[y (r —n1)

_|_
(=71 —ng)(x — 11 —ng — ey (z —m

) Inyxny }R(G1)]

n
=(x—r;y —ny)™ {1 — FL(GQ)(x — nl)l}

T —T1 — Ny
1
(1‘ — 27’1)[m1 + A(Z(Gl)) — 7R(G1)TR<G1)
r—T1 — Ny
L1y (x —m) T ]
_ R(G1)" Jp,xn, R(G
(x —r1 —n2)(z — 11 —ng — ey (x — 1)) (Gh) (Gh)

x det

ny
prm— —_ —_ ni 1 —_ F — —
(x—r1—ny) { L(G) (T nl)x - n2}

1

r—T1— Ny

« det {(I ) 4+ A((GY)) — R(G1)"R(Gy)

. 4FL(G2)<x - ?11)
(x —r1 —n2)(z —r1 —ng — ey (z —m

o]

n
=(x—ry —ny)™ {1 — FL(GQ)(x — nl)l}

T —T1 — Ny
1

T —T1— N2

X [det((x —2r) I, + A(I(Gy)) — R(Gy)"R(Gh))

4FL(G2)<J] — nl)
(x —r1 —na)(z — 11 —ng — ey (x — 1))
1

r—T1 — Ny

% 17 adj ((:z: 2V I, + A((GY)) — R(Gl)TR(Gl)> 1m1]

ny
—(r—1 —no)" 41 =T )
(x —r1—no) { L(Gy) (@ nl)x P n2}

1

r— 71— Ny

x det <(x —2r) L, + A((GY)) — R(Gl)TR(GO)

% 1 _ 4FL(G2)(m — nl)
(x —r1 —n2)(z — 11 —ng — ey (2 — 1))

1

T — 71— Ny

x 17 ((x —2r) Ly, + A(l(GY)) — R(Gl)TR(Gl))_1 1m1}

n !
—u—h—”ﬂlﬁ—me@—”ﬂx_ﬁ—m}
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x det <<x —2r; — :L’—?j—n) I, + <1 - 3:—7“i—n2> A(Z(Gl))>

[1 Al (@ =)l 1 ryrren - (@ = 2r1)
X J—

rT—=r1—n

(x —r1 —na)(z — 11 —ng — ey (x — 1))

:($ — T — n2)n1(l’ —2r — Q)ml_nl {1 — mne }

(x —ny)(x — 11 — ng)
x det ((m —2ry — 2> I,

r—T1 — N9

(1o ) @0 - D - L)

4m1n2
X [1— 2
(x —ni)(x—11 —no)(x —ry — g — %)(:ﬂ— 2 — ﬁ”_m)
22 — (ry +ny + ng)x + rlnl}

(x —nq)(z — 11 —n2)

=(z—1r —ny)"(z—2r —2)™ ™™ {

X;rl[l{:r—%l—Q—{— (1—1) (2r; —Q—Mi(Gl))}

r—T1 — Ny r—T1 — Ny

w |1 4m1n2
{22 — (ry + 1y +ng)z +ring a2 — (24711 + na)x + 2ny}

and

fr@ivge) (@) =(@ —ry —ng)™ (x — 2r; —2)™™™

y {IQ—(T1+n1+n2)x+r1n1} 2

(x —n1)(x — 11 —ng) 1o =m0 = p5(G2)}

Jj=1

o 2 1
A2 )
=1

T —T1— Ny

< (2r — 2 — 1u(Gy)) }

% |1 4m1n2
{22 — (r1 + n1 +n2)x +rng {2 — (24 r1 + n2)x + 2ns}
n2
=(z —2r; = 2)™ ™" [[{z — 1 — 15(Ga)}

Jj=2

X H{:z;2 — (24711 + 1o+ i (Gr))x + 2no + i (Gr) + rips(Gh)

=2
+ nopi (G Ha® — (2 + 711 +np +ng)x? — (2ng + 2ng +ring)z}y. O



312 A. DAS AND P. PANIGRAHI

Corollary 2.1. For 1 = 1,2, let G; be an r;-reqular graph with n; vertices and m;
edges. Then

my — Ny 2411 +n1+ne
24 2r; 2nq 4 2n9 + 110y

! 2+T’1+TL2+/L¢(G1) 2 1 )

Kf(GiVoGs) = (1 + na + my) X (

+2

+
= 20 + 1i(Gh) + ripa(Gr) +nops(Gr) 5 + p1(Ga)

Corollary 2.2. For 1 = 1,2, let G; be an r;-regular graph with n; vertices and m;
edges. Then

ni

(242r1)™17"1.(2n14+2n2+r101)" H (2no+pi (G1)+r1pi(G1)+n2pi (Gr))- ﬁ (n14p5(G2))
H(G1VoGa) = = i=2

ni+n2+mi

2.1.3. L-spectra of Q-vertex join. The normalized Laplacian matrix of G1VgoGs can
be obtained as:

I, —cR(Gh) — Ko xny
L(leQG2) = _CR(Gl)T [m1 - iA(l(Gl)) Om1><n2 )
_KTLQan On2><m1 ’C’(G2) o B(GQ)

I S
(r1+n2)(ra+n)’
B(G3) is the ny X ny matrix whose all diagonal entries are 1 and off-diagonal entries

are —2— ¢ is the constant whose value is ——1——.
ro+ny A/ 2r1(r +n2)

where K, xn, is the matrix of size n; X ny with all entries equal to

Theorem 2.3. The normalized Laplacian spectrum of Gi1V oG consists of:

n1+rad;

ro+n1

(ii) the eigenvalue 1 + % with multiplicity my — ny;

(iii) two roots of the equation 2ry(r1 +ng)x® — (2r? + 211 + 2ny + 2r1ng +126;(G1) +
71n90;(G1))x + 2n9 + 116;(G1) + r18;(G1) 4+ r1ined;(Gy) = 0, for each eigenvalue
(SZ', 1= 2,3, BN 151 OfL(Gl),’

(iv) three roots of the equation (riry + ring + rirang + ringng)z® — (riry + 2ring +
71T+ Tona+ 11Ny +n1ng+1r1rene+2r nne ) 2+ (ring +ring +reng+2nins)x = 0.

(i) the eigenvalue , for every eigenvalue 6;, j =2,3,...,n9, of L(G2);

Proof. The normalized Laplacian characteristic polynomial of G1V oG is

fL(G1\7QG2)(x) = det(xjn1+n2+m1 - L<G1\/QG2>)

(‘T 1)In1 CR(Gl) Knl Xno
= det (cR(Gl)T (x = DI, + iA(l(Gl)) Oy xcny )
Kngxnl Onngl mIng - (L(GQ) i B(GQ))
= det(z1,, — (L(G3) @ B(Gy))) det(S),
where
S . (l’ — 1)In1 CR(Gl)
“\ cR(G)T (2 - DI, + ﬁA(l(Gl))
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_ (Knlx’”) (21, — (L(G2) @ B(Gy))) ™! (anxm O”2><m1>

Omlxnz
o (l’ - 1)]711 - XG2(B(G2)= Onwx)‘]nlxm CR(Gl)
- cR(Gy)T (x — 1)L, + iA(l(Gl)) :
Then
det(S) =det((z — 1)1, — xa,(B(G2), Cpy, @) Jnyxny ) det |(x — 1) 1, + 2iA(l(Gl))
1

= CR(G)" (2 = Dy = X6 (B(G), Crps) ) (G

(2 = 1" {1 = xau(B(G2). Cunt) < |

r—1

« det [ (= 1)1, + ;A(Z(Gg) - CQR(Gl)T{xil[m
XGo (B(GQ)v CnmI)
s - A G

~(z = 1" {1~ x6u (B(Ga). Cony ) =< |

1 c?

x det |:(I — DI, + 27114(5((;1)) -

_ Xc,(B(Ga), Cp,y, ) .
=D = L —nixa (B(Ga) Conay) HLEY Jnmmal)}

=(z—-1™ {1 — X6 (B(Ga), Chp,, x)xn_ll} det

c T 2 4XG2(B(G2>7CH27:B)
e S v (AR

R(G1)"R(G))

r—1

(= D + ;ﬁA(Z(Gl))

—(z—1)™ {1 = X6 (B(Ga), Gy 1) — }

det ((x — DIy + ;ﬁA(l(Gl))

x—1
C2 T _ 4C2XG2(B(G2),On2,$)
~ RGOV RG)) — o e B0 G
<180 {0 = Dl + 51 AUG) — LSRG RIGH | 1m1]

(o = 1" {1 = X (B(G2), Coy) " b et (& = 1), + 5 - AWUGY))

(8

C2

4¢®X 6, (B(Ga), Cny, )

LT @ D@ - 1 — muxes(B(Ga), oy )

R(Gl)TR(G1)>

z—1
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L auey) - <

27y T —

X 1£1 {($ - 1)[m1 + 1R(G1)TR(G1)}_ ]-m1:|

(e = 1" {1 = xGu (B(Ga). Cony ) =< |

2c? 1 c?
det —1- I, — — A
e <<x x—1> 1+<27“1 $—1> U<G1))>
y {1 4c*xa, (B(Ga), anx)r;%R(Gl)TR(Gl —ﬁA(l(G’l))(x - 1)]

1

(.T} - 1)(1: —-1- anG2(B(G2)7 anvx))

== (oot ) {1 D T = >}
x det ((:c o ) I, + (1 G ) (2(r = 1)1, — Tlﬁ(Gl))>

r—1 2r1  z—1
2
16X (B(G2), Oy 0T 2 iy - i agean &~ )
($ - 1)($ -1- anGQ(B(GQ)’ anv‘r))

X |1—

Since L(G2) @ B(Gs) = I, — ﬁA(GQ), we get, L(Gy) @ B(Gy) = ﬁ(nllnz +
r9L(G2)). As Gy is regular, the sum of all entries on every row of its normalized
Laplacian matrix is zero. That means, £(G2)C,, = (1 — 2)C,, = 0Cy,. Then

(£(G2) @ B(G3))Cny = (1 = 222) Oy = 5502Cy and (21, — (£(G2) @ B(G2)))Cn, =

- r2+mn1 r2+n1

_ — ny

(x — 552 )Cny. Also, G, Cy, TR E
Now,

na
(11 + ng)(ra +ny)(x — T;lrlm)

XGQ(B(G2)) Cngv I’) =

and
my

I' 2 T _1 (.CE o 1) = 1 2r ’
2L R(G1)TR(G1)— 2 AU(GY)) T = T G i)

1 mip—nyp N2
fL(Gl\yQGQ)(I) = <l' —-1- ) H

L} =2 ro + Ny

<x _m+ rzaj(Gz)>

ni
x [[{2ri(r + no)w? — (2r] + 2r1 + 2ng + 2r1ny + 1r36;(G1)
i=2
+ Tlngéi(Gl))l' + 27’&2 + rléi(Gl) + T%(SZ(Gl) + Tlngéi(Gl)}
x [(r3ry 4+ 120y 4+ 1irgng + ringng)z® — (rirg 4+ 2r2ng + rirg + rong
+ 71ny + ning + rirang + 2rngng) v’

+ (r?ny 4 11y + rong + 2ning)). O
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2.2. Spectra of ()-edge join. Let GG; be an r;-regular graph on n; vertices and m;
edges for i = 1,2. Then the degrees of the vertices of G1 Y Gy are dg,v,a,(vi) = 71,
dGlyQG2 (61) = 27’1 + Ny and dGl!QGQ (ul) =To + Mj.

2.2.1. A-spectra of Q-edge join. The adjacency matrix of G; Yo G can be expressed

as:
Onl R(G1> Om1><n2
A(G1Yq Gy) = (R(Gl)T A(l(Gh)) meng)
On2><m1 Jn2><n1 A(G2)
Theorem 2.4. For i = 1,2, let G; be an r;-reqular graph with n; vertices and m;
edges. Then the adjacency spectrum of Gy Yo G consists of:
(i) the eigenvalue \;(G2), for every eigenvalue Nj, j =2,3,...,ny, of A(Ga);
(i) the eigenvalue —2 with multiplicity my — ny;
(iii) two roots of the equation x* — (r1 — 2+ Ni(Gh))x — r1 — Ni(Gh) = 0 for each
eigenvalue \;, 1 = 2,3,...,n1, of A(Gy);
(iv) three roots of the equation x® — (211 + 1o — 2)x? — (2r1 + myng + 2ry — 2ry79) T +
2rire = 0.
Proof. The adjacency characteristic polynomial of Gy Y G2 is

fA@G1vo6) (T) = det(T]n, 4ny4m, — A(G1 Yq Ga))

.T]nl _R(G1> On1 XN
=det | -R(G))T zI,, — A(l(GY)) —Jm1><n2

Onyxn —Jnaxma zl,, — A(G2)
= det( — A(G2 det H{x - G2 }det( )7
where
. ( vl —R(Gy) )
" \=R(G)T zI,, — A(I(GY))

On1><7"b2 _
- (_J ) (w1, — A(G2)) ! (Onzxru _anxrm)
_ 1y, —R(G)
_R(G1>T ‘r[ml - A<Z(G1>> - FA(GQ)(‘T)Jmlxml .
Then, we have

det(S) —z™ det (x]ml — AU(GY)) = Taen) (@) Tomsrms — ;R(Gl)TR(G1)>

=™ [det(ycl'm1 — A(l(GY)) — iR(GH)TR(Gl))

~ T ()1 adj {l, = A(U(G) — RG)TRGH) 14
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=™ det (x[ml — A(l(Gy)) — ;R(GQTR(G1)>

x [1 T ()17, {x[ml —AU(GY)) - iR(Gl)TR(Gl)}_ 14

=z™ det ((:U — i) L, — (1 + ;) A(l(Gl))>

X [1 - FA(GQ)(x)FA(l(Gl))—i-%R(Gl)TR(Gl)(x)}
2 1
" (4 2)™ ™ det ((g; - ) L — (1 + ) (r—2+ A(Gl))>
s xXr

x

(
% [1 (x 7—127"2) (x +2 —77;17‘1 - 2”)]
=™ (z + 2)™ ™ ﬁ {x _z <1 + i) (r1—2+ /\i(Gl)>}

% [1 - (x —ro){a?+ (2 —2r))z — 27“1}]
and
Fatorsae(®) =" o+ 2~ [ (o = (G))
X f[{x—i— (1+i> (7’1—2+)\z‘(Gl))}

X [1 T =) f(lgix%l)x - 27‘1}1

n2

=(z+2)™ " [[{z = A(G2)}

j=2
X H{ZE2 - (7“1 -2+ )\Z(G1>>ZE - T — /\z(Gl)}

i=2
x {2® — (2r) + 7y — 2)2% — (2r1 + mang + 21y — 2ry7ro)w + 27y ). O

2.2.2. L-spectra of QQ-edge join.
The Laplacian matrix of G; Yo G can be written as:

rllnl _R(G1> Om1 Xng
L(Gl YQ GQ) = —R(Gl)T (27“1 + ng)Iml — A(l(G1>> —Jnlan
Onng1 _Jn2><n1 ml-[ng + L<G2)

Theorem 2.5. For 1 = 1,2, let G; be an r;-reqular graph with n; vertices and m;
edges. Then the Laplacian spectrum of G1 Yq Go consists of:

(i) the eigenvalue my + pj(G2) for every eigenvalue pj, j =2,3,...,na, of L(Gs);
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(ii) the eigenvalue 2 + 2ry + ny with multiplicity mq — ny;

(iii) two roots of the equation x> —(2+r1+no+u;(G1))x+ring+rip(Gr)+pi(G1) = 0
for each eigenvalue p;, i = 2,3,...,n1, of L(Gy);

(iv) three roots of the equation x° — (2411 +my +ny)x? + (2my +ring +r1m)x = 0.

Proof. The Laplacian characteristic polynomial of G; Y Gy is

fL(G1vGa) (2) = det(T ], 1ny4m, — L(G1 Yo G2))

( —711)1n, R(Gh) Ony xny
= det R(Gl)T ({L‘ — 27‘1 — ng)Iml + A(Z(Gl)) JlenQ
On2><n1 anXml (CL' - ml)InQ - L(GQ)

= det((x — my)l,, — L(Gs)) det(S) = ﬁ{x —my — pj(Ga)} det(S),

((m =), R(Gh)
o ( R(G)T (z = 2r1 = o)L, + A(Z(Gl)))

_Jml X1Nno

_ ((.’E - rl)Inl R<Gl) )
R(G)T  (z—2r1 —no) L, + A((G1)) — D) (@ — ma) Ty ey )

_ < Onyens ) ((x = m) Ty = LG2) ™ (Onaxni =Tz )

Then we have

det(S) =(x — r1)™ det ((m — 21y — na) I, + A(U(GY))
1

r—T

R(G)TR(G)

- FL(GQ)(’I - ml)Jml xXmi

=(z —r)" | det((x — 2r1 — ng) L, + A((G1))

1

r—7Tr

R(G1)"R(Gh)) — Tpay (z — ma)

1

r—T

x 1}, ad] {(m — 21y — o), + A(L(Gh)) — R(Gl)TR(Gl)} 1m1]

(2 — )™ det ((x 2y — o)L + A(GY))

1

r—7Tr

R(G)"R(GY)) |1~ Taia (e —mi)

X 17, {(fc =21y — ng) Ly, + A(I(Gh)) — ! R(G1)TR(G1)}_1 1m1]

r—T
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2
=(z —ry)"™ det <<$ —2r;y —ng — > I, + <1 -
r—"n

X [1 — Ty (@ —m)l R(G)TR(G1)-A(U(Gy) (& — 21 — nz)}

T—Tr]

2
=z —r)"(r —2—2r; —ny)"™ " det ( (m —2ry —mng — ) In,

g [1_(1‘—7”1)(93—2—”2_27"1)]

r—r
=(x—7r)"(x—2—2r —ng)™ ™™

ni 2
xH{x—2r1—n2— —i—(l—

i=1 r—rn

) (2r —2 - Mz’(Gl))}

r—T

mins(x — 1)
‘ [1 - (x —ma)(2? — (24711 +n2)z + 7“1712)]

and

n2

frenveen (@) =(x — )" (x = 2 = 2ry —ng)™ ™™ [[{x — m1 — 1;(G2)}

Jj=1

o 2 1
XH{x—2r1—n2—x_r1+<1—x_rl>(2r1—2—,ui(G1))}

=1

ming(x —71)
. [1 - (x —mq) (2?2 = (247 +ng)x + 7"17’1,2)‘|

=(r —2—2r; —ny)™ ™ ﬁ{x —my — 1;(G2)}

j=2
ni

X H{$2 — (24711 + 12+ 1:(Gh))x + ring + rip(Gr) + pi(Gh) }
i=2

x {x® — (24 r1 +my +n2)z? + (2my 4+ ring +rymy) ) O

Corollary 2.3. For i1 = 1,2, let G; be an r;-regular graph with n; vertices and m;
edges. Then

mi —ny 2411 +my +ny
2+2r1—|—n2 2m1—|—7“1n2—|—7"1m1

247+ ng+ pi(Gh) +§: 1 )
= rine +rip(Gh) + wi(Gr) a4 p(Ge) )

Kf(Gl !Q GQ) = (n1 + Ny —i—m1) X (
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Corollary 2.4. For 1 = 1,2, let G; be an r;-reqular graph with n; vertices and m;
edges. Then

(24271 41n2)™1 "1 (2m +r1n2+T1M1)- ﬁ(mm-i—nm(&)-&-m G1)) H(m1+u1(02))
t(G1 Yo Ga) = =2 =2

ni+nz+mi

2.2.3. L-spectra of Q-edge join.
The normalized Laplacian matrix of Gy Y G2 can be obtained as:

Inl _CR(G1> OTLl Xng
L(Gl !Q Gz) = —CR(Gl)T Im1 2r1+n2A(l<G1)) —KlenQ ,
O?’L2><1’Ll _anXml L(GQ) L B<G2)

1

v (2ri+ng)(ra+ma)’

B(Gs) is the ny x ny matrix whose all diagonal entries are 1 and off-diagonal entries
9 : : 1

are 22—, cis the constant whose value is T

Theorem 2.6. The normalized Laplacian spectrum of G1 Yo Gy consists of:

mi1+r29;(G2)
ro+m1

where K, xn, is the matrix of size m; x ny with all entries equal to

(i) the eigenvalue
L(Gy);
(ii) the eigenvalue 1+ 5—=— + with multiplicity my — nq;
(iii) two roots of the equatwn (2r1 + ng)x® — (2 + 211 + 2ny + 110;(G1))x + ng +
0;(G1) + 110;(G1) = 0, for each eigenvalue 6;(G1), i =2,3,...,n1 of L(G1);
(iv) three roots of the equation (2r17r9 + 2r1my + rong + ming) x> — (2r1ry + 219 +
4rymy + 2my + 2rang + 3mang)x? + (2my + 2rimy + rong + 2myng)x = 0.

, for every eigenvalue 6;(Gz), j = 2,3,...,ny of

Proof. The normalized Laplacian characteristic polynomial of G Yq G is

fL(Gl!QGZ)('CE) = det($[n1+n2+m1 - L(Gl \—/Q G2))

(x — 1)1, cR(Gl) Ony xnsy
= det (cR(Gl)T (@ = Vlpy + 5757 +n A(l(Gh)) Koy xns )
On2><n1 Kngxml $In2 - (L(GQ) b B(GQ))
= det(zl,, — (L(G2) ® B(Gs)))det(S5),
where
S _ (ZL’ — 1)]n1 CR(Gl)
cR(G)T  (x— 1)1, + 3 +n ——A(l(GY))
() s = (2062 8 B (Ouvers Kwe)
[z =1)1,, cR(Gh)
N CR(Gl)T (1’ - 1)]7711 + 2 +n2A(l(G1)) — XGs (B(GQ)’ CNQ>$)‘]W1><m1 '
Hence,

1

mA(l(Gl)) = X6 (B(G2), Cry @) iy xmy

det(S) =(x — 1)" det <($ — 1)1, +
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02

R(GH)R(G) )

r—1
1

=(z —1)™
(:1:' ) 2r1 + ng

det((z — 1)1, +

A(l(Gh))

C2

r—1

R(G1)"R(G1)) = X6 (B(Ga), Gy, )

1 c?
1% adj -1, + ——A(l —
L
1

27“1 + Mo

R(G»TR(G»} 1m1]

(2 — 1)™ det ((x — V), + A((GY))

02

r—1

R(G)TR(GY)) |1 = X (B(G). Cr )

1 2

AQ(G) - =5 1R<Gl>TR<G1>} 14

—(z — 1)™ det ((x - ff 1) L, + (27«1 iw - IC_ 1) A(Z(G1))>

1-— XGQ(B(GQ), Cm,x)I‘ 2

x—1

X 1211 {(x — 11, +

X

R(G1)TR(G1)—mA(l(G1))(x B 1>}

2 ™ 22
—(z—-1)"(z—1- det —1-———)1I,
(I ) <x 27“1"‘%2) ¢ ((x {L‘—1> !

N ( 1 c2 ) (2(7”1 _ 1)]m _ rlL(G1)))

2r1 + no o1
X [1 — Xa:(B(Ga), O"Q’x)cm—flR(Ch)TR(Gl)f;A(Z(Gﬂ)($ N 1)}

2r1+ng
) mi1—n
=z —-1)™ <ZL‘—1— )

2
xdet| (z—1— I,
( ( ri(x —1)(2r + n2)>
Ty p— X (21 = 2L, —11£(Gh))
2r1 +ny  r(x —1)(2r1 + no) ! hn !
mimno
X [1 - m 2r1—2 21,
<T2 - m1)<2rl + n2) (33 - 7’2+;n1)(x -1+ 2T11+n2 B Tl("f*l)(27“1+n2)>

As L(Gg) L] B(GQ) = ]n2 - #A<G2), L(Gg) [ ] B(GQ) = ¥(m1]n2 + TQ»G(GQ)).

ro+my ro+my
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Since G is regular, the sum of all entries on every row of its normalized Laplacian
matrix is zero. That means, £(G3)C,p, = (1 — 2)C,,, = 0C,,,. Therefore,

T2

(L(Gs) @ B(G))Ch, — (1 __ )Cm ™ o

T2 —+ mq T2 + i
and
ma
I, — (£(G2) ¢ B(G an(— )O”'
(@1, = (£(G2) @ B(G2)))Co, = (@ ro+my/)
T . n
Also, C,,,Cry = Gt
Now,
(B(G2),Cpy, ) = -
XG ) ng -
2 2 (27»1 + n2)<T2 + ml) (1: - mTﬁm)
and
ma
I' 2 T ( 1) - 21y —2 2
=1 R(G)T R(G1) = 57y AU(GY)) S T PR IC ey
Then
fe(Grvoa) ()
2 mi1—ni N2 6 G
:(x—1>"1<f’3—1_> 1 S
2r1 + ng j=2 T2+ M

> (2r; —2— rléi(Gl))}

1
+ <2r1 +ny ri(x—1)

27"1 + 77,2)
% 11— ming
(o +m1)(2r1 + no)(z — T Z—L;n J(z—1+ 22:11—&-7122 T ori(a— 1§€21r1+n2)>

2 mi1—ni N2 my + 7”25 G2
—(z—1—-—"— (2
(x ST n2> ]HQ (m H{ 1+ ng)x

r9 +my
X (2 + 27‘1 + 2’/12 + rléi(Gl))x + o + 5,(G1) + Tléi(Gl)}
X [(2r17rg + 2rymy + rong + mlng)x?’ — (2ry7rg + 2r9 + 4rymy

—+ 2m1 + 27”2”2 + 3m1n2)x2 + (27711 + 2r1m1 + rong + 2m1n2)x}. O

3. SIMULTANEOUS COSPECTRAL GRAPHS

Butler [2] constructed non-regular bipartite graphs which are cospectral with respect
to both the adjacency and normalized Laplacian matrices, and then asked for existence
of non-regular graphs which are cospectral with respect to all the three matrices,
namely, adjacency, Laplacian and normalized Laplacian. In this section we construct
several classes of non-regular graphs which are cospectral with respect to all the above
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mentioned three matrices. For the construction of these graphs we consider two pairs
of A-cospectral regular graphs (for example see [14]). Then we take Q-join of graphs
belong to different pairs.

The following Lemma is immediate from the definition of Laplacian and normalized
Laplacian matrices.

Lemma 3.1. (i) If G is an r-regular graph then L(G) = rl, — A(G) and L(G) =
I, — LA(G).
(ii) If Gy and Gy are A-cospectral reqular graphs then they are also cospectral with
respect to the Laplacian and normalized Laplacian matrices.

Observation. From all the theorems given in the previous section we observe that
the adjacency, Laplacian and normalized Lpalacian spectra of all the ()-join graphs
G1VgGs and G7 Y Go, depend only on the number of vertices, number of edges,
degree of regularities, and the corresponding spectrum of GGy and G5. Furthermore,
we note that, although G; and Gy are regular graphs, G1VoGs and G; Yo Gy are
non-regular graphs.

Theorem 3.1. Let G;, H; be r;-reqular graphs, i = 1,2, where GG need not be different
from Hy. If G1 and Hy are A-cospectral, and G5 and Hy are A-cospectral then G1\7QG2
(respectively G1 Yo Go) and HyNqHy (respectively Hy Vg Hy) are simultaneously A-
cospectral, L-cospectral and L-cospectral.

Proof. Follows from the Lemma 3.1 and the above observation. 0
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