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NEW CLASSES OF SIMULTANEOUS COSPECTRAL GRAPHS
FOR ADJACENCY, LAPLACIAN AND NORMALIZED

LAPLACIAN MATRICES

A. DAS1 AND P. PANIGRAHI1

Abstract. Butler [2] constructed simultaneous cospectral graphs for the adjacency
and normalized Laplacian matrices, and asked the same for all three matrices, namely,
adjacency, Laplacian and normalized Laplacian. In this paper, we determine the full
adjacency, Laplacian and normalized Laplacian spectrum of the Q-vertex join and
Q-edge join of a connected regular graph with an arbitrary regular graph in terms of
their respective eigenvalues. Applying these results we construct some non-regular
A-cospectral, L-cospectral and L-cospectral graphs which gives a partial answer of
the question asked by Butler [2]. Moreover, we determine the number of spanning
trees and the Kirchhoff index of the newly constructed graphs.

1. Introduction

All graphs considered in this paper are simple and undirected. Let G = (V (G),
E(G)) be a graph with vertex set V (G) and edge set E(G). The adjacency matrix of
G, denoted by A(G), is an n× n symmetric matrix such that A(u, v) = 1 if and only
if vertex u is adjacent to vertex v and 0 otherwise. If D(G) is the diagonal matrix of
vertex degrees of G, then the Laplacian matrix L(G) and normalized Laplacian matrix
L(G) are defined as L(G) = D(G)− A(G) and L(G) = I −D(G)−1/2A(G)D(G)−1/2,
respectively. For a given matrix M of size n, we denote the characteristic polynomial
det(xIn−M) of M by fM(x). The eigenvalues of A(G) (respectively L(G) and L(G))
are denoted by λ1(G) ≥ λ2(G) ≥ · · · ≥ λn(G) (respectively 0 = µ1(G) ≤ µ2(G) ≤
· · · ≤ µn(G) and 0 = δ1(G) ≤ δ2(G) ≤ · · · ≤ δn(G)) and the multiset of these
eigenvalues is called as the adjacency spectrum (respectively Laplacian spectrum and
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normalized Laplacian spectrum). Two graphs are said to be A-cospectral, L-cospectral
and L-cospectral if they have the same A-spectrum, L-spectrum and L-spectrum
respectively.

There are several kinds of graph operations in the literature. One of these is join
of two graphs. The join [8] of two graphs is their disjoint union together with all
the edges that connect all the vertices of the first graph with all the vertices of the
second graph. The Q-graph Q(G) [5] of a graph G is the graph obtained from G by
inserting a new vertex into every edge of G and then joining by edges those pair of
new vertices which lie on adjacent edges of G. The set of such new vertices is denoted
by I(G), i.e., I(G) = V (Q(G))\V (G). We define Q-vertex join and Q-edge join of
graphs which are given below.

Definition 1.1. Let G1 and G2 be two vertex-disjoint graphs with number of vertices
n1 and n2, and edges m1 and m2, respectively. Then
(i) the Q-vertex join of G1 and G2, denoted by G1∨̇QG2, is the graph obtained from

Q(G1) and G2 by joining each vertex of V (G1) with every vertex of V (G2). The
graph G1∨̇QG2 has n1 + n2 +m1 vertices.

(ii) the Q-edge join of G1 and G2, denoted by G1 YQ G2, is the graph obtained from
Q(G1) and G2 by joining each vertex of I(G1) with every vertex of V (G2). The
graph G1 YQ G2 has n1 + n2 +m1 vertices.

Example 1.1. Let us consider two graphs G1 = C4 and G2 = C3. The Q-vertex join
and Q-edge join of G1 and G2 are given in Figure 1, respectively.

  

Figure 1. Q-vertex join and Q-edge join of C4 and C3

In [10], Indulal computed adjacency spectra of subdivision-vertex join and subdivisi-
on-edge join for two regular graphs in terms of their spectra. In [12], Liu et al.
formulated the resistance distances and Kirchhoff index of R-vertex join and R-edge
join respectively. Huang and Li [9] formulated the normalized laplacian characteristic
polynomial ofQ(G) in terms of the normalized laplacian characteristic polynomial ofG.
Motivated by these works, here we determine the adjacency, Laplacian and normalized
Laplacian spectrum of Q-vertex join and Q-edge join for a connected regular graph G1
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and an arbitrary regular graph G2 in terms of the corresponding eigenvalues of G1 and
G2. Using these spectra we construct some non-regular A-cospectral, L-cospectral
and L-cospectral graphs.

For two matrices A and B, of same size m× n, the Hadamard product A •B of A
and B is a matrix of the same size m×n with entries given by (A•B)ij = (A)ij · (B)ij
(entrywise multiplication). Hadamard product is commutative, that is A •B = B •A.

To prove our results we need Lemma 1.1 and 1.2 below.

Lemma 1.1 (Schur Complement [5]). Suppose that the order of all four matrices M ,
N , P and Q satisfy the rules of operations on matrices. Then we have,∣∣∣∣∣M N

P Q

∣∣∣∣∣ =

|Q||M −NQ−1P |, if Q is a non-singular square matrix,
|M ||Q−NM−1P |, if M is a non-singular square matrix.

Lemma 1.2. [5] Let A be an n×n real matrix, and Js×t denote the s× t matrix with
all entries equal to one. Then

det(A+ αJn×n) = det(A) + α1Tnadj(A)1n,
where α is an real number and adj(A) is the adjugate matrix of A.

The following results are also useful in the sequel.

Lemma 1.3. For any real numbers c, d > 0, we have

(cIn − dJn×n)−1 = 1
c
In + d

c(c− nd)Jn×n.

Proof.

(cIn − dJn×n)−1 =adj(cIn − dJn×n)
det(cIn − dJn×n) = cn−2(c− nd)In + cn−2dJn×n

cn−1(c− nd)

=1
c
In + d

c(c− nd)Jn×n. �

For a graph G with n vertices and m edges, the vertex-edge incidence matrix
R(G) [6] is a matrix of order n ×m, with entry rij = 1 if the ith vertex is incident
to the jth edge, and 0 otherwise. The line graph [6] of a graph G is the graph
l(G), whose vertices are the edges of G and two of these are adjacent in l(G) if
and only if they are incident on a common end vertex in G. It is well known [5]
that R(G)TR(G) = A(l(G)) + 2Im. In particular, if G is an r-regular graph then
R(G)R(G)T = A(G) + rIn = 2rIn − L(G) = r(2In − L(G)).

Lemma 1.4. [5] Let G be an r-regular graph. Then the eigenvalues of A(l(G)) are
the eigenvalues of A(G) + (r − 2)In and −2 repeated m− n times.

If G is an r-regular graph, then L(G) = rIn − A(G) and L(G) = In − 1
r
A(G).

Therefore, by Lemma 1.4, we get representations of A(l(G)) in terms of L(G) and
L(G) as given below.
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Lemma 1.5. For an r-regular graph G,
(a) the eigenvalues of A(l(G)) are the eigenvalues of 2(r − 1)In − L(G) and −2

repeated m− n times;
(b) the eigenvalues of A(l(G)) are the eigenvalues of 2(r − 1)In − rL(G) and −2

repeated m− n times.
Let t(G) denote the number of spanning trees of G. It is well known [4] that if G

is a connected graph on n vertices with Laplacian spectrum 0 = µ1(G) ≤ µ2(G) ≤
· · · ≤ µn(G), then t(G) = µ2(G)···µn(G)

n
.

The Kirchhoff index of a graph G, denoted by Kf(G), is defined as the sum of
resistances between all pairs of vertices [1, 11] in G. For a connected graph G on n
vertices, the Kirchhoff index [7] can be expressed as Kf(G) = n

∑n
i=2

1
µi(G) .

In this paper we compute full adjacency, Laplacian and normalized Laplacian
spectra of Q-vertex join and Q-edge join of a connected regular graph with an arbitrary
regular graph. Applying these results we answer partially a question “Is there an
example of two non-regular graphs which are cospectral with respect to the adjacency,
combinatorial Laplacian and normalized Laplacian at the same time?” asked by Butler
[2]. We also find Kirchhoff index and Spanning tree of the newly constructed graphs.

2. Our Results

Throughout the paper for any integer k, Ik denotes the identity matrix of size k,
1k denotes the column vector of size k whose all entries are 1 and Jn1×n2 denotes
n1 × n2 matrix whose all entries are 1. The M -coronal ΓM(x) of an n × n matrix
M is defined [3, 13] to be the sum of the entries of the matrix (xIn −M)−1, that is,
ΓM(x) = 1Tn (xIn −M)−11n.
Lemma 2.1. [3] If M is an n × n matrix with each row sum equal to a constant t,
then ΓM(x) = n

x−t .
For an n vertex graph G, matrices B and C of sizes n× n and n× 1 respectively,

and a parameter x, we have the notation: χG(B,C, x) = CT (xIn − (L(G) • B))−1C.
We note that the notation is similar to the notion ‘coronal’. Let Gi be a graph with
ni vertices and mi edges. Let V (G1) = {v1, v2, . . . , vn1}, I(G1) = {e1, e2, . . . , em1},
V (G2) = {u1, u2, . . . , un2}. Then V (G1)∪ I(G1)∪V (G2) is a partition of V (G1∨̇QG2)
and V (G1 YQ G2).

2.1. Spectra of Q-vertex join. Let Gi be an ri-regular graph on ni vertices and mi

edges for i = 1, 2. Then the degrees of the vertices ofG1∨̇QG2 are dG1∨̇QG2(vi) = r1+n2,
dG1∨̇QG2(ei) = 2r1 and dG1∨̇QG2(ui) = r2 + n1.

2.1.1. A-spectra of Q-vertex join. The adjacency matrix of G1∨̇QG2 can be expressed
as:

A(G1∨̇QG2) =

 On1 R(G1) Jn1×n2

R(G1)T A(l(G1)) Om1×n2

Jn2×n1 On2×m1 A(G2)

 .
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Theorem 2.1. For i = 1, 2, let Gi be an ri-regular graph with ni vertices and mi

edges. Then the adjacency spectrum of G1∨̇QG2 consists of:
(i) the eigenvalue λj(G2) for every eigenvalue λj, j = 2, 3, . . . , n2, of A(G2);
(ii) the eigenvalue −2 with multiplicity m1 − n1;
(iii) two roots of the equation x2 − (r1 − 2 + λi(G1))x − r1 − λi(G1) = 0 for each

eigenvalue λi, i = 2, 3, . . . , n1, of A(G1);
(iv) three roots of the equation

x3− (2r1 +r2−2)x2− (2r1 +2r2 +n1n2−2r1r2)x+2r1r2 +2r1n1n2−2n1n2 = 0.

Proof. The adjacency characteristic polynomial of G1∨̇QG2 is

fA(G1∨̇QG2)(x) = det(xIn1+n2+m1 − A(G1∨̇QG2))

= det

 xIn1 −R(G1) −Jn1×n2

−R(G1)T xIm1 − A(l(G1)) Om1×n2

−Jn2×n1 On2×m1 xIn2 − A(G2)


= det(xIn2 − A(G2)) det(S) =

n2∏
i=1
{x− λj(G2)} det(S),

where

S =
(

xIn1 −R(G1)
−R(G1)T xIm1 − A(l(G1))

)

−
(
−Jn1×n2

Om1×n2

)
(xIn2 − A(G2))−1

(
−Jn2×n1 On2×m1

)
=
(
xIn1 − ΓA(G2)(x)Jn1×n1 −R(G1)

−R(G1)T xIm1 − A(l(G1))

)
.

Then we have

det(S) = det(xIn1 − ΓA(G2)(x)Jn1×n1)

× det
(
xIm1 − A(l(G1))−R(G1)T (xIn1 − ΓA(G2)(x)Jn1×n1)−1R(G1)

)
=xn1

(
1− ΓA(G2)(x)n1

x

)
det

xIm1 − A(l(G1))

−R(G1)T
{

1
x
In1 + ΓA(G2)(x)

x(x− n1ΓA(G2)(x))Jn1×n1

}
R(G1)


=xn1

(
1− ΓA(G2)(x)n1

x

)
det

[
xIm1 − A(l(G1))

− 1
x
R(G1)TR(G1)− ΓA(G2)(x)

x(x− n1ΓA(G2)(x))R(G1)TJn1×n1R(G1)
]

=xn1

(
1− ΓA(G2)(x)n1

x

)
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× det
[
xIm1 − A(l(G1))− 1

x
R(G1)TR(G1)− 4ΓA(G2)(x)

x(x− n1ΓA(G2)(x))Jm1×m1

]

=xn1

(
1− ΓA(G2)(x)n1

x

) det
(
xIm1 − A(l(G1))− 1

x
R(G1)TR(G1)

)

−
4ΓA(G2)(x)

x(x− n1ΓA(G2)(x))1Tm1adj
(
xIm1 − A(l(G1))− 1

x
R(G1)TR(G1)

)
1m1


=xn1

(
1− ΓA(G2)(x)n1

x

)
det

(
xIm1 − A(l(G1))− 1

x
R(G1)TR(G1)

)
×
[
1− 4ΓA(G2)(x)

x(x− n1ΓA(G2)(x))1Tm1

×
(
xIm1 − A(l(G1))− 1

x
R(G1)TR(G1)

)−1
1m1

]

=xn1

(
1− ΓA(G2)(x)n1

x

)
det

((
x− 2

x

)
Im1 −

(
1 + 1

x

)
A(l(G1))

)

×
[
1−

4ΓA(G2)(x)ΓA(l(G1))+ 1
x
R(G1)TR(G1)(x)

x(x− n1ΓA(G2)(x))

]

=xn1(x+ 2)m1−n1

(
1− n1n2

x(x− r2)

)

× det
((
x− 2

x

)
Im1 −

(
1 + 1

x

)
(r1 − 2 + A(G1))

)
×
[
1− 4m1n2

x(x− r2)(x− n1n2
x−r2

)(x+ 2− 2r1 − 2r1
x

)

]

=xn1(x+ 2)m1−n1

(
x2 − r2x− n1n2

x(x− r2)

)

×
n1∏
i=1

{
x− 2

x
−
(

1 + 1
x

)
(r1 − 2 + λi(G1))

}

×
[
1− 4m1n2

(x2 − r2x− n1n2)(x2 + 2x− 2r1x− 2r1)

]

and

fA(G1∨̇QG2)(x) =xn1(x+ 2)m1−n1

(
x2 − r2x− n1n2

x(x− r2)

)
n2∏
j=1
{x− λj(G2)}

×
n1∏
i=1

{
x− 2

x
−
(

1 + 1
x

)
(r1 − 2 + λi(G1))

}

×
[
1− 4m1n2

(x2 − r2x− n1n2)(x2 + 2x− 2r1x− 2r1)

]
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=(x+ 2)m1−n1
n2∏
j=2
{x− λj(G2)}

×
n1∏
i=2
{x2 − (r1 − 2 + λi(G1))x− r1 − λi(G1)}{x3 − (2r1 + r2 − 2)x2

− (2r1 + 2r2 + n1n2 − 2r1r2)x+ 2r1r2 + 2r1n1n2 − 2n1n2}. �

2.1.2. L-spectra of Q-vertex join. The Laplacian matrix of G1∨̇QG2 can be written
as:

L(G1∨̇QG2) =

(r1 + n2)In1 −R(G1) −Jn1×n2

−R(G1)T 2r1Im1 − A(l(G1)) Om1×n2

−Jn2×n1 On2×m1 n1In2 + L(G2)

 .
Theorem 2.2. For i = 1, 2, let Gi be an ri-regular graph with ni vertices and mi

edges. Then the Laplacian spectrum of G1∨̇QG2 consists of:
(i) the eigenvalue n1 + µj(G2) for every eigenvalue µj, j = 2, 3, . . . , n2, of L(G2);
(ii) the eigenvalue 2 + 2r1 with multiplicity m1 − n1;
(iii) two roots of the equation x2−(2+r1 +n2 +µi(G1))x+2n2 +µi(G1)+r1µi(G1)+

n2µi(G1) = 0 for each eigenvalue µi, i = 2, 3, . . . , n1, of L(G1);
(iv) three roots of the equation x3− (2 + r1 + n1 + n2)x2− (2n1 + 2n2 + r1n1)x = 0.

Proof. The Laplacian characteristic polynomial of G1∨̇QG2 is

fL(G1∨̇QG2)(x) = det(xIn1+n2+m1 − L(G1∨̇QG2))

= det
(x− r1 − n2)In1 R(G1) Jn1×n2

R(G1)T (x− 2r1)Im1 + A(l(G1)) Om1×n2
Jn2×n1 On2×m1 (x− n1)In2 − L(G2)


= det((x− n1)In2 − L(G2)) det(S) =

n2∏
j=1
{x− n1 − µj(G2)} det(S),

where

S =
(

(x− r1 − n2)In1 R(G1)
R(G1)T (x− 2r1)Im1 + A(l(G1))

)

−
(
Jn1×n2

Om1×n2

)
((x− n1)In2 − L(G2))−1

(
Jn2×n1 On2×m1

)
=
(

(x− r1 − n2)In1 − ΓL(G2)(x− n1)Jn1×n1 R(G1)
R(G1)T (x− 2r1)Im1 + A(l(G1))

)
.

Then, we have

det(S) = det((x− r1 − n2)In1 − ΓL(G2)(x− n1)Jn1×n1) det
(

(x− 2r1)Im1 + A(l(G1))

−R(G1)T ((x− r1 − n2)In1 − ΓL(G2)(x− n1)Jn1×n1)−1R(G1)
)
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=(x− r1 − n2)n1

{
1− ΓL(G2)(x− n1) n1

x− r1 − n2

}
× det

[
(x− 2r1)Im1 + A(l(G1))−R(G1)T

{ 1
x− r1 − n2

In1

+ ΓL(G2)(x− n1)
(x− r1 − n2)(x− r1 − n2 − n1ΓL(G2)(x− n1))Jn1×n1

}
R(G1)

]
=(x− r1 − n2)n1

{
1− ΓL(G2)(x− n1) n1

x− r1 − n2

}
× det

[
(x− 2r1)Im1 + A(l(G1))− 1

x− r1 − n2
R(G1)TR(G1)

−
ΓL(G2)(x− n1)

(x− r1 − n2)(x− r1 − n2 − n1ΓL(G2)(x− n1))R(G1)TJn1×n1R(G1)
]

=(x− r1 − n2)n1

{
1− ΓL(G2)(x− n1) n1

x− r1 − n2

}
× det

[
(x− 2r1)Im1 + A(l(G1))− 1

x− r1 − n2
R(G1)TR(G1)

−
4ΓL(G2)(x− n1)

(x− r1 − n2)(x− r1 − n2 − n1ΓL(G2)(x− n1))Jm1×m1

]
=(x− r1 − n2)n1

{
1− ΓL(G2)(x− n1) n1

x− r1 − n2

}

×

 det((x− 2r1)Im1 + A(l(G1))− 1
x− r1 − n2

R(G1)TR(G1))

−
4ΓL(G2)(x− n1)

(x− r1 − n2)(x− r1 − n2 − n1ΓL(G2)(x− n1))

× 1Tm1adj
(

(x− 2r1)Im1 + A(l(G1))− 1
x− r1 − n2

R(G1)TR(G1)
)

1m1


=(x− r1 − n2)n1

{
1− ΓL(G2)(x− n1) n1

x− r1 − n2

}
× det

(
(x− 2r1)Im1 + A(l(G1))− 1

x− r1 − n2
R(G1)TR(G1)

)

×

1− 4ΓL(G2)(x− n1)
(x− r1 − n2)(x− r1 − n2 − n1ΓL(G2)(x− n1))

× 1Tm1

(
(x− 2r1)Im1 + A(l(G1))− 1

x− r1 − n2
R(G1)TR(G1)

)−1
1m1


=(x− r1 − n2)n1

{
1− ΓL(G2)(x− n1) n1

x− r1 − n2

}
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× det
((
x− 2r1 −

2
x− r1 − n2

)
Im1 +

(
1− 1

x− r1 − n2

)
A(l(G1))

)

×

1−
4ΓL(G2)(x− n1)Γ 1

x−r1−n2
R(G1)TR(G1)−A(l(G1))(x− 2r1)

(x− r1 − n2)(x− r1 − n2 − n1ΓL(G2)(x− n1))


=(x− r1 − n2)n1(x− 2r1 − 2)m1−n1

{
1− n1n2

(x− n1)(x− r1 − n2)

}

× det
((
x− 2r1 −

2
x− r1 − n2

)
Im1

+
(

1− 1
x− r1 − n2

)
(2(r1 − 1)In1 − L(G1))

)

×
[
1− 4m1n2

(x− n1)(x− r1 − n2)(x− r1 − n2 − n1n2
x−n1

)(x− 2− 2r1
x−r1−n2

)

]

=(x− r1 − n2)n1(x− 2r1 − 2)m1−n1

{
x2 − (r1 + n1 + n2)x+ r1n1

(x− n1)(x− r1 − n2)

}

×
n1∏
i=1

{
x− 2r1 −

2
x− r1 − n2

+
(

1− 1
x− r1 − n2

)
(2r1 − 2− µi(G1))

}

×
[
1− 4m1n2

{x2 − (r1 + n1 + n2)x+ r1n1}{x2 − (2 + r1 + n2)x+ 2n2}

]

and

fL(G1∨̇QG2)(x) =(x− r1 − n2)n1(x− 2r1 − 2)m1−n1

×
{
x2 − (r1 + n1 + n2)x+ r1n1

(x− n1)(x− r1 − n2)

}
n2∏
j=1
{x− n1 − µj(G2)}

×
n1∏
i=1

{
x− 2r1 −

2
x− r1 − n2

+
(

1− 1
x− r1 − n2

)

×(2r1 − 2− µi(G1))
}

×
[
1− 4m1n2

{x2 − (r1 + n1 + n2)x+ r1n1}{x2 − (2 + r1 + n2)x+ 2n2}

]

=(x− 2r1 − 2)m1−n1
n2∏
j=2
{x− n1 − µj(G2)}

×
n1∏
i=2
{x2 − (2 + r1 + n2 + µi(G1))x+ 2n2 + µi(G1) + r1µi(G1)

+ n2µi(G1)}{x3 − (2 + r1 + n1 + n2)x2 − (2n1 + 2n2 + r1n1)x}. �
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Corollary 2.1. For i = 1, 2, let Gi be an ri-regular graph with ni vertices and mi

edges. Then

Kf(G1∨̇QG2) = (n1 + n2 +m1)×
(
m1 − n1

2 + 2r1
+ 2 + r1 + n1 + n2

2n1 + 2n2 + r1n1

+
n1∑
i=2

2 + r1 + n2 + µi(G1)
2n2 + µi(G1) + r1µi(G1) + n2µi(G1) +

n2∑
j=2

1
n1 + µj(G2)

 .
Corollary 2.2. For i = 1, 2, let Gi be an ri-regular graph with ni vertices and mi

edges. Then

t(G1∨̇QG2) =
(2+2r1)m1−n1 ·(2n1+2n2+r1n1)·

n1∏
i=2

(2n2+µi(G1)+r1µi(G1)+n2µi(G1))·
n2∏

j=2
(n1+µj(G2))

n1+n2+m1
.

2.1.3. L-spectra of Q-vertex join. The normalized Laplacian matrix of G1∨̇QG2 can
be obtained as:

L(G1∨̇QG2) =

 In1 −cR(G1) −Kn1×n2

−cR(G1)T Im1 − 1
2r1
A(l(G1)) Om1×n2

−Kn2×n1 On2×m1 L(G2) •B(G2)

 ,
where Kn1×n2 is the matrix of size n1 × n2 with all entries equal to 1√

(r1+n2)(r2+n1)
,

B(G2) is the n2 × n2 matrix whose all diagonal entries are 1 and off-diagonal entries
are r2

r2+n1
, c is the constant whose value is 1√

2r1(r1+n2)
.

Theorem 2.3. The normalized Laplacian spectrum of G1∨̇QG2 consists of:
(i) the eigenvalue n1+r2δj

r2+n1
, for every eigenvalue δj, j = 2, 3, . . . , n2, of L(G2);

(ii) the eigenvalue 1 + 1
r1

with multiplicity m1 − n1;
(iii) two roots of the equation 2r1(r1 +n2)x2− (2r2

1 + 2r1 + 2n2 + 2r1n2 + r2
1δi(G1) +

r1n2δi(G1))x+ 2n2 + r1δi(G1) + r2
1δi(G1) + r1n2δi(G1) = 0, for each eigenvalue

δi, i = 2, 3, . . . , n1 of L(G1);
(iv) three roots of the equation (r2

1r2 + r2
1n1 + r1r2n2 + r1n1n2)x3 − (r2

1r2 + 2r2
1n1 +

r1r2+r2n2+r1n1+n1n2+r1r2n2+2r1n1n2)x2+(r2
1n1+r1n1+r2n2+2n1n2)x = 0.

Proof. The normalized Laplacian characteristic polynomial of G1∨̇QG2 is

fL(G1∨̇QG2)(x) = det(xIn1+n2+m1 − L(G1∨̇QG2))

= det
(x− 1)In1 cR(G1) Kn1×n2

cR(G1)T (x− 1)Im1 + 1
2r1

A(l(G1)) Om1×n2

Kn2×n1 On2×m1 xIn2 − (L(G2) •B(G2))


= det(xIn2 − (L(G2) •B(G2))) det(S),

where

S =
(

(x− 1)In1 cR(G1)
cR(G1)T (x− 1)Im1 + 1

2r1
A(l(G1))

)
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−
(
Kn1×n2

Om1×n2

)
(xIn2 − (L(G2) •B(G2)))−1

(
Kn2×n1 On2×m1

)
=
(

(x− 1)In1 − χG2(B(G2), Cn2 , x)Jn1×n1 cR(G1)
cR(G1)T (x− 1)Im1 + 1

2r1
A(l(G1))

)
.

Then

det(S) = det((x− 1)In1 − χG2(B(G2), Cn2 , x)Jn1×n1) det
[
(x− 1)Im1 + 1

2r1
A(l(G1))

− c2R(G1)T ((x− 1)In1 − χG2(B(G2), Cn2 , x)Jn1×n1)−1R(G1)
]

=(x− 1)n1

{
1− χG2(B(G2), Cn2 , x) n1

x− 1

}
× det

[
(x− 1)Im1 + 1

2r1
A(l(G1))− c2R(G1)T

{ 1
x− 1In1

+ χG2(B(G2), Cn2 , x)
(x− 1)(x− 1− n1χG2(B(G2), Cn2 , x))Jn1×n1

}
R(G1)

]
=(x− 1)n1

{
1− χG2(B(G2), Cn2 , x) n1

x− 1

}
× det

[
(x− 1)Im1 + 1

2r1
A(l(G1))− c2

x− 1R(G1)TR(G1)

− c2 χG2(B(G2), Cn2 , x)
(x− 1)(x− 1− n1χG2(B(G2), Cn2 , x))R(G1)TJn1×n1R(G1)

]
=(x− 1)n1

{
1− χG2(B(G2), Cn2 , x) n1

x− 1

}
det

[
(x− 1)Im1 + 1

2r1
A(l(G1))

− c2

x− 1R(G1)TR(G1)− c2 4χG2(B(G2), Cn2 , x)
(x− 1)(x− 1− n1χG2(B(G2), Cn2 , x))Jm1×m1

]

=(x− 1)n1

{
1− χG2(B(G2), Cn2 , x) n1

x− 1

} det
(

(x− 1)Im1 + 1
2r1

A(l(G1))

− c2

x− 1R(G1)TR(G1)
)
− 4c2χG2(B(G2), Cn2 , x)

(x− 1)(x− 1− n1χG2(B(G2), Cn2 , x))

× 1Tm1adj
{

(x− 1)Im1 + 1
2r1

A(l(G1))− c2

x− 1R(G1)TR(G1)
}

1m1


=(x− 1)n1

{
1− χG2(B(G2), Cn2 , x) n1

x− 1

}
det

(
(x− 1)Im1 + 1

2r1
A(l(G1))

− c2

x− 1R(G1)TR(G1)
)1− 4c2χG2(B(G2), Cn2 , x)

(x− 1)(x− 1− n1χG2(B(G2), Cn2 , x))



314 A. DAS AND P. PANIGRAHI

× 1Tm1

{
(x− 1)Im1 + 1

2r1
A(l(G1))− c2

x− 1R(G1)TR(G1)
}−1

1m1


=(x− 1)n1

{
1− χG2(B(G2), Cn2 , x) n1

x− 1

}
× det

((
x− 1− 2c2

x− 1

)
Im1 +

(
1

2r1
− c2

x− 1

)
A(l(G1))

)

×

1−
4c2χG2(B(G2), Cn2 , x)Γ c2

x−1R(G1)TR(G1)− 1
2r1

A(l(G1))(x− 1)

(x− 1)(x− 1− n1χG2(B(G2), Cn2 , x))


=(x− 1)n1

(
x− 1− 1

r1

)m1−n1
{

1− n1n2

(x− 1)(r1 + n2)(r2 + n1)(x− n1
r2+n1

)

}

× det
((

x− 1− 2c2

x− 1

)
In1 +

(
1

2r1
− c2

x− 1

)
(2(r1 − 1)In1 − r1L(G1))

)

×

1−
4c2χG2(B(G2), Cn2 , x)Γ c2

x−1R(G1)TR(G1)− 1
2r1

A(l(G1))(x− 1)

(x− 1)(x− 1− n1χG2(B(G2), Cn2 , x))

 .
Since L(G2) • B(G2) = In2 − 1

r2+n1
A(G2), we get, L(G2) • B(G2) = 1

r2+n1
(n1In2 +

r2L(G2)). As G2 is regular, the sum of all entries on every row of its normalized
Laplacian matrix is zero. That means, L(G2)Cn2 = (1 − r2

r2
)Cn2 = 0Cn2 . Then

(L(G2) •B(G2))Cn2 = (1− r2
r2+n1

)Cn2 = n1
r2+n1

Cn2 and (xIn2 − (L(G2) •B(G2)))Cn2 =
(x− n1

r2+n1
)Cn2 . Also, CT

n2Cn2 = n2
(r1+n2)(r2+n1) .

Now,

χG2(B(G2), Cn2 , x) = n2

(r1 + n2)(r2 + n1)(x− n1
r2+n1

)

and
Γ c2

x−1R(G1)TR(G1)− 1
2r1

A(l(G1))(x− 1) = m1

x− 1
r1
− 2r1

(x−1)2r1(r1+n2)
,

fL(G1∨̇QG2)(x) =
(
x− 1− 1

r1

)m1−n1 n2∏
j=2

(
x− n1 + r2δj(G2)

r2 + n1

)

×
n1∏
i=2
{2r1(r1 + n2)x2 − (2r2

1 + 2r1 + 2n2 + 2r1n2 + r2
1δi(G1)

+ r1n2δi(G1))x+ 2n2 + r1δi(G1) + r2
1δi(G1) + r1n2δi(G1)}

× [(r2
1r2 + r2

1n1 + r1r2n2 + r1n1n2)x3 − (r2
1r2 + 2r2

1n1 + r1r2 + r2n2

+ r1n1 + n1n2 + r1r2n2 + 2r1n1n2)x2

+ (r2
1n1 + r1n1 + r2n2 + 2n1n2)x]. �
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2.2. Spectra of Q-edge join. Let Gi be an ri-regular graph on ni vertices and mi

edges for i = 1, 2. Then the degrees of the vertices of G1 YQ G2 are dG1YQG2(vi) = r1,
dG1YQG2(ei) = 2r1 + n2 and dG1YQG2(ui) = r2 +m1.

2.2.1. A-spectra of Q-edge join. The adjacency matrix of G1 YQ G2 can be expressed
as:

A(G1 YQ G2) =

 On1 R(G1) Om1×n2

R(G1)T A(l(G1)) Jn1×n2

On2×m1 Jn2×n1 A(G2)

 .
Theorem 2.4. For i = 1, 2, let Gi be an ri-regular graph with ni vertices and mi

edges. Then the adjacency spectrum of G1 YQ G2 consists of:
(i) the eigenvalue λj(G2), for every eigenvalue λj, j = 2, 3, . . . , n2, of A(G2);
(ii) the eigenvalue −2 with multiplicity m1 − n1;
(iii) two roots of the equation x2 − (r1 − 2 + λi(G1))x − r1 − λi(G1) = 0 for each

eigenvalue λi, i = 2, 3, . . . , n1, of A(G1);
(iv) three roots of the equation x3− (2r1 + r2− 2)x2− (2r1 +m1n2 + 2r2− 2r1r2)x+

2r1r2 = 0.
Proof. The adjacency characteristic polynomial of G1 YQ G2 is

fA(G1YQG2)(x) = det(xIn1+n2+m1 − A(G1 YQ G2))

= det

 xIn1 −R(G1) On1×n2

−R(G1)T xIm1 − A(l(G1)) −Jm1×n2

On2×n1 −Jn2×m1 xIn2 − A(G2)


= det(xIn2 − A(G2)) det(S) =

n2∏
j=1
{x− λj(G2)} det(S),

where

S =
(

xIn1 −R(G1)
−R(G1)T xIm1 − A(l(G1))

)

−
(
On1×n2

−Jm1×n2

)
(xIn2 − A(G2))−1

(
On2×n1 −Jn2×m1

)
=
(

xIn1 −R(G1)
−R(G1)T xIm1 − A(l(G1))− ΓA(G2)(x)Jm1×m1

)
.

Then, we have

det(S) =xn1 det
(
xIm1 − A(l(G1))− ΓA(G2)(x)Jm1×m1 −

1
x
R(G1)TR(G1)

)

=xn1

 det(xIm1 − A(l(G1))− 1
x
R(G1)TR(G1))

− ΓA(G2)(x)1Tm1adj
{
xIm1 − A(l(G1))− 1

x
R(G1)TR(G1)

}
1m1


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=xn1 det
(
xIm1 − A(l(G1))− 1

x
R(G1)TR(G1)

)

×

1− ΓA(G2)(x)1Tm1

{
xIm1 − A(l(G1))− 1

x
R(G1)TR(G1)

}−1
1m1


=xn1 det

((
x− 2

x

)
Im1 −

(
1 + 1

x

)
A(l(G1))

)
×
[
1− ΓA(G2)(x)ΓA(l(G1))+ 1

x
R(G1)TR(G1)(x)

]
=xn1(x+ 2)m1−n1 det

((
x− 2

x

)
Im1 −

(
1 + 1

x

)
(r1 − 2 + A(G1))

)
×
[
1− n2

(x− r2)
m1

(x+ 2− 2r1 − 2r1
x

)

]

=xn1(x+ 2)m1−n1
n1∏
i=1

{
x− 2

x
−
(

1 + 1
x

)
(r1 − 2 + λi(G1))

}

×
[
1− m1n2x

(x− r2){x2 + (2− 2r1)x− 2r1}

]
and

fA(G1YQG2)(x) =xn1(x+ 2)m1−n1
n2∏
j=1
{x− λj(G2)}

×
n1∏
i=1

{
x− 2

x
−
(

1 + 1
x

)
(r1 − 2 + λi(G1))

}

×
[
1− m1n2x

(x− r2){x2 + (2− 2r1)x− 2r1}

]

=(x+ 2)m1−n1
n2∏
j=2
{x− λj(G2)}

×
n1∏
i=2
{x2 − (r1 − 2 + λi(G1))x− r1 − λi(G1)}

× {x3 − (2r1 + r2 − 2)x2 − (2r1 +m1n2 + 2r2 − 2r1r2)x+ 2r1r2}.�

2.2.2. L-spectra of Q-edge join.
The Laplacian matrix of G1 YQ G2 can be written as:

L(G1 YQ G2) =

 r1In1 −R(G1) Om1×n2

−R(G1)T (2r1 + n2)Im1 − A(l(G1)) −Jn1×n2

On2×m1 −Jn2×n1 m1In2 + L(G2)

 .
Theorem 2.5. For i = 1, 2, let Gi be an ri-regular graph with ni vertices and mi

edges. Then the Laplacian spectrum of G1 YQ G2 consists of:
(i) the eigenvalue m1 + µj(G2) for every eigenvalue µj, j = 2, 3, . . . , n2, of L(G2);
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(ii) the eigenvalue 2 + 2r1 + n2 with multiplicity m1 − n1;
(iii) two roots of the equation x2−(2+r1+n2+µi(G1))x+r1n2+r1µi(G1)+µi(G1) = 0

for each eigenvalue µi, i = 2, 3, . . . , n1, of L(G1);
(iv) three roots of the equation x3− (2+r1 +m1 +n2)x2 +(2m1 +r1n2 +r1m1)x = 0.

Proof. The Laplacian characteristic polynomial of G1 YQ G2 is

fL(G1YQG2)(x) = det(xIn1+n2+m1 − L(G1 YQ G2))

= det
(x− r1)In1 R(G1) On1×n2

R(G1)T (x− 2r1 − n2)Im1 + A(l(G1)) Jm1×n2
On2×n1 Jn2×m1 (x−m1)In2 − L(G2)


= det((x−m1)In2 − L(G2)) det(S) =

n2∏
j=1
{x−m1 − µj(G2)} det(S),

where

S =
(

(x− r1)In1 R(G1)
R(G1)T (x− 2r1 − n2)Im1 + A(l(G1))

)

−
(
On1×n2

−Jm1×n2

)
((x−m1)In2 − L(G2))−1

(
On2×n1 −Jn2×m1

)
=
(

(x− r1)In1 R(G1)
R(G1)T (x− 2r1 − n2)Im1 + A(l(G1))− ΓL(G2)(x−m1)Jm1×m1

)
.

Then we have

det(S) =(x− r1)n1 det
(

(x− 2r1 − n2)Im1 + A(l(G1))

− ΓL(G2)(x−m1)Jm1×m1 −
1

x− r1
R(G1)TR(G1)

)

=(x− r1)n1

 det((x− 2r1 − n2)Im1 + A(l(G1))

− 1
x− r1

R(G1)TR(G1))− ΓL(G2)(x−m1)

× 1Tm1adj
{

(x− 2r1 − n2)Im1 + A(l(G1))− 1
x− r1

R(G1)TR(G1)
}

1m1


=(x− r1)n1 det

(
(x− 2r1 − n2)Im1 + A(l(G1))

− 1
x− r1

R(G1)TR(G1)
)1− ΓL(G2)(x−m1)

× 1Tm1

{
(x− 2r1 − n2)Im1 + A(l(G1))− 1

x− r1
R(G1)TR(G1)

}−1
1m1


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=(x− r1)n1 det
((
x− 2r1 − n2 −

2
x− r1

)
Im1 +

(
1− 1

x− r1

)
A(l(G1))

)
×
[
1− ΓL(G2)(x−m1)Γ 1

x−r1
R(G1)TR(G1)−A(l(G1))(x− 2r1 − n2)

]

=(x− r1)n1(x− 2− 2r1 − n2)m1−n1 det
(x− 2r1 − n2 −

2
x− r1

)
In1

+
(

1− 1
x− r1

)
(2(r1 − 1)In1 − L(G1))


×
[
1− n2

(x−m1)
m1

(x− 2− n2 − 2r1
x−r1

)

]
=(x− r1)n1(x− 2− 2r1 − n2)m1−n1

×
n1∏
i=1

{
x− 2r1 − n2 −

2
x− r1

+
(

1− 1
x− r1

)
(2r1 − 2− µi(G1))

}

×
[
1− m1n2(x− r1)

(x−m1)(x2 − (2 + r1 + n2)x+ r1n2)

]

and

fL(G1YQG2)(x) =(x− r1)n1(x− 2− 2r1 − n2)m1−n1
n2∏
j=1
{x−m1 − µj(G2)}

×
n1∏
i=1

{
x− 2r1 − n2 −

2
x− r1

+
(

1− 1
x− r1

)
(2r1 − 2− µi(G1))

}

×
[
1− m1n2(x− r1)

(x−m1)(x2 − (2 + r1 + n2)x+ r1n2)

]

=(x− 2− 2r1 − n2)m1−n1
n2∏
j=2
{x−m1 − µj(G2)}

×
n1∏
i=2
{x2 − (2 + r1 + n2 + µi(G1))x+ r1n2 + r1µi(G1) + µi(G1)}

× {x3 − (2 + r1 +m1 + n2)x2 + (2m1 + r1n2 + r1m1)x}. �

Corollary 2.3. For i = 1, 2, let Gi be an ri-regular graph with ni vertices and mi

edges. Then

Kf(G1 YQ G2) = (n1 + n2 +m1)×
(

m1 − n1

2 + 2r1 + n2
+ 2 + r1 +m1 + n2

2m1 + r1n2 + r1m1

+
n1∑
i=2

2 + r1 + n2 + µi(G1)
r1n2 + r1µi(G1) + µi(G1) +

n2∑
j=2

1
m1 + µj(G2)

)
.
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Corollary 2.4. For i = 1, 2, let Gi be an ri-regular graph with ni vertices and mi

edges. Then

t(G1 YQ G2) =
(2+2r1+n2)m1−n1 ·(2m1+r1n2+r1m1)·

n1∏
i=2

(r1n2+r1µi(G1)+µi(G1))·
n2∏

j=2
(m1+µj(G2))

n1+n2+m1
.

2.2.3. L-spectra of Q-edge join.
The normalized Laplacian matrix of G1 YQ G2 can be obtained as:

L(G1 YQ G2) =

 In1 −cR(G1) On1×n2

−cR(G1)T Im1 − 1
2r1+n2

A(l(G1)) −Km1×n2

On2×n1 −Kn2×m1 L(G2) •B(G2)

 ,
where Km1×n2 is the matrix of size m1 × n2 with all entries equal to 1√

(2r1+n2)(r2+m1)
,

B(G2) is the n2 × n2 matrix whose all diagonal entries are 1 and off-diagonal entries
are r2

r2+m1
, c is the constant whose value is 1√

r1(2r1+n2)
.

Theorem 2.6. The normalized Laplacian spectrum of G1 YQ G2 consists of:
(i) the eigenvalue m1+r2δj(G2)

r2+m1
, for every eigenvalue δj(G2), j = 2, 3, . . . , n2 of

L(G2);
(ii) the eigenvalue 1 + 2

2r1+n2
with multiplicity m1 − n1;

(iii) two roots of the equation (2r1 + n2)x2 − (2 + 2r1 + 2n2 + r1δi(G1))x + n2 +
δi(G1) + r1δi(G1) = 0, for each eigenvalue δi(G1), i = 2, 3, . . . , n1 of L(G1);

(iv) three roots of the equation (2r1r2 + 2r1m1 + r2n2 + m1n2)x3 − (2r1r2 + 2r2 +
4r1m1 + 2m1 + 2r2n2 + 3m1n2)x2 + (2m1 + 2r1m1 + r2n2 + 2m1n2)x = 0.

Proof. The normalized Laplacian characteristic polynomial of G1 YQ G2 is
fL(G1YQG2)(x) = det(xIn1+n2+m1 − L(G1 YQ G2))

= det
(x− 1)In1 cR(G1) On1×n2

cR(G1)T (x− 1)Im1 + 1
2r1+n2

A(l(G1)) Km1×n2

On2×n1 Kn2×m1 xIn2 − (L(G2) •B(G2))


= det(xIn2 − (L(G2) •B(G2))) det(S),

where

S =
(

(x− 1)In1 cR(G1)
cR(G1)T (x− 1)Im1 + 1

2r1+n2
A(l(G1))

)

−
(
On1×n2

Km1×n2

)
(xIn2 − (L(G2) •B(G2)))−1

(
On2×n1 Kn2×m1

)
=
(

(x− 1)In1 cR(G1)
cR(G1)T (x− 1)Im1 + 1

2r1+n2
A(l(G1))− χG2(B(G2), Cn2 , x)Jm1×m1

)
.

Hence,

det(S) =(x− 1)n1 det
(

(x− 1)Im1 + 1
2r1 + n2

A(l(G1))− χG2(B(G2), Cn2 , x)Jm1×m1
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− c2

x− 1R(G1)TR(G1)
)

=(x− 1)n1

 det((x− 1)Im1 + 1
2r1 + n2

A(l(G1))

− c2

x− 1R(G1)TR(G1))− χG2(B(G2), Cn2 , x)

× 1Tm1adj
{

(x− 1)Im1 + 1
2r1 + n2

A(l(G1))− c2

x− 1R(G1)TR(G1)
}

1m1


=(x− 1)n1 det

(
(x− 1)Im1 + 1

2r1 + n2
A(l(G1))

− c2

x− 1R(G1)TR(G1)
)1− χG2(B(G2), Cn2 , x)

× 1Tm1

{
(x− 1)Im1 + 1

2r1 + n2
A(l(G1))− c2

x− 1R(G1)TR(G1)
}−1

1m1


=(x− 1)n1 det

((
x− 1− 2c2

x− 1

)
Im1 +

(
1

2r1 + n2
− c2

x− 1

)
A(l(G1))

)

×
[
1− χG2(B(G2), Cn2 , x)Γ c2

x−1R(G1)TR(G1)− 1
2r1+n2

A(l(G1))(x− 1)
]

=(x− 1)n1

(
x− 1− 2

2r1 + n2

)m1−n1

det
(x− 1− 2c2

x− 1

)
In1

+
(

1
2r1 + n2

− c2

x− 1

)
(2(r1 − 1)In1 − r1L(G1))


×
[
1− χG2(B(G2), Cn2 , x)Γ c2

x−1R(G1)TR(G1)− 1
2r1+n2

A(l(G1))(x− 1)
]

=(x− 1)n1

(
x− 1− 2

2r1 + n2

)m1−n1

× det
(x− 1− 2

r1(x− 1)(2r1 + n2)

)
In1

+
(

1
2r1 + n2

− 1
r1(x− 1)(2r1 + n2)

)
((2r1 − 2)In1 − r1L(G1))


×

1− m1n2

(r2 +m1)(2r1 + n2)
(
x− m1

r2+m1

)(
x− 1 + 2r1−2

2r1+n2
− 2r1

r1(x−1)(2r1+n2)

)
 .

As L(G2) •B(G2) = In2 − 1
r2+m1

A(G2), L(G2) •B(G2) = 1
r2+m1

(m1In2 + r2L(G2)).
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Since G2 is regular, the sum of all entries on every row of its normalized Laplacian
matrix is zero. That means, L(G2)Cn2 = (1− r2

r2
)Cn2 = 0Cn2 . Therefore,

(L(G2) •B(G2))Cn2 =
(

1− r2

r2 +m1

)
Cn2 = m1

r2 +m1
Cn2

and
(xIn2 − (L(G2) •B(G2)))Cn2 =

(
x− m1

r2 +m1

)
Cn2 .

Also, CT
n2Cn2 = n2

(2r1+n2)(r2+m1) .
Now,

χG2(B(G2), Cn2 , x) = n2

(2r1 + n2)(r2 +m1)
(
x− m1

r2+m1

)
and

Γ c2
x−1R(G1)TR(G1)− 1

2r1+n2
A(l(G1))(x− 1) = m1

x− 1 + 2r1−2
2r1+n2

− 2r1
r1(x−1)(2r1+n2)

.

Then
fL(G1YQG2)(x)

=(x− 1)n1

(
x− 1− 2

2r1 + n2

)m1−n1 n2∏
j=2

(
x− m1 + r2δj(G2)

r2 +m1

)

×
n1∏
i=2

x− 1− 2
r1(x− 1)(2r1 + n2)

+
(

1
2r1 + n2

− 1
r1(x− 1)(2r1 + n2)

)
(2r1 − 2− r1δi(G1))


×

1− m1n2

(r2 +m1)(2r1 + n2)(x− m1
r2+m1

)(x− 1 + 2r1−2
2r1+n2

− 2r1
r1(x−1)(2r1+n2))


=
(
x− 1− 2

2r1 + n2

)m1−n1 n2∏
j=2

(
x− m1 + r2δj(G2)

r2 +m1

)
n1∏
i=2
{(2r1 + n2)x2

× (2 + 2r1 + 2n2 + r1δi(G1))x+ n2 + δi(G1) + r1δi(G1)}
× [(2r1r2 + 2r1m1 + r2n2 +m1n2)x3 − (2r1r2 + 2r2 + 4r1m1

+ 2m1 + 2r2n2 + 3m1n2)x2 + (2m1 + 2r1m1 + r2n2 + 2m1n2)x]. �

3. Simultaneous Cospectral Graphs

Butler [2] constructed non-regular bipartite graphs which are cospectral with respect
to both the adjacency and normalized Laplacian matrices, and then asked for existence
of non-regular graphs which are cospectral with respect to all the three matrices,
namely, adjacency, Laplacian and normalized Laplacian. In this section we construct
several classes of non-regular graphs which are cospectral with respect to all the above
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mentioned three matrices. For the construction of these graphs we consider two pairs
of A-cospectral regular graphs (for example see [14]). Then we take Q-join of graphs
belong to different pairs.

The following Lemma is immediate from the definition of Laplacian and normalized
Laplacian matrices.

Lemma 3.1. (i) If G is an r-regular graph then L(G) = rIn−A(G) and L(G) =
In − 1

r
A(G).

(ii) If G1 and G2 are A-cospectral regular graphs then they are also cospectral with
respect to the Laplacian and normalized Laplacian matrices.

Observation. From all the theorems given in the previous section we observe that
the adjacency, Laplacian and normalized Lpalacian spectra of all the Q-join graphs
G1∨̇QG2 and G1 YQ G2, depend only on the number of vertices, number of edges,
degree of regularities, and the corresponding spectrum of G1 and G2. Furthermore,
we note that, although G1 and G2 are regular graphs, G1∨̇QG2 and G1 YQ G2 are
non-regular graphs.

Theorem 3.1. Let Gi, Hi be ri-regular graphs, i = 1, 2, where G1 need not be different
from H1. If G1 and H1 are A-cospectral, and G2 and H2 are A-cospectral then G1∨̇QG2
(respectively G1 YQ G2) and H1∨̇QH2 (respectively H1 YQ H2) are simultaneously A-
cospectral, L-cospectral and L-cospectral.

Proof. Follows from the Lemma 3.1 and the above observation. �
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