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REGULAR AND NORMAL OBJECTS IN THE CATEGORY OF
PROXIMITY SPACES

MUAMMER KULA1 AND SAMED ÖZKAN2

Abstract. In [2] and [7], Baran defined various generalization of the separation
properties T3 and T4 for topological spaces to arbitrary topological categories. The
main objective of this paper is to characterize each of the different notions of regular
and normal objects in the category of proximity spaces as well as to examine how
these generalizations are related.

1. Introduction

Proximity spaces were introduced by Efremovich during the first part of 1930s
and axiomatized in 1951 [13]. He characterized the proximity relation “A is close
to B” as a binary relation on subsets of a set X. A large part of the early work
in proximity spaces was done by Smirnov [26]. He showed which topological spaces
admit a proximity relation compatible with the given topology. Smirnov was also the
first to discover relationship between proximities and uniformities.

Efremovich [14] defined the closure of a subset A of X to be the collection of all
points of X “close” A. In this way he showed that a topology (completely regular)
can be introduced in a proximity space. He also showed that every completely regular
space X can be turned into a proximity space by using Urysohn’s function.

The most comprehensive work on the theory of proximity spaces was done by
Naimpally and Warrack [22]. All preliminary information on proximity spaces can be
found in this source.

Baran [2] gave various generalizations of the usual separation properties for an
arbitrary topological category over Set. He defined separation properties first at a
point p, i.e., locally (see [4]), then they are generalized to point free definitions by

Key words and phrases. Topological category, proximity space, separation, regular, normal.
2010 Mathematics Subject Classification. Primary: 54B30. Secondary: 54E05, 54D10, 54D15.
Received: May 15, 2017.
Accepted: September 19, 2017.

127



128 M. KULA AND S. ÖZKAN

using the generic element, [17] p. 39, method of topos theory. These generalizations
are, for example, two notions of PreT2 denoted by PreT 2 and PreT ′2, each equivalent
to the classical PreT2 notion for topological spaces and four notions of T4 denoted by
T 4, T ′4, ST 4 and ST ′4, each equivalent to the classical T4 notion for topological spaces.

Baran [2, 3] introduced the notions of “closedness” and “strong closedness” in
set based topological categories and it is shown in [9] that these notions form an
appropriate closure operator in the sense of Dikranjan and Giuli [12] in some well-
known topological categories.

The main goal of this paper is
(1) to give an explicit characterization of the various notions of T3 and T4 objects

in the topological category of proximity spaces;
(2) to investigate how these generalizations are related.

2. Preliminaries

The following are some basic definitions and notations which we will use throughout
the paper.

Let E and B be any categories. The functor U : E→ B is said to be topological or
that E is a topological category over B, if U is concrete (i.e., faithful and amnestic),
has small fibers, and for which every U-source has an initial lift or, equivalently, for
which each U-sink has a final lift [1].

Note that a topological functor U : E → B is said to be normalized, if constant
objects, i.e., subterminals, have a unique structure [1, 4, 20,21,23].

Recall in [1] or [23], that an object X ∈ E (where X ∈ E stands for X ∈ Ob(E)), a
topological category, is discrete if and only if every map U(X)→ U(Y ) lifts to a map
X → Y for each object Y ∈ E and an object X ∈ E is indiscrete if and only if every
map U(Y )→ U(X) lifts to a map Y → X for each object Y ∈ E.

Let E be a topological category and X ∈ E. A is called a subspace of X if the
inclusion map i : A → X is an initial lift (i.e., an embedding) and we denote it by
A ⊂ X.

Definition 2.1. [22] An Efremovich proximity (EF-proximity) space is a pair (X, δ),
where X is a set and δ is a binary relation on the power set of X such that
(P1) A δ B if and only if B δ A;
(P2) A δ (B ∪ C) if and only if A δ B or A δ C;
(P3) A δ B implies A,B 6= ∅;
(P4) A ∩B 6= ∅ implies A δ B;
(P5) A δ B implies there is an E ⊆ X such that A δ E and (X − E) δ B;

where A δ B means it is not true that A δ B.

A function f : (X, δ)→ (Y, δ′) between two proximity spaces is called a proximity
mapping (or a p-map) if and only if f(A) δ′ f(B) whenever A δ B. It can easily be
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shown that f is a p-map if and only if, for subsets C and D of Y , f−1(C) δ f−1(D)
whenever C δ

′
D.

In a proximity space (X, δ), we write A � B if and only if A δ (X − B). The
relation � is called p-neighborhood relation or the strong inclusion. When A� B,
we say that B is a p-neighborhood of A or A is strongly contained in B [15] or [22].

We denote the category of proximity spaces and proximity mappings by Prox.
Hunsaker and Sharma [16] showed that the forgetful functor U : Prox → Set is
topological.

Definition 2.2. [24] Let X be a nonempty set and P (X) be the set of all subsets
of X. A proximity-base on X is a binary relation B on P (X) satisfying the axioms
(B1) through (B5) given below:
(B1) (∅, X) /∈ B;
(B2) A ∩B 6= ∅ implies (A,B) ∈ B;
(B3) (A,B) ∈ B if and only if (B,A) ∈ B;
(B4) if (A,B) ∈ B and A ⊆ A∗, B ⊆ B∗ then (A∗, B∗) ∈ B;
(B5) if (A,B) /∈ B then there exists a set E ⊆ X such that (A,E) /∈ B and

(X − E,B) /∈ B.

Definition 2.3. Let B be a proximity-base on a set X and let a binary relation δ
on P (X) be defined as follows: (A,B) ∈ δ if, given any finite covers {Ai : 1 ≤ i ≤ n}
and {Bj : 1 ≤ j ≤ m} of A and B respectively, then there exists a pair (i, j) such
that (Ai, Bj) ∈ B. δ is a proximity on X finer than the relation B [16] or [24].

Definition 2.4. Let X be a non-empty set, for each i ∈ I, (Xi, δi) be a proximity
space and fi : X → Xi be a source in Set. Define a binary relation B on P (X) as
follows: for A,B ∈ P (X), A B B if and only if fi(A) δi fi(B), for all i ∈ I. B is a
proximity-base on X (Theorem 3.8 in [24]). The initial proximity structure δ on X
generated by the proximity base B is given by for A,B ∈ P (X), A δ B if and only if
for any finite covers {Ai : 1 ≤ i ≤ n} and {Bj : 1 ≤ j ≤ m} of A and B respectively,
then there exists a pair (i, j) such that (Ai, Bj) ∈ B [24].

Definition 2.5. Let (X, δ) be a proximity space, Y a non-empty set and f a function
from a proximity space (X, δ) onto a set Y . The strong inclusion �∗ induced by the
finest proximity δ∗ (the quotient proximity) on Y making f proximally continuous
is given by: for every A,B ⊂ Y , A �∗ B if and only if, for each binary rational
s in [0, 1], there is some Cs ⊂ Y such that C0 = A, C1 = B and s < t implies
f−1(Cs) �δ f

−1(Ct) [15] or [27] p. 276, where �δ represents the strong inclusion
induced by the proximity δ on X. In addition, if f : (X, δ)→ (X, δ∗) be a one-to-one
p-quotient map, then A δ∗ B if and only if f−1(A) δ f−1(B) (see [15] p. 591).

Definition 2.6. We write ∆ for the diagonal in X2, where X ∈ Prox. For X ∈ Prox
we define the wedge X2 ∨∆ X2, as the final structure, with respect to the map
X2 ∐

X2 → X2 ∨∆ X2, that is the identification of the two copies of X2 along the
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diagonal ∆. An epi sink {i1, i2 : (X2, δ) → (X2 ∨∆ X2, δ′)}, where i1, i2 are the
canonical injections, in Prox is a final lift if and only if the following statement holds.
For each pair A,B in the different component of X2 ∨∆ X2, A δ′ B if and only if
there exist sets C,D and U in X2 such that C δ U and U δ D with i−1

k (A) = C and
i−1
j (B) = D for k, j = 1, 2 and k 6= j. If A and B are in the same component of
wedge, then A δ′ B if and only if there exist sets C,D in X2 such that C δ D and
i−1
k (A) = C and i−1

k (B) = D for some k = 1, 2. Specially, if ik(E) = A and ik(F ) = B,
then (ik(E), ik(F )) ∈ δ′ if and only if (i−1

k (ik(E)), i−1
k (ik(F ))) = (E,F ) ∈ δ. This is a

special case of Definition 2.5.
Definition 2.7. Let X be a non-empty set. The discrete proximity structure δ on X
is defined as follows for A,B ⊂ X: A δ B if and only if A ∩B 6= ∅ [22] p. 9.
Definition 2.8. Let X be a non-empty set. The indiscrete proximity structure δ on
X is defined as follows for A,B ⊂ X: A δ B if and only if A 6= ∅ and B 6= ∅ (see [22]
p. 9).

3. Closedness and Hausdorff Objects

Let B be set and p ∈ B. Let B ∨p B be the wedge at p. A point x in B ∨p B will
be denoted by x1(x2) if x is in the first (resp. second) component of B ∨p B. Note
that p1 = (p, p) = p2.

The principal p-axis map, Ap : B ∨p B → B2 is defined by Ap(x1) = (x, p) and
Ap(x2) = (p, x). The skewed p-axis map, Sp : B∨pB → B2 is defined by Sp(x1) = (x, x)
and Sp(x2) = (p, x).

The fold map at p, 5p : B ∨p B → B is given by 5p(xi) = x for i = 1, 2 [2, 3].
Note that the maps Sp and 5p are the unique maps arising from the above pushout

diagram for which Spi1 = (id, id) : B → B2, Spi2 = (p, id) : B → B2, and 5pij =
id, j = 1, 2, respectively, where, id : B → B is the identity map and p : B → B is the
constant map at p.

The infinite wedge product ∨∞p B is formed by taking countably many disjoint copies
of B and identifying them at the point p. Let B∞ = B × B × ... be the countable
cartesian product of B. Define A∞p : ∨∞p B → B∞ by A∞p (xi) = (p, p, . . . , p, x, p, . . . ),
where xi is in the i-th component of the infinite wedge and x is in the i-th place
in (p, p, . . . , p, x, p, . . . ) (infinite principal p-axis map), and 5∞p : ∨∞p B → B by
5∞p (xi) = x for all i ∈ I (infinite fold map) [2, 3].

Note, also, that the map A∞p is the unique map arising from the multiple pushout
of p : 1 → B for which A∞p ij = (p, p, . . . , p, id, p, . . . ) : B → B∞, where the identity
map, id is in the j-th place [9].
Definition 3.1. [2, 3] Let U : E → Set be a topological functor, X an object in E

with U(X) = B. Let F be a nonempty subset of B. We denote by X/F the final lift
of the epi U-sink q : U(X) = B → B/F = (B\F ) ∪ {∗}, where q is the epi map that
is the identity on B\F and identifying F with a point ∗ [2].

Let p be a point in B.
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(1) X is T1 at p if and only if the initial lift of the U-source {Sp : B ∨p B →
U(X2) = B2 and 5p : B ∨p B → UD(B) = B} is discrete, where D is the
discrete functor which is a left adjoint to U.

(2) p is closed if and only if the initial lift of the U-source {A∞p : ∨∞p B → U(X∞) =
B∞ and ∇∞p : ∨∞p B → UD(B) = B} is discrete.

(3) F ⊂ X is closed if and only if {∗}, the image of F , is closed in X/F or F = ∅.
(4) F ⊂ X is strongly closed if and only if X/F is T1 at {∗} or F = ∅.
(5) If B = F = ∅, then we define F to be both closed and strongly closed.

Theorem 3.1 ([19], Theorem 4.5). Let (X, δ) be in Prox and p ∈ X. {p} is closed
in X if and only if for any B ⊂ X, if {p}δB, then p ∈ B.

Theorem 3.2 ([19], Theorem 4.6). Let (X, δ) be in Prox. Then ∅ 6= F ⊂ X is closed
if and only if x ∈ F whenever {x}δF for all x ∈ X.

Theorem 3.3 ([19], Theorem 4.7). Let (X, δ) be in Prox. Then ∅ 6= F ⊂ X is
strongly closed if and only if x ∈ F whenever {x}δF for all x ∈ X.

Let B be a nonempty set, B2 = B × B be cartesian product of B with itself and
B2 ∨∆ B2 be two distinct copies of B2 identified along the diagonal. A point (x, y)
in B2 ∨∆ B2 will be denoted by (x, y)1(or (x, y)2) if (x, y) is in the first (or second)
component of B2 ∨∆ B

2, respectively. Clearly (x, y)1 = (x, y)2 if and only if x = y [2].
The principal axis map A : B2 ∨∆ B2 → B3 is given by A(x, y)1 = (x, y, x)

and A(x, y)2 = (x, x, y). The skewed axis map S : B2 ∨∆ B2 → B3 is given by
S(x, y)1 = (x, y, y) and S(x, y)2 = (x, x, y) and the fold map, ∇ : B2 ∨∆ B2 → B2 is
given by ∇(x, y)i = (x, y) for i = 1, 2 [2].

Definition 3.2. [2, 11] Let U : E→ SET be a topological functor, X an object in E

with U(X) = B.

(1) X is T 0 if and only if the initial lift of the U-source {A : B2∨∆B
2 → U(X3) =

B3 and ∇ : B2 ∨∆ B2 → UD(B2) = B2} is discrete, where D is the discrete
functor which is a left adjoint to U.

(2) X is T ′0 if and only if the initial lift of the U-source {id : B2 ∨∆ B2 →
U(B2∨∆B

2)′ = B2∨∆B
2 and∇ : B2∨∆B

2 → UD(B2) = B2} is discrete, where
(B2 ∨∆ B2)′ is the final lift of the U-sink {i1, i2 : U(X2) = B2 → B2 ∨∆ B2}
and D(B2) is the discrete structure on B2. Here, i1 and i2 are the canonical
injections.

(3) X is T1 if and only if the initial lift of the U-source {S : B2∨∆B
2 → U(X3) = B3

and ∇ : B2 ∨∆ B2 → UD(B2) = B2} is discrete.
(4) X is PreT 2 if and only if the initial lifts of the U-source {A : B2 ∨∆ B2 →

U(X3) = B3} and {S : B2 ∨∆ B2 → U(X3) = B3} coincide.
(5) X is PreT ′2 if and only if the initial lift of the U-source {S : B2 ∨∆ B2 →

U(X3) = B3} and the final lift of the U-sink {i1, i2 : U(X2) = B2 → B2∨∆B
2}

coincide, where i1 and i2 are the canonical injections.
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(6) X is T 2 if and only if X is T 0 and PreT 2 ([2], Definition 2.2.10).
(7) X is T ′2 if and only if X is T ′0 and PreT ′2 ([2], Definition 2.2.10).
(8) X is KT2 if and only if X is T ′0 and PreT 2 ([6], Definition 1.2).
(9) X is LT2 if and only if X is T 0 and PreT ′2 ([6], Definition 1.2).

Remark 3.1. 1. Note that for the category Top of topological spaces, T 0, T ′0, or
T1, or PreT 2, PreT ′2, or all of the T2’s in Definition 3.2 reduce to the usual
T0, or T1, or PreT2 (where a topological space is called PreT2 if for any two
distinct points, if there is a neighbourhood of one missing the other, then the
two points have disjoint neighbourhoods), or T2 separation axioms, respectively
[2].

2. For an arbitrary topological category.
(i) By Theorem 3.2 of [5] or Theorem 2.7 (1) of [6], T 0 implies T ′0 but the

converse of implication is generally not true.
(ii) By Theorem 3.1 (1) of [8], if X is PreT ′2, then X is PreT 2. But the

converse of implication is generally not true.

Definition 3.3. [22, 25] An Efremovich proximity space (X, δ) is said to be a
• T0 space if x 6= y for x, y ∈ X implies that xδy;
• T1 space if x 6= y for x, y ∈ X implies that xδy;
• T2 (Hausdorff) space if x δ y for x, y ∈ X implies that x = y.

Theorem 3.4. Let (X, δ) be an Efremovich proximity space.
(1) (X, δ) in Prox is T 0 if and only if for each distinct pair x and y in X,

({x}, {y}) /∈ δ ([18], Theorem 3.3).
(2) All objects (X, δ) in Prox are T ′0 ([18], Theorem 3.4).
(3) (X, δ) in Prox is T1 if and only if for each distinct pair x and y in X,

({x}, {y}) /∈ δ ([18], Theorem 3.5).
(4) All objects (X, δ) in Prox are PreT 2 ([18], Theorem 3.7).
(5) (X, δ) in Prox is PreT ′2 if and only if for each distinct pair x and y in X,

({x}, {y}) /∈ δ ([18], Theorem 3.8).
(6) (X, δ) in Prox is T 2 if and only if for each distinct pair x and y in X,

({x}, {y}) /∈ δ ([18], Theorem 3.10).
(7) (X, δ) in Prox is T ′2 if and only if for each distinct pair x and y in X,

({x}, {y}) /∈ δ ([18], Theorem 3.11).

Remark 3.2. If an Efremovich proximity space (X, δ) is T 0 or T1 or PreT ′2 or T 2 or
T ′2, then it is T ′0 or PreT 2. However, the converse is not true generally. For example,
let X = {1, 2} and δ = {(X,X), ({1}, {1}), ({2}, {2}), (X, {1}), ({1}, X), (X, {2}),
({2}, X), ({1}, {2}), ({2}, {1})}. Then (X, δ) is T ′0 or PreT 2, but it is not T 0 or T1 or
PreT ′2 or T 2 or T ′2 since ({1}, {2}) ∈ δ but 1 6= 2.

Theorem 3.5. All Efremovich proximity spaces (X, δ) are KT2.

Proof. It follows from Theorem 3.4 (2), (4). �
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Theorem 3.6. An Efremovich proximity space (X, δ) is LT2 if and only if for each
distinct pair x and y in X, ({x}, {y}) /∈ δ.

Proof. It follows from Theorem 3.4 (1), (5). �

Remark 3.3. If an Efremovich proximity space (X, δ) is LT2, then it is KT2. However,
the converse is not true generally.

4. Regular Objects

We now recall, [2, 7, 10], various generalizations of the usual T3 separation axiom
to arbitrary set based topological categories and characterize each of them for the
topological category Prox.

Definition 4.1. [2,7,10] Let U : E→ Set be a topological functor, X an object in E

with U(X) = B. Let F be a non-empty subset of B.

(1) X is T 3 if and only if X is T1 and X/F is PreT 2 for all closed F 6= ∅ in U(X).
(2) X is T ′3 if and only if X is T1 and X/F is PreT ′2 for all closed F 6= ∅ in U(X).
(3) X is ST 3 if and only if X is T1 and X/F is PreT 2 for all strongly closed F 6= ∅

in U(X).
(4) X is ST ′3 if and only if X is T1 and X/F is PreT ′2 for all strongly closed F 6= ∅

in U(X).
(5) X is KT3 if and only if X is T1 and X/F is PreT 2 if it is T1, where F 6= ∅ in

U(X).
(6) X is LT3 if and only if X is T1 and X/F is PreT ′2 if it is T1, where F 6= ∅ in

U(X).

Remark 4.1. 1. For the category Top of topological spaces, all of the T3’s reduce to
the usual T3 separation axiom (cf. [2, 7, 10]).

2. If U : E → B, where B is a topos [17], then parts (3)-(6) of Definition 4.1
still make sense since each of these notions requires only finite products and finite
colimits in their definitions. Furthermore, if B has infinite products and infinite wedge
products, then Definition 4.1 (2), also, makes sense.

Let (X, δ) be in Prox, and F be a nonempty subset of X. Let q : (X, δ)→ (X/F, δ∗)
be the quotient map that identifying F to a point, ∗ [2].

Theorem 4.1. If (X, δ) is T 2, then (X/F, δ∗) is T 2.

Proof. Suppose (X, δ) is T 2. Let a and b be any distinct pair of points in X/F . By
Theorem 3.4 (6), we only need to show that ({a}, {b}) /∈ δ∗, where δ∗ is the structure
on X/F induced by q.

Suppose that a 6= ∗. By definition of q map, there exist a ∈ X and F ⊂ X
such that q(a) = a and q(c) = ∗ for any c ∈ F . Since a 6= c for any c ∈ F
(a /∈ F ) and (X, δ) is T 2, then {a} δ {c}. By the condition (P2) of Definition 2.1
we obtain {a} δ F . Then we have {a} δ F = q−1({a}) δ q−1({∗}). It follows that
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by p-neighborhood relation definition and Definition 2.5, for each binary rational s
in [0, 1] there is some Cs ⊂ X/F such that C0 = {a}, C1 = {∗}c and s < t implies
q−1(Cs)�δ q

−1(Ct) = q−1({a})�δ (q−1({∗}))c = q−1({a})�δ q
−1({∗}c) if and only

if {a} �∗ {∗}c. Hence {a} δ∗ {∗}, i.e., ({a}, {∗}) /∈ δ∗.
Let a 6= b 6= ∗. By definition of q map, there exists a pair a, b ∈ X such that q(a) = a

and q(b) = b. In this case q map can be considered as one-to-one map. Suppose that
{a} δ∗ {b}. By definition of q map and Definition 2.5, we have {a} δ∗ {b} if and only
if q−1({a}) δ q−1({b}) = {a} δ {b}. But {a} δ {b} since (X, δ) is T 2. Hence {a} δ

∗ {b}
i.e., ({a}, {b}) /∈ δ∗.

Consequently for each distinct points a and b in X/F , we have ({a}, {b}) /∈ δ∗.
Hence by Theorem 3.4 (6), (X/F, δ∗) is T 2. �

Theorem 4.2. If (X, δ) is T ′2 (resp. PreT 2 and PreT ′2), then (X/F, δ∗) is T ′2(resp.
PreT 2 and PreT ′2).

Proof. It follows from Theorem 3.4 (7) (resp. (4) and (5)) and by using the same
argument used in the proof of Theorem 4.1. �

Corollary 4.1. Let (X, δ) be an Efremovich proximity space, then the following are
equivalent.

(1) (X, δ) is T 3.
(2) (X, δ) is T ′3.
(3) (X, δ) is ST 3.
(4) (X, δ) is ST ′3.
(5) (X, δ) is KT3.
(6) (X, δ) is LT3.
(7) For each distinct pair x and y in X, ({x}, {y}) /∈ δ.

Proof. It follows from Theorems 3.4 (3) and 4.2. �

5. Normal Objects and Relationships

We now recall various generalizations of the usual T4 separation axiom to arbitrary
set based topological categories that are defined in [2, 7, 10], and characterize each of
them for the topological category Prox.

Definition 5.1. [2, 7, 10] Let U : E→ Set be a topological functor and X an object
in E with U(X) = B. Let F be a non-empty subset of B.

(1) X is T 4 if and only if X is T1 and X/F is T 3 for all closed F 6= ∅ in U(X).
(2) X is T ′4 if and only if X is T1 and X/F is T ′3 for all closed F 6= ∅ in U(X).
(3) X is ST 4 if and only if X is T1 and X/F is ST 3 for all strongly closed F 6= ∅

in U(X).
(4) X is ST ′4 if and only if X is T1 and X/F is ST ′3 for all strongly closed F 6= ∅

in U(X).
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Remark 5.1. 1. For the category Top of topological spaces, all of the T4’s reduce
to the usual T4 separation axiom [2,7, 10].

2. If U : E → B, where B is a topos [17], then Definition 5.1 still makes sense
since each of these notions requires only finite products and finite colimits in
their definitions.

Let (X, δ) be in Prox, and F be a nonempty subset of X. Let q : (X, δ)→ (X/F, δ∗)
be the quotient map that identifying F to a point, ∗ [2].

Theorem 5.1. If (X, δ) is T 3, then (X/F, δ∗) is T 3.

Proof. Suppose (X, δ) is T 3. Let a and b be any distinct pair of points in X/F . By
Corollary 4.1, we only need to show that ({a}, {b}) /∈ δ∗, where δ∗ is the structure on
X/F induced by q.

Suppose that a 6= ∗. By definition of q map, there exist a ∈ X and F ⊂ X
such that q(a) = a and q(c) = ∗, for any c ∈ F . Since a 6= c for any c ∈ F
(a /∈ F ) and (X, δ) is T 3, then {a} δ {c}. By the condition (P2) of Definition 2.1
we obtain {a} δ F . Then we have {a} δ F = q−1({a}) δ q−1({∗}). It follows that
by p-neighborhood relation definition and Definition 2.5, for each binary rational s
in [0, 1] there is some Cs ⊂ X/F such that C0 = {a}, C1 = {∗}c and s < t implies
q−1(Cs)�δ q

−1(Ct) = q−1({a})�δ (q−1({∗}))c = q−1({a})�δ q
−1({∗}c) if and only

if {a} �∗ {∗}c. Hence {a} δ∗ {∗}, i.e., ({a}, {∗}) /∈ δ∗.
Let a 6= b 6= ∗. By definition of q map, there exists a pair a, b ∈ X such that q(a) = a

and q(b) = b. In this case q map can be considered as one-to-one map. Suppose that
{a} δ∗ {b}. By definition of q map and Definition 2.5, we have {a} δ∗ {b} if and only
if q−1({a}) δ q−1({b}) = {a} δ {b}. But {a} δ {b} since (X, δ) is T 3. Hence {a} δ

∗ {b}
i.e., ({a}, {b}) /∈ δ∗.

Consequently for each distinct points a and b in X/F , we have ({a}, {b}) /∈ δ∗.
Hence by Corollary 4.1, (X/F, δ∗) is T 3. �

Theorem 5.2. If (X, δ) is T ′3 (resp. ST 3 and ST ′3), then (X/F, δ∗) is T ′3 (resp. ST 3
and ST ′3).

Proof. It follows from Corollary 4.1, and by using the same argument used in the
proof of Theorem 5.1. �

Corollary 5.1. Let (X, δ) be an Efremovich proximity space, then the following are
equivalent.

(1) (X, δ) is T 4.
(2) (X, δ) is T ′4.
(3) (X, δ) is ST 4.
(4) (X, δ) is ST ′4.
(5) For each distinct pair x and y in X, ({x}, {y}) /∈ δ.

Proof. It follows from Theorems 3.4 (3), 5.1 and 5.2. �
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We give explicit relationships among the generalized separation properties in the
topological category of proximity spaces.

Remark 5.2. Let (X, δ) be in Prox.
(i) By Theorems 3.4 (2), 3.4 (4), 3.5, all Efremovich proximity spaces (X, δ) are

T ′0, PreT 2 and KT2.
(ii) By Definition 3.3, Theorems 3.4, 3.5, 3.6 and Corollaries 4.1, 5.1, (X, δ) is

T ′0 or PreT 2 or KT2 if (X, δ) is T 0 or T0 or T1 or T1 or PreT ′2 or T 2 or
T ′2 or T2 or LT2 or all forms of T3 (T 3, T ′3, ST 3, ST ′3, KT3, LT3) or all
forms of T4 (T 4, T ′4, ST 4, ST ′4). But the converse implication is not true, in
general. For example, let X = {x, y} and δ = {(X,X), ({x}, {x}), ({y}, {y}),
(X, {x}), ({x}, X), (X, {y}), ({y}, X), ({x}, {y}), ({y}, {x})}. Then (X, δ) is T ′0
or PreT 2 or KT2, but it is not T 0 or T0 or T1 or T1 or PreT ′2 or T 2 or T ′2 or
T2 or LT2 or all forms of T3 and T4, since ({x}, {y}) ∈ δ but x 6= y.

Remark 5.3. Let (X, δ) be in Prox. By Definition 3.3, Theorems 3.4, 3.6 and Corol-
laries 4.1, 5.1 then the following are equivalent.

(i) (X, δ) is T 0.
(ii) (X, δ) is T0.
(iii) (X, δ) is T1.
(iv) (X, δ) is T1.
(v) (X, δ) is PreT ′2.
(vi) (X, δ) is T 2.
(vii) (X, δ) is T ′2.
(viii) (X, δ) is LT2.
(ix) (X, δ) is T2.
(x) (X, δ) is all forms of T3 (T 3, T ′3, ST 3, ST ′3, KT3, LT3).
(xi) (X, δ) is all forms of T4 (T 4, T ′4, ST 4, ST ′4).
(xii) For each distinct pair x and y in X, ({x}, {y}) /∈ δ.
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