KRAGUJEVAC JOURNAL OF MATHEMATICS VOLUME 43(1) (2019), PAGES 123–126.

ON STRAIGHT-LINE EMBEDDING OF GRAPHS

HAMED FARAMARZI¹, FREYDOON RAHBARNIA¹, AND MOSTAFA TAVAKOLI¹

ABSTRACT. Let G be a graph with n vertices, and P be a set of n points in the Euclidean space \mathbb{R}^m . A straight-line embedding of G onto P is an embedding of G onto P whose images of vertices are distinct points in P, and images of edges are straight line segments in \mathbb{R}^m . In this paper, we classify these kinds of sets.

1. INTRODUCTION

A well-known theorem of Fary [3] states that any (simple) planar graph can be embedded in the plane with straight edges. Much work has been done on straight-line embedding (see [2,5,6,10,11]). In this paper, we consider the more general case where the positions of vertices are extended to a subset of \mathbb{R}^m . To describe the problem more explicitly, we introduce the following notations. Throughout this paper, we let G = (V(G), E(G)) denote a graph of order n, and P denote a set of n points in the Euclidean space \mathbb{R}^m . A straight-line embedding Φ of G onto P in \mathbb{R}^m is a one-to-one mapping of V(G) onto P such that the images of edges are non-crossing line segments. The aim of this paper is to classify P.

2. Main Results

Definition 2.1. Let P be a set of points in \mathbb{R}^m . A straight-line embedding of G onto P in \mathbb{R}^m is a bijection $\Phi : V(G) \to P$ which for any two distinct edges $uv, u'v' \in E(V(G))$, the open line segments $\Phi(u)\Phi(v)$ and $\Phi(u')\Phi(v')$ in \mathbb{R}^m have no points in common.

Key words and phrases. Embedding of Graphs, straight-line drawing, graph drawing.

²⁰¹⁰ Mathematics Subject Classification. Primary: 05C10. Secondary: 68R10.

Received: January 04, 2017.

Accepted: September 19, 2017.

The points of P does not need to be in general position, necessarily. For example, there exists a straight-line embedding of P_n to arbitrary distinct points in \mathbb{R}^m $(n \geq 3, m \geq 2)$.

Definition 2.2. A graph G is line-drawable in \mathbb{R}^m if there exists a set of points $P \subseteq \mathbb{R}^m$ such that G has a straight-line embedding of G onto P in \mathbb{R}^m .

Definition 2.3. A subset $A \subseteq \mathbb{R}^m$ is satisfiable if for any graph G, there exists a set of points $P \subseteq A$ such that G is line-drawable in \mathbb{R}^m .

Theorem 2.1. A subset $A \subseteq \mathbb{R}^3$ is a satisfiable set if and only if A is not a subset of a finite union of planes.

Proof. Clearly, A is an infinite set. For necessity, let $A \subseteq \mathbb{R}^3$ be satisfiable. Suppose to the contrary that there are planes P_i $(1 \le i \le n)$ in \mathbb{R}^3 such that $A \subseteq \bigcup_{i=1}^n P_i$. We claim that K_{4n+1} is not line-drawable in \mathbb{R}^3 with respect to A. By the pigeon hole principle, there exists P_j $(1 \le j \le n)$ such that P_j contains at least 5 vertices of K_{4n+1} . With respect to classification of planar graphs with forbidden graphs by Kuratowski [7], the proof is complete.

For sufficiency, suppose that A is not a finite union of planes in \mathbb{R}^3 . It is enough to prove it for K_n $(n \ge 1)$. Then it will hold for any subgraph of K_n . Thus we prove it by induction on the number of vertices of the complete graph K_n . Clearly K_1 and K_2 are line-drawable. Suppose that the statement holds for K_n . Let $B \subseteq \mathbb{R}^3$ be the union of all planes containing any three vertices of K_n . In other words,

$$B = \{P | x, y, z \in P \cap V(K_n), P \text{ is a plane in } \mathbb{R}^3\} \ (n \ge 3).$$

Since A is not a subset of a finite union of planes, so that $A \setminus B \neq \phi$. We take $x_{n+1} \in A \setminus B$. x_n is not on a plane containing any three vertices of K_n $(n \geq 3)$. Therefore, by connecting x_{n+1} to each x_i $(1 \leq i \leq n)$ by a segment, K_{n+1} is line-drawable.

Corollary 2.1. A subset $A \subseteq \mathbb{R}^m$ where $m \geq 3$ is satisfiable if and only if A is not a subset of finite union of planes in \mathbb{R}^m which each plane is topologically isometric with \mathbb{R}^2 .

Example 2.1. Plane \mathbb{R}^2 is not satisfiable. In other words, all graphs can not be drawn by straight lines in \mathbb{R}^2 . The torus and double torus can be embedded on \mathbb{R}^3 [1] and since they are not subsets of finite union of planes, therefore they are satisfiable. On the other hand, the projective plane and Klein bottle cannot be embedded on \mathbb{R}^3 and with respect to strong Whitney theorem, there exist embeddings of them on \mathbb{R}^4 [1] and since similarly they are not subsets of finite union of planes, therefore they are satisfiable. Finally, each subset of \mathbb{R}^m $(m \ge 3)$ which has a non-zero Lebesgue measure is an example of a satisfiable set, as the measure of finite union of planes is zero in \mathbb{R}^m $(m \ge 3)$ [4]. **Definition 2.4.** A subset $A \subseteq \mathbb{R}^m$ is *n*-satisfiable if for any graph with at most *n* vertices, there exists $P \subseteq A$ such that *G* is line-drawable in \mathbb{R}^m .

Example 2.2. Let A be a set of n points. Then A is 4-satisfiable, if and only if A can form a polygon with at least one point inside it.

Theorem 2.2. If a subset $A \subseteq \mathbb{R}^3$ is not a subset of $\binom{n-1}{3}$ planes, where $n \ge 4$, then A is n-satisfiable.

Proof. We prove it by induction on the number of vertices of the complete graph K_n . Clearly, it is true for n = 4. Suppose that the statement holds for K_n $(n \ge 4)$. We want to show that K_{n+1} is line-drawable in \mathbb{R}^3 with vertices chosen in A which A is not a subset of $\binom{n}{3}$ planes. Since $\binom{n-1}{3} < \binom{n}{3}$, therefore $x_1, x_2, \ldots, x_n \in A$ exist such that K_n with x_1, \ldots, x_n is line-drawable in \mathbb{R}^3 with at most $\binom{n}{3}$ planes passing through (each plane pass through 3 vertices). Since A is not a subset of $\binom{n}{3}$ planes, so we can choose $x_{n+1} \in A$ which is not in common with any of these $\binom{n}{3}$ planes. Clearly, by connecting x_{n+1} to each x_i $(1 \le i \le n)$ by a segment, K_{n+1} is line-drawable. \Box

Definition 2.5. A subset $A \subseteq \mathbb{R}^m$ is strongly satisfiable if every graph is line-drawable with arbitrary distinct vertices chosen from A.

It is clear that if a subset $A \subseteq \mathbb{R}^m$ is strongly satisfiable, then it consists of points, not lines and planes. Therefore, we denote a strongly satisfiable set by P.

Theorem 2.3. A subset $P \subseteq \mathbb{R}^3$ is strongly satisfiable if and only if the following conditions hold.

- (a) P is infinite.
- (b) Each line in \mathbb{R}^3 intersects P in at most 2 points.
- (c) Each plane in \mathbb{R}^3 intersects P in at most 4 points.
- (d) If a plane in \mathbb{R}^3 intersect P in 4 points, then those 4 points are a 4-satisfiable set.

Proof. The proof is clear with respect to a straight-forward argument.

In the following examples, we will show some strongly satisfiable sets in \mathbb{R}^3 .

Example 2.3. Let $P = \{(t, \sin(t), \cos(t)) \mid t \in [0, \frac{\pi}{2}]\}.$

The intersections of a plane in general position and a helix reduces to the intersections of the cosine function and a line in general position [9]. Therefore, in the above interval every plane in \mathbb{R}^3 intersects P in at most 3 points. Moreover, every line in \mathbb{R}^3 intersects P in at most 2 points. Therefore, P satisfies all conditions of the latter theorem and P is a strongly satisfiable set.

It is clear that \mathbb{R}^3 is not a strongly satisfiable set. However, in the next example we show a satisfiable set which is dense in \mathbb{R}^3 . We construct such P by induction.

Example 2.4. Since \mathbb{R}^3 is separable, so \mathbb{R}^3 has a countable base [8]. Let $\{B_i\}_{i=1}^{\infty}$ be a countable base for \mathbb{R}^3 which each B_i is an open ball. Choose $x_1 \in B_1$ arbitrary in B_1 and then choose $x_2 \in B_2$ ($x_2 \neq x_1$) arbitrary in B_2 . Suppose we have chosen x_1, \ldots, x_n which $x_i \in B_i$ for $i = 1, \ldots, n$.

Consider all lines that pass through x_i and x_j $(1 \le i < j \le n)$ and all planes that pass through x_i , x_j and x_k $(1 \le i < j < k \le n)$. Since B_{n+1} is an open ball, we choose $x_{n+1} \in B_{n+1}$ in such a way that does not lie on the above lines and planes.

 $P = \{x_i\}_{i=1}^{\infty}$ is the desired set.

Acknowledgements. The authors are indebted to the referees for some helpful remarks leaded us to correct and improve this paper.

References

- B.-Y. Chen, Riemannian submanifolds: a survey, in: F. Dillen and L. Verstraelen, eds. Handbook of Differential Geometry, 1 North Holland Publ. Amsterdam, 2000, pp. 187-418.
- H. de Fraysseix, J. Pach and R. Pollack, Small sets supporting fary embeddings of planar graphs, in: Proceedings of the Twentieth Annual ACM Symposium on Theory of Computing, ACM, 1988, pp. 426–433.
- [3] I. Fáry, On straight lines representation of plane graphs, Acta Sci. Math. (Szeged) 11 (1948), 229–233.
- [4] G. B. Folland, Real Analysis: Modern Techniques and their Applications, John Wiley & Sons, New York, Chichester, Singapore, Toronto, 2013.
- [5] H. d. Fraysseix, J. Pach and R. Pollack, How to draw a planar graph on a grid, Combinatorica 10 (1990), 41–51.
- [6] W. Kocay, D. Neilson and R. Szypowski, Drawing graphs on the torus, Ars Combin. 59 (2001), 259–277.
- [7] C. Kuratowski, Sur le probleme des courbes gauches en topologie, Fundamenta mathematicae 15 (1930), 271–283.
- [8] J. R. Munkres, *Topology*, Prentice Hall, Upper Siddle River, New Jersey, 2000.
- [9] Y. Nievergelt, Intersections of planes and helices, or lines and sinusoids, SIAM Review 38 (1996), 136-145.
- [10] W. T. Tutte, How to draw a graph, Proc. Lond. Math. Soc. 3 (1963), 743-767.
- [11] K. Wagner, Bemerkungen zum vierfarbenproblem., Jahresbericht der Deutschen Mathematiker-Vereinigung 46 (1936), 26–32.

¹DEPARTMENT OF APPLIED MATHEMATICS, FACULTY OF MATHEMATICAL SCIENCES, FERDOWSI UNIVERSITY OF MASHHAD, P. O. BOX 1159, MASHHAD 91775, IRAN *Email address*: rahbarnia@um.ac.ir