KRAGUJEVAC JOURNAL OF MATHEMATICS VOLUME 42(4) (2018), PAGES 631–641.

IDEALS OF IS-ALGEBRAS BASED ON N-STRUCTURES

HASHEM BORDBAR^{1*}, MOHAMMAD MEHDI ZAHEDI², AND YOUNG BAE JUN³

ABSTRACT. The notion of a left (resp., right) \mathcal{N}_J -ideal is introduced, and related properties are investigated. Characterizations of a left (resp., right) \mathcal{N}_J -ideal are considered. Translations of a left (resp., right) \mathcal{N}_J -ideal are studied. We show that the homomorphic image (preimage) of a left (resp., right) \mathcal{N}_J -ideal is a left (resp., right) \mathcal{N}_J -ideal. The notion of retrenched left (resp., right) \mathcal{N}_J -ideals is introduced, and their properties are investigated.

1. INTRODUCTION

Most of the generalization of the crisp set have been conducted on the unit interval [0, 1] and they are consistent with the asymmetry observation because a (crisp) set A in a universe X can be defined in the form of its characteristic function $\mu_A : X \to \{0, 1\}$ yielding the value 1 for elements belonging to the set A and the value 0 for elements excluded from the set A. In other words, the generalization of the crisp set to fuzzy sets relied on spreading positive information that fit the crisp point $\{1\}$ into the interval [0, 1]. Because no negative meaning of information is suggested, we now feel a need to deal with negative information. To do so, we also feel a need to supply mathematical tool. To attain such object, Jun et al. [3] introduced a new function which is called negative-valued function, and constructed N-structures. They applied N-structures to BCK/BCI-algebras, and discussed N-subalgebras and N-ideals in BCK/BCI-algebras. The N-structures are applied to *BE*-algebras and subtraction algebras (see [1] and [5]).

In this paper, using the \mathcal{N} -structures, we introduce the notion of a left (resp., right) $\mathcal{N}_{\mathcal{I}}$ -ideal, and investigate related properties. We consider characterizations of a left

Key words and phrases. Left (resp., right) $\mathcal{N}_{\mathcal{I}}$ -ideal, translation, closed support, retrenched left (resp., right) $\mathcal{N}_{\mathcal{I}}$ -ideal.

²⁰¹⁰ Mathematics Subject Classification. Primary: 06F35. Secondary: 03G25, 03B52. Received: November 06, 2016.

Accepted: August 26, 2017.

(resp., right) $\mathcal{N}_{\mathcal{I}}$ -ideal, and study translations of a left (resp., right) $\mathcal{N}_{\mathcal{I}}$ -ideal. We show that the homomorphic image (preimage) of a left (resp., right) $\mathcal{N}_{\mathcal{I}}$ -ideal is a left (resp., right) $\mathcal{N}_{\mathcal{I}}$ -ideal. We also introduction the notion of retrenched left (resp., right) $\mathcal{N}_{\mathcal{I}}$ -ideals and investigate their properties.

2. Preliminaries

Let $K(\tau)$ be the class of all algebras with type $\tau = (2,0)$. By a *BCI-algebra* we mean a system $X := (X, *, \theta) \in K(\tau)$ in which the following axioms hold:

- (i) $((x * y) * (x * z)) * (z * y) = \theta;$ (ii) $(x * (x * y)) * y = \theta;$
- (ii) (x * (x + g)) + g(iii) $x * x = \theta$;
- (iv) $x * y = y * x = \theta \implies x = y;$

for all $x, y, z \in X$. If a BCI-algebra X satisfies $\theta * x = \theta$ for all $x \in X$, then we say that X is a *BCK-algebra*. We can define a partial ordering \preceq by

 $(\forall x, y \in X) \, (x \preceq y \implies x * y = \theta).$

In a BCK/BCI-algebra X, the following hold:

 $(2.1) \qquad (\forall x \in X) \ (x * \theta = x),$

(2.2) $(\forall x, y, z \in X) \ ((x * y) * z = (x * z) * y).$

A subset I of a BCK/BCI-algebra X is called an *ideal* of X if it satisfies

- (I1) $0 \in I$;
- (I2) $(\forall x, y \in X)(x * y \in I, y \in I \Rightarrow x \in I).$

We refer the reader to the books [2] and [6] for further information regarding BCK/BCI-algebras.

An **IS**-algebra (see [4]) is a non-empty set X with two binary operations "*" and " \cdot " and constant θ satisfying the conditions:

- $I(X) := (X, *, \theta)$ is a *BCI*-algebra;
- $S(X) := (X, \cdot)$ is a semigroup;
- the operation " \cdot " is distributive (on both sides) over the operation "*", that is,

$$x \cdot (y * z) = (x \cdot y) * (x \cdot z)$$
 and $(x * y) \cdot z = (x \cdot z) * (y \cdot z)$

for all $x, y, z \in X$.

In an **IS**-algebra X, the following hold:

(2.3)
$$(\forall x \in X) \ (\theta x = x\theta = \theta);$$

(2.4)
$$(\forall x, y, z \in X) \ (x \preceq y \Rightarrow xz \preceq yz, \ zx \preceq zy).$$

In what follows we use the notation xy instead of $x \cdot y$.

A nonempty subset A of an **IS**-algebra X is called a *left* (resp., *right*) \mathcal{I} -*ideal* of X (see [4]) if

- (i) A is a left (resp., right) stable subset of S(X), that is, $xa \in A$ (resp., $ax \in A$) whenever $x \in S(X)$ and $a \in A$;
- (ii) $(\forall x, y \in I(X)) \ (x * y \in A, \ y \in A \Rightarrow x \in A).$

For any family $\{a_i \mid i \in \Lambda\}$ of real numbers, we define

$$\bigvee \{a_i \mid i \in \Lambda\} := \begin{cases} \max\{a_i \mid i \in \Lambda\}, & \text{if } \Lambda \text{ is finite,} \\ \sup\{a_i \mid i \in \Lambda\}, & \text{otherwise.} \end{cases}$$
$$\bigwedge \{a_i \mid i \in \Lambda\} := \begin{cases} \min\{a_i \mid i \in \Lambda\}, & \text{if } \Lambda \text{ is finite,} \\ \inf\{a_i \mid i \in \Lambda\}, & \text{otherwise.} \end{cases}$$

3. Ideals Based on N-structures

Denote by $\mathcal{F}(X, [-1, 0])$ the collection of functions from a set X to [-1, 0]. We say that an element of $\mathcal{F}(X, [-1, 0])$ is a *negative-valued function* from X to [-1, 0] (briefly, N-function on X). By an N-structure we mean an ordered pair (X, f) of X and an N-function f on X. In what follows, let X denote an **IS**-algebra unless otherwise specified.

Definition 3.1. An \mathbb{N} -structure (X, f) is said to satisfy the *left* (resp., *right*) condition in S(X) if $f(xy) \leq f(y)$ (resp., $f(xy) \leq f(x)$) for all x and y in S(X).

Definition 3.2. An \mathbb{N} -structure (X, f) is called a *left* (resp., *right*) $\mathbb{N}_{\mathfrak{I}}$ -*ideal* of X if (X, f) satisfies the left (resp., right) condition in S(X) and

(3.1)
$$(\forall x, y \in X) \ \left(f(\theta) \le f(x) \le \bigvee \{f(x * y), f(y)\}\right).$$

Example 3.1. Define two binary operations "*" and " \cdot " on a set $X = \{\theta, a, b, c\}$ as follows:

Then X is an **IS**-algebra (see [4]). Let (X, f) be an \mathbb{N} -structure in which f is given as follows:

$$f = \begin{pmatrix} \theta & a & b & c \\ -0.8 & -0.6 & -0.3 & -0.3 \end{pmatrix}.$$

It is routine to verify that (X, f) is both a left and a right $\mathcal{N}_{\mathcal{I}}$ -ideal of X.

We provide characterizations of a left (resp., right) $\mathcal{N}_{\mathcal{I}}$ -ideal.

Theorem 3.1. An \mathbb{N} -structure (X, f) is a left $\mathbb{N}_{\mathfrak{I}}$ -ideal of X if and only if the following assertions are valid

- (3.2) $(\forall x, y \in X) \ (f(xy) \le f(y)),$
- (3.3) $(\forall x, y \in X) \ \left(f(x) \le \bigvee \{f(x * y), f(y)\}\right).$

Proof. The necessity is clear. Assume that (X, f) satisfies two conditions (3.2) and (3.3). Using (2.3) and (3.2) induce $f(\theta) = f(\theta y) \leq f(y)$ for all $y \in X$. Hence (X, f) is a left $\mathcal{N}_{\mathfrak{I}}$ -ideal of X.

Similarly we have the following theorem.

Theorem 3.2. An \mathbb{N} -structure (X, f) is a right $\mathbb{N}_{\mathfrak{I}}$ -ideal of X if and only if f satisfies the condition (3.3) and

(3.4) $(\forall x, y \in X) \ (f(xy) \le f(x)).$

For any \mathbb{N} -structure (X, f) and $t \in [-1, 0)$, the set

$$C(f;t) := \{ x \in X \mid f(x) \le t \}$$

is called a *closed* t-support of (X, f) (see [3]).

Theorem 3.3. If an \mathbb{N} -structure (X, f) is a left $\mathbb{N}_{\mathfrak{I}}$ -ideal of X, then the closed t-support of (X, f) is a left \mathfrak{I} -ideal of X for all $t \in [f(\theta), 0]$.

Proof. Let $x \in S(X)$ and $a \in C(f;t)$ for $t \in [f(\theta), 0]$. Then $f(a) \leq t$, and so $f(xa) \leq f(a) \leq t$ which shows that $xa \in C(f;t)$. It follows from (2.3) that $\theta = \theta a \in C(f;t)$. Let $x, y \in X$ be such that $x * y \in C(f;t)$ and $y \in C(f;t)$ for $t \in [f(\theta), 0]$. Then $f(x * y) \leq t$ and $f(y) \leq t$. It follows from (3.3) that

$$f(x) \le \bigvee \{ f(x * y), f(y) \} \le t$$

and so that $x \in C(f;t)$. Therefore C(f;t) is an \mathcal{I} -ideal of X for all $t \in [f(\theta), 0]$. \Box

Theorem 3.4. If an \mathbb{N} -structure (X, f) is a right $\mathbb{N}_{\mathfrak{I}}$ -ideal of X, then the closed *t*-support of (X, f) is a right \mathfrak{I} -ideal of X for all $t \in [f(\theta), 0]$.

Proof. It is similar to the proof of Theorem 3.3.

Theorem 3.5. Given an \mathbb{N} -structure (X, f), if the nonempty closed t-support of (X, f) is a left \mathfrak{I} -ideal of X for all $t \in [-1, 0)$, then (X, f) is a left $\mathbb{N}_{\mathfrak{I}}$ -ideal of X.

Proof. Assume that C(f;t) is a left J-ideal of X for all $t \in [-1,0)$ with $C(f;t) \neq \emptyset$. If f(ab) > f(b) for some $a, b \in X$, then there exists $t \in [-1,0)$ such that $f(ab) > t \ge f(b)$. It follows that $b \in C(f;t)$ and $ab \notin C(f;t)$, which is a contradiction. Hence (3.2) is valid. Now suppose that (3.3) is false. Then there exists $a, b \in X$ such that

$$f(a) > \bigvee \{ f(a * b), f(b) \}.$$

Taking $t := \frac{1}{2}(f(a) + \bigvee \{f(a * b), f(b)\})$ implies that $a * b \in C(f; t), b \in C(f; t)$ and $a \notin C(f; t)$. This is a contradiction, and so (3.3) is valid. Therefore (X, f) is a left $\mathcal{N}_{\mathcal{I}}$ -ideal of X by Theorem 3.1.

Similarly we have the following theorem.

Theorem 3.6. Given an \mathbb{N} -structure (X, f), if the nonempty closed t-support of (X, f) is a right \mathfrak{I} -ideal of X for all $t \in [-1, 0)$, then (X, f) is a right $\mathbb{N}_{\mathfrak{I}}$ -ideal of X.

Theorem 3.7. For any left \mathfrak{I} -ideal A of X and any fixed number t in an open interval (-1,0), there exists a left $\mathfrak{N}_{\mathfrak{I}}$ -ideal (X, f) of X on which A is the closed t-support of (X, f).

Proof. Let (X, f) be an \mathbb{N} -structure on which f is given as follows:

$$f(x) = \begin{cases} t, & \text{if } x \in A, \\ 0, & \text{if } x \notin A. \end{cases}$$

Let $x, y \in X$. If $y \notin A$, then f(y) = 0 and thus

$$f(x) \le 0 = \bigvee \{ f(x * y), f(y) \}.$$

Assume that $y \in A$. If $x \in A$, then x * y may or may not belong to A. In any case, we have

$$f(x) \le \bigvee \{ f(x * y), f(y) \}.$$

If $x \notin A$, then $x * y \notin A$ and hence

$$f(x) = 0 = \bigvee \{ f(x * y), f(y) \}.$$

For any $x, y \in X$, if $y \in A$ then $xy \in A$. Hence f(xy) = t = f(y). If $y \notin A$, then f(y) = 0 and so $f(xy) \leq 0 = f(y)$. It follows from Theorem 3.1 that (X, f) is a left $\mathcal{N}_{\mathcal{I}}$ -ideal of X. Obviously, A = C(f; t).

Similarly, we have the following theorem.

Theorem 3.8. For any right \mathfrak{I} -ideal A of X and any fixed number t in an open interval (-1,0), there exists a right $\mathbb{N}_{\mathfrak{I}}$ -ideal (X, f) of X on which A is the closed t-support of (X, f).

Theorem 3.9. For any nonempty subset A of X and $t \in [-1,0)$, let (X, f) be an \mathbb{N} -structure on which f is given as follows:

$$f(x) = \begin{cases} t, & \text{if } x \in A, \\ 0, & \text{if } x \notin A. \end{cases}$$

If A is a left (resp., right) \mathfrak{I} -ideal of X, then (X, f) is a left (resp., right) $\mathfrak{N}_{\mathfrak{I}}$ -ideal of X.

Proof. Suppose that A is a left J-ideal of X. Let $x, y \in X$. If $y \in A$, then $xy \in A$, and

(i) x * y may or may not belong to A whenever $x \in A$;

(ii) $x * y \notin A$ whenever $x \notin A$.

Hence f(xy) = t = f(y) and $f(x * y) \leq \bigvee \{f(x * y), f(y)\}$. If $y \notin A$, then $f(xy) \leq 0 = f(y)$ and $f(x * y) \leq 0 = \bigvee \{f(x * y), f(y)\}$. Therefore (X, f) is a left $\mathcal{N}_{\mathcal{I}}$ -ideal of X by Theorem 3.1. Similarly we can prove it for the right case. \Box

Corollary 3.1. For any nonempty subset A of X and an N-structure (X, f) with $Im(f) = \{-1, 0\}$, the following assertions are equivalent.

- (1) A is a left (resp., right) \mathcal{I} -ideal of X.
- (2) (X, f) is a left (resp., right) $\mathcal{N}_{\mathfrak{I}}$ -ideal of X.

Theorem 3.10. If an \mathbb{N} -structure (X, f) is a left (resp., right) $\mathbb{N}_{\mathfrak{I}}$ -ideal of X, then the set

$$X_f := \{ x \in X \mid f(x) = f(\theta) \}$$

is a left (resp., right) \mathfrak{I} -ideal of X.

Proof. Assume that (X, f) is a left $\mathcal{N}_{\mathfrak{I}}$ -ideal of X and let $x, y \in X$. If $y \in X_f$, then $f(xy) \leq f(y) = f(\theta)$ and so $f(xy) = f(\theta)$, that is, $xy \in X_f$. Obviously, $\theta \in X_f$. Suppose that $x * y \in X_f$ and $y \in X_f$. Then

$$f(x) \le \bigvee \{f(x * y), f(y)\} = f(\theta),$$

and so $f(x) = f(\theta)$, i.e., $x \in X_f$. Therefore X_f is a left \mathcal{I} -ideal of X. Similarly, we can prove it for the right case.

Given an \mathbb{N} -structure (X, f), we denote

$$\perp := -1 - \bigwedge \{ f(x) \mid x \in X \}.$$

For any $\alpha \in [\perp, 0]$, the α -translation of (X, f) is defined to be the new \mathbb{N} -structure (X, f_{α}) on which f_{α} is defined by $f_{\alpha}(x) = f(x) + \alpha$ for all $x \in X$.

Theorem 3.11. For every $\alpha \in [\perp, 0]$, the α -translation of a left (resp., right) $\mathbb{N}_{\mathfrak{I}}$ -ideal is a left (resp., right) $\mathbb{N}_{\mathfrak{I}}$ -ideal of X.

Proof. Let $\alpha \in [\perp, 0]$ and let (X, f) be a left $\mathcal{N}_{\mathfrak{I}}$ -ideal of X. For any $x, y \in X$, we have $f_{\alpha}(xy) = f(xy) + \alpha \leq f(y) + \alpha = f_{\alpha}(y)$ and

$$f_{\alpha}(x) = f(x) + \alpha \leq \bigvee \{f(x * y), f(y)\} + \alpha$$
$$= \bigvee \{f(x * y) + \alpha, f(y) + \alpha\}$$
$$= \bigvee \{f_{\alpha}(x * y), f_{\alpha}(y)\}.$$

It follows from Theorem 3.1 that (X, f_{α}) is a left $\mathcal{N}_{\mathcal{I}}$ -ideal of X. For the right case, it is similar.

Theorem 3.12. For \mathbb{N} -structure (X, f), if there exists $\alpha \in [\bot, 0]$ such that every α -translation of (X, f) is a left (resp., right) $\mathbb{N}_{\mathfrak{I}}$ -ideal, then (X, f) is a left (resp., right) $\mathbb{N}_{\mathfrak{I}}$ -ideal of X.

Proof. Assume that the α -translation (X, f_{α}) of (X, f) is a left $\mathbb{N}_{\mathcal{I}}$ -ideal of X. For any $x, y \in X$, we have $f(xy) + \alpha = f_{\alpha}(xy) \leq f_{\alpha}(y) = f(y) + \alpha$ and

$$f(x) + \alpha = f_{\alpha}(x) \leq \bigvee \{f_{\alpha}(x * y), f_{\alpha}(y)\}$$
$$= \bigvee \{f(x * y) + \alpha, f(y) + \alpha\}$$
$$= \bigvee \{f(x * y), f(y)\} + \alpha.$$

636

It follows that $f(xy) \leq f(y)$ and $f(x) \leq \bigvee \{f(x * y), f(y)\}$. Therefore (X, f) is a left $\mathcal{N}_{\mathfrak{I}}$ -ideal of X by Theorem 3.1.

For any N-structure (X, f), $\alpha \in [\bot, 0]$ and $t \in [-1, \alpha)$, the set

$$C_{\alpha}(f;t) := \{ x \in X \mid f(x) \le t - \alpha \}$$

is called the α -translation of closed t-support of (X, f)

Theorem 3.13. Let (X, f) be an \mathbb{N} -structure and $\alpha \in [\bot, 0]$. If (X, f) is a left (resp., right) \mathbb{N}_{J} -ideal of X, then the α -translation of closed t-support of (X, f) is a left (resp., right) \mathbb{J} -ideal of X for all $t \in [-1, \alpha)$.

Proof. Let $x, y \in X$. If $y \in C_{\alpha}(f; t)$, then $f(y) \leq t - \alpha$ and so

(3.5)
$$f(xy) \le f(y) \le t - \alpha.$$

Thus $xy \in C_{\alpha}(f;t)$. Suppose that $x * y \in C_{\alpha}(f;t)$ and $y \in C_{\alpha}(f;t)$. Then

$$f(\theta) \le f(x) \le \bigvee \{f(x * y), f(y)\} \le t - \alpha$$

by (3.1). Thus $\theta \in C_{\alpha}(f;t)$ and $x \in C_{\alpha}(f;t)$. Consequently, $C_{\alpha}(f;t)$ is a left \mathcal{I} -ideal of X for all $t \in [-1, \alpha)$. Similarly we can prove it for the right case.

Theorem 3.14. For any \mathbb{N} -structure (X, f) and $\alpha \in [\perp, 0]$, the following assertions are equivalent.

- (1) The α -translation of closed t-support of (X, f) is a left (resp., right) \Im -ideal of X for all $t \in [-1, \alpha)$.
- (2) The α -translation of (X, f) is a left (resp., right) $\mathcal{N}_{\mathfrak{I}}$ -ideal of X.

Proof. Suppose that (X, f_{α}) is a left $\mathcal{N}_{\mathcal{I}}$ -ideal of X for $\alpha \in [\bot, 0]$ and let $t \in [-1, \alpha)$. For any $x, y \in X$, if $x * y \in C_{\alpha}(f; t)$ and $y \in C_{\alpha}(f; t)$, then

$$f(x) + \alpha = f_{\alpha}(x) \leq \bigvee \{f_{\alpha}(x * y), f_{\alpha}(y)\}$$
$$= \bigvee \{f(x * y) + \alpha, f(y) + \alpha\}$$
$$= \bigvee \{f(x * y), f(y)\} + \alpha$$
$$\leq t - \alpha + \alpha = t$$

and so $f(x) \leq t - \alpha$. Thus $x \in C_{\alpha}(f; t)$. Since

$$f(\theta) + \alpha = f_{\alpha}(\theta) \le f_{\alpha}(x) = f(x) + \alpha \le t - \alpha + \alpha = t,$$

for any $x \in C_{\alpha}(f;t)$, we have $f(\theta) \leq t - \alpha$, i.e., $\theta \in C_{\alpha}(f;t)$. Now if $y \in C_{\alpha}(f;t)$, then $f(y) \leq t - \alpha$ which implies that

$$f(xy) + \alpha = f_{\alpha}(xy) \le f_{\alpha}(y) = f(y) + \alpha \le t,$$

that is, $f(xy) \leq t - \alpha$ for all $x \in X$. Hence $xy \in C_{\alpha}(f;t)$, and therefore $C_{\alpha}(f;t)$ is a left \mathcal{I} -ideal of X.

Conversely, assume that the α -translation of closed t-support of (X, f) is a left J-ideal of X for all $t \in [-1, \alpha)$. Suppose that there exist $a, b \in X$ and $t_0 \in [-1, \alpha)$

such that $f_{\alpha}(ab) > t_0 \ge f_{\alpha}(b)$. Then $f(ab) + \alpha > t_0$ and $f(b) + \alpha \le t_0$, which imply that $b \in C_{\alpha}(f; t_0)$ and $ab \notin C_{\alpha}(f; t_0)$. This is a contradiction, and thus $f_{\alpha}(xy) \le f_{\alpha}(y)$ for all $x, y \in X$. If

$$f_{\alpha}(a) > \bigvee \{ f_{\alpha}(a * b), f_{\alpha}(b) \},\$$

for some $a, b \in X$, then there exists $t_1 \in [-1, \alpha)$ such that

$$f_{\alpha}(a) > t_1 \ge \bigvee \{ f_{\alpha}(a * b), f_{\alpha}(b) \},\$$

which implies that $f(a) > t_1 - \alpha$, $f(a * b) \leq t_1 - \alpha$ and $f(b) \leq t_1 - \alpha$. Hence $a * b \in C_{\alpha}(f; t_1)$ and $b \in C_{\alpha}(f; t_1)$, but $a \notin C_{\alpha}(f; t_1)$, which is a contradiction. Hence $f_{\alpha}(x) \leq \bigvee \{f_{\alpha}(x * y), f_{\alpha}(y)\}$ for all $x, y \in X$. Therefore (X, f_{α}) is a left $\mathcal{N}_{\mathcal{I}}$ -ideal of X by Theorem 3.1.

Given two \mathbb{N} -structures (X, f) and (X, g), we say that (X, f) is a *retrenchment* of (X, g) if $f \subseteq g$, that is, $f(x) \leq g(x)$ for all $x \in X$.

Definition 3.3. Given two \mathbb{N} -structures (X, f) and (X, g), we say that (X, f) is a retrenched left (resp., right) $\mathbb{N}_{\mathfrak{I}}$ -ideal of (X, g), denoted by

 $(X, f) \subseteq_l (X, g)$ (resp., $(X, f) \subseteq_r (X, g)$),

if (X, f) is a retrenchment of (X, g), and (X, f) is a left (resp., right) $\mathcal{N}_{\mathcal{I}}$ -ideal of X whenever (X, g) is a left (resp., right) $\mathcal{N}_{\mathcal{I}}$ -ideal of X.

Theorem 3.15. Let (X, g) be a left (resp., right) $\mathbb{N}_{\mathfrak{I}}$ -ideal of X. For every $\alpha \in [\bot, 0]$, the α -translation (X, g_{α}) of (X, g) is a retrenched left (resp., right) $\mathbb{N}_{\mathfrak{I}}$ -ideal of X.

Proof. For any $x \in X$, we have $g_{\alpha}(x) = g(x) + \alpha \leq g(x)$. Thus (X, g_{α}) is a retrenchment of (X, g). If (X, g) is a left $\mathcal{N}_{\mathfrak{I}}$ -ideal of X, then Theorem 3.11 shows that (X, g_{α}) is a left $\mathcal{N}_{\mathfrak{I}}$ -ideal of X. Therefore (X, g_{α}) is a retrenched left $\mathcal{N}_{\mathfrak{I}}$ -ideal of X. Similarly, we can prove it for the right case. \Box

Theorem 3.16. Let (X,g) be a left (resp., right) $\mathbb{N}_{\mathfrak{I}}$ -ideal of X. If (X, f_1) and (X, f_2) are retrenched left (resp., right) $\mathbb{N}_{\mathfrak{I}}$ -ideals of (X,g), then so is $(X, f_1 \cup f_2)$, where $(f_1 \cup f_2)(x) = \bigvee \{f_1(x), f_2(x)\}$ for all $x \in X$.

Proof. Assume that (X, f_1) and (X, f_2) are retrenched left $\mathcal{N}_{\mathcal{I}}$ -ideals of a left $\mathcal{N}_{\mathcal{I}}$ -ideal (X, g) of X. Then $f_1(x) \leq g(x)$ and $f_2(x) \leq g(x)$, for all $x \in X$. Thus $(f_1 \cup f_2)(x) = \bigvee \{f_1(x), f_2(x)\} \leq g(x)$ for all $x \in X$, and so $(X, f_1 \cup f_2)$ is a retrenchment of (X, g). For any $x, y \in X$, we have

$$(f_1 \cup f_2)(xy) = \bigvee \{f_1(xy), f_2(xy)\} \\ \leq \bigvee \{f_1(y), f_2(y)\} \\ = (f_1 \cup f_2)(y)$$

and

$$(f_1 \cup f_2)(x) = \bigvee \{f_1(x), f_2(x)\} \\ \leq \bigvee \{\bigvee \{f_1(x * y), f_1(y)\}, \bigvee \{f_2(x * y), f_2(y)\}\} \\ = \bigvee \{\bigvee \{f_1(x * y), f_2(x * y)\}, \bigvee \{f_1(y), f_2(y)\}\} \\ = \bigvee \{(f_1 \cup f_2)(x * y), (f_1 \cup f_2)(y)\}.$$

It follows from Theorem 3.1 that $(X, f_1 \cup f_2)$ is a left $\mathcal{N}_{\mathcal{I}}$ -ideal of X. Therefore $(X, f_1 \cup f_2)$ is a retrenched left $\mathcal{N}_{\mathcal{I}}$ -ideal of (X, g). The proof is similar for the right case.

Theorem 3.17. Let (X, g) be a left $\mathbb{N}_{\mathfrak{I}}$ -ideal of X and let $\alpha, \beta \in [\bot, 0]$. If $\alpha \leq \beta$, then the α -translation (X, g_{α}) of (X, g) is a retrenched left $\mathbb{N}_{\mathfrak{I}}$ -ideal of the β -translation (X, g_{β}) of (X, g).

Proof. Note that the α -translation (X, g_{α}) and the β -translation (X, g_{β}) of (X, g) are left $\mathcal{N}_{\mathcal{I}}$ -ideal of X by Theorem 3.11. If $\alpha \leq \beta$, then

$$g_{\alpha}(x) = g(x) + \alpha \le g(x) + \beta = g_{\beta}(x),$$

for all $x \in X$. Hence (X, g_{α}) is a retrenchment of (X, g_{β}) . Therefore (X, g_{α}) is a retrenched left $\mathcal{N}_{\mathfrak{I}}$ -ideal of (X, g_{β}) .

Similarly we have the following theorem for the right case.

Theorem 3.18. Let (X,g) be a right \mathbb{N}_{J} -ideal of X and let $\alpha, \beta \in [\bot, 0]$. If $\alpha \leq \beta$, then the α -translation (X, g_{α}) of (X, g) is a retrenched right \mathbb{N}_{J} -ideal of the β -translation (X, g_{β}) of (X, g).

Theorem 3.19. Let (X, g) be a left (resp., right) $\mathbb{N}_{\mathfrak{I}}$ -ideal of X and let $\beta \in [\bot, 0]$. For every retrenched left (resp., right) $\mathbb{N}_{\mathfrak{I}}$ -ideal (X, f) of the β -translation (X, g_{β}) of (X, g), there exists $\alpha \in [\bot, 0]$ such that $\alpha \leq \beta$ and (X, f) is a retrenched left (resp., right) $\mathbb{N}_{\mathfrak{I}}$ -ideal of the α -translation (X, g_{α}) of (X, g).

Proof. It is straightforward.

A mapping $\varphi : X \to Y$ is called a *homomorphism* of **IS**-algebras if $\varphi(x * y) = \varphi(x) * \varphi(y)$ and $\varphi(xy) = \varphi(x)\varphi(y)$, for all $x, y \in X$.

Let $\varphi : X \to Y$ be an onto mapping. Given an \mathbb{N} -structure (Y, g), the \mathbb{N} -structure (X, f), where $f = g \circ \varphi$, is called the *preimage* of (Y, g) under φ . Given an \mathbb{N} -structure (X, f), the *image* of (X, f) under φ is defined to be the \mathbb{N} -structure (Y, g) on which g is denoted by $\varphi(f)$ and is given by

$$g(y) = \bigwedge_{x \in \varphi^{-1}(y)} f(x),$$

for all $y \in Y$.

Theorem 3.20. Every preimage of a left (resp., right) \mathcal{N}_{J} -ideal under onto homomorphism is a left (resp., right) \mathcal{N}_{J} -ideal.

Proof. Let $\varphi : X \to Y$ be an onto homomorphism of **IS**-algebras and let an \mathcal{N} structure (X, f) is the preimage of a left $\mathcal{N}_{\mathcal{I}}$ -ideal (Y, g) of Y. For any $x, y \in X$, we have

$$f(xy) = (g \circ \varphi)(xy) = g(\varphi(xy))$$
$$= g(\varphi(x)\varphi(y)) \le g(\varphi(y))$$
$$= (g \circ \varphi)(y) = f(y)$$

and

$$\begin{split} f(x) &= (g \circ \varphi)(x) = g(\varphi(x)) \\ &\leq \bigvee \{ g(\varphi(x) * y'), g(y') \} \text{ for all } y' \in Y \\ &= \bigvee \{ g(\varphi(x) * \varphi(y)), g(\varphi(y)) \} \\ &= \bigvee \{ g(\varphi(x * y)), g(\varphi(y)) \} \\ &= \bigvee \{ (g \circ \varphi)(x * y), (g \circ \varphi)(y) \} \\ &= \bigvee \{ f(x * y), f(y) \}. \end{split}$$

It follows from Theorem 3.1 that (X, f) is a left \mathcal{N}_1 -ideal of X. Similarly we can verify it for the right case.

Lemma 3.1. Let $\varphi: X \to Y$ be an onto mapping. Given an \mathbb{N} -structure (X, f) and $t \in [-1, 0), we have$

$$C(\varphi(f);t) = \bigcap_{t < s < 0} \varphi(C(f;t-s)).$$

Proof. For any $y = f(x) \in Y$, if $y \in C(\varphi(f); t)$, then

$$\bigwedge_{z \in \varphi^{-1}(\varphi(x))} f(z) = \varphi(f)(\varphi(x)) = \varphi(f)(y) \le t.$$

Hence, for every $s \in (t,0)$, there exists $x_0 \in \varphi^{-1}(y)$ such that $f(x_0) \leq t - s$. Thus

 $y = \varphi(x_0) \in \varphi(C(f; t-s))$, and so $y \in \bigcap_{t \le s \le 0} \varphi(C(f; t-s))$. Conversely, let $y \in \bigcap_{t \le s \le 0} \varphi(C(f; t-s))$. Then $y \in \varphi(C(f; t-s))$ for every $s \in (t, 0)$, and hence there exists $x_0 \in C(f; t-s)$ such that $y = \varphi(x_0)$. It follows that $f(x_0) \leq t-s$ and $x_0 \in \varphi^{-1}(y)$. Therefore

$$\varphi(f)(y) = \bigwedge_{x \in \varphi^{-1}(y)} f(x) \le \bigwedge_{t < s < 0} \{t - s\} = t,$$

and thus $y \in C(\varphi(f); t)$.

Theorem 3.21. Every image of a left (resp., right) N_1 -ideal under onto homomorphism is a left (resp., right) \mathcal{N}_{I} -ideal.

Proof. Let $\varphi : X \to Y$ be an onto homomorphism of **IS**-algebras and let an \mathbb{N} -structure (Y,g) is the image of a left $\mathbb{N}_{\mathcal{I}}$ -ideal (X,f) of X. Let $t \in [-1,0)$ be such that $C(\varphi(f);t) \neq \emptyset$. Then

$$C(\varphi(f);t) = \bigcap_{t < s < 0} \varphi(C(f;t-s)),$$

by Lemma 3.1, and so $\varphi(C(f;t-s))$ is nonempty for all $s \in (t,0)$. Since (X, f) is a left $\mathbb{N}_{\mathcal{I}}$ -ideal of X, C(f;t-s) is a left \mathcal{I} -ideal of X and so the onto homomorphic image $\varphi(C(f;t-s))$ of C(f;t-s) under φ is a left \mathcal{I} -ideal of Y. Hence $C(\varphi(f);t)$ is a left \mathcal{I} -ideal of Y. It follows from Theorem 3.5 that (Y,g) is a left $\mathbb{N}_{\mathcal{I}}$ -ideal of Y. \Box

Acknowledgements. The research is supported by the Iranian National Science Foundation (Grant No. 96008529)

References

- S. Abdullah and A. F. Ali, Applications of N-structures in implicative filters of BE-algebras, Journal of Intelligent & Fuzzy Systems 29(2) (2015), 517–524.
- [2] Y. S. Huang, *BCI-algebra*, Science Press, Beijing, 2006.
- [3] Y. B. Jun, K. J. Lee and S. Z. Song, N-ideals of BCK/BCI-algebras, J. Chungcheong Math. Soc. 22 (2009), 417–437.
- [4] Y. B. Jun, X. L. Xin and E. H. Roh, A class of algebras related to BCI-algebras and semigroups, Soochow Journal of Mathematics 24(4) (1998), 309–321.
- [5] K. J. Lee and Y. B. Jun, The essence of subtraction algebras based on N-structures, Commun. Korean Math. Soc. 27(1) (2012), 15–22.
- [6] J. Meng and Y. B. Jun, BCK-algebras, Kyungmoon Sa Co. Seoul, 1994.

¹DEPARTMENT OF MATHEMATICS, SHAHID BEHESHTI UNIVERSITY, TEHRAN, IRAN *Email address*: Bordbar.amirh@gmail.com

²DEPARTMENT OF MATHEMATICS, GRADUATE UNIVERSITY OF ADVANCED TECHNOLOGY, MAHAN-KERMAN, IRAN *Email address*: zahedi_mm@kgut.ac.ir

³DEPARTMENT OF MATHEMATICS EDUCATION, GYEONGSANG NATIONAL UNIVERSITY, JINJU 52828, KOREA *Email address*: skywine@gmail.com

*Corresponding Author