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TWIST PRODUCT DERIVED FROM Γ-SEMIHYPERGROUP

S. OSTADHADI-DEHKORDI

Abstract. The aim of this research work is to define a new class of hyperstructure
that we call twist product. We first introduce the concept of left and right (∆, G)-
sets and by using this new idea we introduce the concept of flat Γ-semihypergroup,
absolutely Γ-semihypergroup, twist product and extension property that product
that play an important role in homology algebra.

1. Introduction

The hypergroup notion was introduced in 1934 by a French mathematician F. Marty
[11], at the 8th Congress of Scandinavian Mathematicians. He published some notes on
hypergroups, using them in different contexts: algebraic functions, rational fractions,
non commutative groups. Algebraic hyperstructures are a suitable generalization of
classical algebraic structures. In a classical algebraic structure, the composition of
two elements is an element, while in an algebraic hyperstructure, the composition of
two elements is a set. Since then, hundreds of papers and several books have been
written on this topic, see [2–6].

Recently, the notion of Γ-hyperstructure introduced and studied by many researcher
and represent an intensively studied field of research, for example, see [1, 7–10]. The
concept of Γ-semihypergroups was introduced by Davvaz et al. [1, 10] and is a gener-
alization of semigroups, a generalization of semihypergroups and a generalization of
Γ-semigroups.

In this paper, we denote the notion of left(right) (∆, G)-set, (G1,∆, G2)-biset, twist
product, flat Γ-semihypergroup and absolutely flat Γ-semihypergroup. Also, we prove
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that twist product exists and unique up to isomorphism such that product that play
an important role in homology algebra.

2. Introduction and Preliminaries

In this section, we present some basic notion of Γ-semihypergroup. These definitions
and results are necessary for the next section.

LetH be a non-empty set, then the map ◦ : H×H → P ∗(H) is called hyperoperation
or join operation on the set H, where P ∗(H) denotes the set of all non-empty subsets
of H. A hypergroupoid is a set H together with a (binary) hyperoperation. A
hypergroupoid (H, ◦) is called a semihypergroup if for all a, b, c ∈ H, we have a◦(b◦c) =
(a ◦ b) ◦ c. A hypergroupoid (H, ◦) is called quasihypergroup if for all a ∈ H, we have
a ◦H = H ◦ a = H. A hypergroupoid(H, ◦) which is both a semihypergroup and a
quasihypergroup is called a hypergroup.

Definition 2.1. [10] Let G and Γ be nonempty set and α : G × G → P ∗(G) be a
hyperoperation, where α ∈ Γ. Then, G is called Γ-hypergroupoid.

For any two nonempty subset G1 and G2 of G, we define

G1αG2 =
⋃

g1∈G1,g2∈G2

g1αg2, G1α{x} = G1αx, {x}αG2 = xαG2.

A Γ-hypergroupoid G is called Γ-semihypergroup if for all x, y, z ∈ G and α, β ∈ Γ we
have

(xαy)βz = xα(yβz).

Example 2.1. Let Γ ⊆ N be a nonempty set. We define

xαy = {z ∈ N : z ≥ max{x, α, y}},

where α ∈ Γ and x, y ∈ N. Then, N is a Γ-semihypergroup.

Example 2.2. Let Γ = {α1, α2, . . . , αn}. Then, we define hyperoperations xαky =
xykZ. Hence Z is a Γ-semihypergroup.

Example 2.3. Let G be a nonempty set and Γ be a nonempty set of G. We define
xαy = {x, α, y}. Then, G is a Γ-semihypergroup.

Example 2.4. Let (Γ, ·) be a semigroup and {Aα}α∈Γ be a collection of nonempty
disjoint sets and G = ⋃

α∈Γ Aα. For every g1, g2 ∈ G and α ∈ Γ, we define g1αg2 =
Aα1αα2 , where g1 ∈ Aα1 and g2 ∈ Aα2 .

Let G be a Γ-semihypergroup. Then, an element eα ∈ G is called α-identity if
for every x ∈ G, we have x ∈ eααx ∩ xαeα and eα is called scaler α-identity if
x = eααx = xαeα. We note that if for every α ∈ Γ, e is a scaler α-identity, then
xαy = xβy, where α, β ∈ Γ and x, y ∈ G. Indeed,

xαy = (xβe)αy = xβ(eαy) = xβy.
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Let G be a Γ-semihypergroup and for every α ∈ Γ has an α-identity. Then, G is called
a Γ-semihypergroup with identity. In a same way, we can define Γ-semihypergroup
with scaler identity.

A Γ-semihypergroup G is commutative when
xαy = yαx,

for every x, y ∈ G and α ∈ Γ.

Definition 2.2. Let G be a Γ-semihypergroup and ρ be an equivalence relation on
G. Then, ρ is called right regular relation if xρy and g ∈ G implies that for every
t1 ∈ xαg there is t2 ∈ yαg such that t1ρt2 and for every s1 ∈ yαg there is s1 ∈ xαg
such that s1ρs2. In a same way, we can define left regular relation. An equivalence
relation ρ is called strong regular when xρy and g implies that for every t1 ∈ xαg and
t2 ∈ yαg t1ρt2.

Example 2.5. Let R = ⋃
n∈ZAn where An = [n, n+ 1) and x, y ∈ R such that x ∈ An,

y ∈ Am and α ∈ Z. Then, R is a Z-semihypergroup such that we define xαy = Anαm.
Let

xρy ⇔ 2|n−m,x ∈ An, y ∈ Am.
Then, the relation ρ is strong regular.

Proposition 2.1. Let G be a Γ-semihypergroup and ρ be a regular relation on G.
Then, [G : ρ] = {ρ(x) : x ∈ G} is a Γ̂-semihypergroup with respect the following
hyperoperation

ρ(x)α̂ρ(y) = {ρ(z) : z ∈ ρ(x)αρ(y)},
where Γ̂ = {α̂ : α ∈ Γ}.

Proof. The proof is straightforward. �

Corollary 2.1. Let G be a Γ-semihypergroup and ρ be an equivalence relation G.
Then, ρ is regular (strong regular) if and only if [G : ρ] is Γ̂-semihypergroup (Γ̂-
semigroup).

Let X be a left (∆, G)-set and n be a nonzero natural number. We say that
aβnb⇔ (∃δ1, δ2, . . . , δn ∈ ∆, x ∈ X, g1, g2, . . . , gn ∈ G) {a, b} ⊆ g1δ1g2δ2, . . . , gnδnx.

Let β = ⋃
n≥1 βn. Clearly, the relation ß is reflexive and symmetric. Denote by β∗

the transitive closure.
Let G be a Γ-semihypergroup and α ∈ Γ. We define x ◦ y = xαy for every x, y ∈ G.

Hence (G, ◦) becomes a semihypergroup, we denote this semihypergroup by G[α].

Definition 2.3. Let G1 and G2 be Γ-semihypergroups with identity. Then, a map
ϕ : G1 → G2 is called α-homomorphism if ϕ(xαy) = ϕ(x)αϕ(y) and ϕ(eα) = eα
for every x, y ∈ G1. If for every α ∈ Γ, ϕ is an α-homomorphism, then ϕ is called
homomorphism.
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3. Twist Product

In this section we introduce a relation denoted by ρ∗ which we shall use in order to
define a new derived structure of Γ-semihypergroup that we called twist product.

Let G be a Γ-semihypergroup with identity and X, ∆ be non-empty sets. We say
that X is a left (∆, G)- set if there is a scaler hyperaction δ : G×X → P ∗(X) with
the following properties:

(g1αg2)δx =g1δ(g2δx),
eαδx =x,

for every g1, g2 ∈ G, α ∈ Γ, α ∈ Γ, x ∈ X and δ ∈ ∆.
In a same way, we can define a right (∆, G)-set. LetG1 andG2 be Γ-semihypergroups

and X be a non-empty set. Then, we say that X is a (G1,∆, G2)-bisets if it is a left
(∆, G1)-set, right (∆, G2)-set and

(g1δ1x)δ2g2 = g1δ1(xδ2g2),

for every δ1, δ2 ∈ ∆, g1 ∈ G1, g2 ∈ G2 and x ∈ X.
If G is a commutative Γ-semihypergroup, then there is no distinction between a left

and a right (∆, G)-set. A left (∆, G)-subset Y of X such that Y∆X ⊆ Y is called left
(∆, G)-subset of X. A map ϕ : X → Y from a left (∆, G)-set X into a left (∆, G)-set
Y is called morphism (G-morphism) if

ϕ(gδx) = gδϕ(x),

for every x ∈ X, δ ∈ ∆ and g ∈ G.
Let X be a left (∆, G)-set and ρ be an equivalence relation on X and A,B be

nonempty subsets of X. Then,

AρB ⇔ (∀a ∈ A)(∃b ∈ B) (a, b) ∈ ρ ∧ (∀b ∈ B)(∃a ∈ A) (a, b) ∈ ρ.

An equivalence relation ρ on left (∆, G)-set X is called regular, if for every x, y ∈ X,
δ ∈ ∆ and g ∈ G

xρy ⇒ (gδx)ρ(gδy).
The quotient [X : ρ] is a left (∆̂, G)-set by following operation:

gδ̂(ρ(x)) = {ρ(t) : t ∈ gδx},

where ∆̂ = {δ̂ : δ ∈ ∆}. The map π : X → [X : ρ] defined by π(x) = ρ(x), for every
x ∈ X is a morphism.

Example 3.1. Let G be a Γ-semihypergroup with scaler identity and G1 be a Γ-
subsemihypergroup of G. Then, G1 is a (Γ, G1)-biset in the obvious way.

Example 3.2. Let ρ be a left regular relation on Γ-semihypergroup G. Then, there is
a well-defined action of G on [G : ρ] given by

gα̂(ρ(x)) = {ρ(t) : t ∈ gαx},
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where α̂ ∈ Γ̂ such that Γ̂ = {α̂ : α ∈ Γ}. Hence, with this definition [G : ρ] is a left
(Γ̂, G)-system.

It is easy to see that the cartesian product X × Y of a left (∆, G1)-set X and a
right (∆, G2)-set Y becomes (G1, ∆̂, G2)-biset if we make the obvious definition

g1δ̂1(x, y) = {(t, y) : t ∈ g1δ1x}, (x, y)δ̂2g2 = {(x, t) : t ∈ yδ2g2},

where δ̂1, δ̂2 ∈ ∆̂, x ∈ X, y ∈ Y and g1 ∈ G1, g2 ∈ G2.
Let X and Y be (G1,∆, G2)-and (G2,∆, G3)-bisets, respectively and Z be a

(G1,∆, G3)-biset. Then, the cartesian product X × Y is (G1,∆, G3)-biset.
A (G1,∆, G3)-map ϕδ : X × Y → Z is called δ-bimap if

ϕ(xδg2, y) = ϕ(x, g2δy),
where x ∈ X, y ∈ Y, g2 ∈ G2 and δ ∈ ∆.

Theorem 3.1. Let X be a left (∆, G)-set. Then, β∗ is the smallest strongly regular
relation on X.

Proof. Suppose that aβ∗b be an arbitrary element of X. It follows that there exist
x0 = a, x1, . . . , xn = b such that for all i ∈ {0, 1, 2, . . . , n} we have xiβxi+1. Let
u1 ∈ gδa and u2 ∈ gδb, where g ∈ G, δ ∈ ∆. From xiβxi+1 it follows that there exists
a hyperproduct Pi, such that {xi, xi+1} ⊆ Pi and so gδxi ⊆ gδPi and gδxi+1 ⊆ gδPi+1,
which means that gδxiβgδxi+1. Hence for all i ∈ {0, 1, 2, . . . , n − 1} and for all
si ∈ gδxi we have siβsi+1. We consider s0 = u1 and sn = u2 then we obtain u1β

∗u2.
Then β∗ is strongly regular on a left.

Let ρ be a strongly regular relation on X. Then, we have
β1 = {(x, x) : x ∈ X} ⊆ ρ,

since ρ is reflexive. Let βn−1 ⊆ ρ and aβnb. Then, there exist g1, g2, . . . , gn ∈ G,
δ1, δ2, . . . , δn ∈ ∆ and x ∈ X such that {a, b} ⊆ ∏n

i=1 giδix = g1δ1
∏n
i=2 giδix. This

implies that there exits u, v ∈ ∏n
i=2 giδix such that a ∈ g1δ1u and v ∈ g1δ1v. We have

uβn−1v and according to the hypothesis, we obtain uρv. Since ρ is regular it follows
that aρb and βn ⊆ ρ. By induction, it follows that β ⊆ ρ. Therefore, β∗ ⊆ ρ. �

Definition 3.1. A pair (P, ψ) consisting of (G1,∆, G3)-biset P and a δ-bimap
ψ : X × Y → P will be called a twist product of X and Y over G2 if for every
(G1,∆, G3)-biset Z and for every bimap ω : X × Y → Z there exists a unique bimap
ω : P → Z such that ω ◦ ψ = ω.

Suppose that ρ is an equivalence relation on X × Y as follows:
ρ = {(t1, t2) : t1 ∈ xδg, t2 ∈ gδy, x ∈ X, y ∈ Y, g ∈ G2}.

Let us define X	Y to be [X×Y : ρ∗], where ρ∗ is a transitive closure of ρ. We denote
a typical element ρ∗(x, y) by x	 y. By definition of ρ∗, we have xδg 	 y = x	 gδy,
where δ ∈ ∆.
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Proposition 3.1. Let X and Y be (G1,∆, G2)-and (G2,∆, G3)-biset, respectively.
Then, two element x	 y and x′ 	 y′ are equal if and only if (x, y) = (x′

, y
′) or there

exist x1, x2, . . . , xn−1 in X, h1, h2, . . . , hn−1 ∈ G2 and δ ∈ ∆ such that

x ∈ x1δg1, x1δh1 = x2δg2, . . . , xiδgi = xi+1δgi+1, xn−1δhn−1 = x
′
δgn, gnδyn−1 = y

′
,

g1δy = h1δy1, g2δy1 = h2δy2, . . . , gi+1δyi = hi+1δyi+1 = gnδyn−1 = y
′
.

Proof. Suppose that we have the given sequence of equations. Then,
x	 y ∈ x1δg1 	 y = x1 	 g1δy = x1 	 h1δy1 = x1δh1 	 y1

...
= x

′ 	 gnδyn−1
= x

′ 	 y′
.

Conversely, suppose that x	 y = x
′ 	 y′ . Then, there is a sequence

(x, y) = (t1, s1), (t2, s2), (t3, s3), . . . , (tn, sn) = (x′
, y

′),

in which for each 1 ≤ i ≤ n such that ((ti, si), (ti+1, si+1) ∈ ρ or ((ti+1, si+1), (ti, si)) ∈
ρ. This complete the proof. �

Theorem 3.2. Let X and Y be (G1,∆, G2)-and (G2,∆, G3)-bisets.Then, (X 	 Y, π)
is a twist product of X and Y over G2.

Proof. It is easy to see that π : X×Y → X	Y is a δ-bimap such that π(x, y) = x	y.
Let ω : X × Y → Z, where Z is a (G1,∆, G3)-biset and ω : X × Y → Z is a δ-bimap.
We define ω : X 	 Y → Z by

ω(x	 y) = ω(x, y).

Let x	 y = x
′ 	 y′ . This implies that

ω(x, y) = ω(x1δg1, y) = ω(x1, g1δy) = ω(x1, g1δh1) = · · · = ω(x′
, y

′).

Hence ω(x	 y) = ω(x′ 	 y′). It is easy to see that ω is a δ-bimap, ω ◦ π = ω and ω is
unique with respect. �

Let G be a Γ-semihypergroup. Then, we say that G1 has the extension property in
G if for every left (∆, G)-set X and for every right (∆, G)-set Y the map X 	 Y →
X 	G	 Y defined by x	 y → x	 eα 	 y is one to one, for every α ∈ Γ.

Theorem 3.3. Let X and Y be (G1,∆, G2)-and (G2,∆, G3)-biset. Then, the twist
product X and Y over G2 is unique up to isomorphism.

Proof. Suppose that (P, ψ) and (P ′
, ψ

′) are twist product of X and Y over G2. By
definition 3.1, we find a unique ψ′ : P → P

′ and ψ : P ′ → P such that ψ ◦ ψ′ = ψ
′

and ψ : P ′ → P such ψ′ ◦ ψ = ψ. Since ψ ◦ ψ′ ◦ ψ = ψ, we have ψ′ ◦ ψ = Id. By a
similar argument, ψ ◦ ψ′ = Id. �
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We can generalize the notion of twist product three bisets. Let X, Y , Z and
W be (G1,∆, G2)-, (G2,∆, G3)-, (G3,∆, G4)- and (G1,∆, G4)-biset. Then, a map
ϕ : X × Y × Z → Z is called δ-trimap if for x ∈ X, y ∈ Y and z ∈ Z and g2 ∈ G2,
g3 ∈ G3 and δ ∈ ∆,

ϕ(xδg2, y, z) = ϕ(x, g2δy, z), ϕ(x, yδg3, z) = ϕ(x, y, g3δz).
A pair (P, ψ), where P is a (G1,∆, G4)-biset and ψ : X × Y × Z → P is a δ-

trimap is said to be twist product if for every (G1,∆, G4)-biset W and every δ-trimap
φ : X ×Y ×Z → W there is a unique φ : P → W such that φ ◦ψ = φ. By the similar
proof of Theorem 3.2, shows that X 	 (Y 	 Y ), together with the obvious trimap
(x, y, z)→ x	 (y 	 z)) is also a twist product of X, Y and Z.
Proposition 3.2. Let X, Y , Z be (G1,∆, G2)-, (G2,∆, G3)-, (G3,∆, G4)-bisets, re-
spectively. Then, X 	 (Y 	 Z) ∼= (X 	 Y )	 Z.
Proof. By the similar proof of Theorem 3.2, X 	 (Y 	 Z) and (X 	 Y )	 Z are twist
product of X, Y and Z and by Theorem 3.3, we have the twist product of X, Y and
Z are unique. Therefore, X 	 (Y 	 Z) ∼= (X 	 Y )	 Z. �

Definition 3.2. Let G1 be a Γ-subsemihypergroup of G and g ∈ G. Then, we
say that g, α-fixed by G1 if for every Γ-semihypergroup H and α-homomorphism
ϕ1, ϕ2 : G[α]→ H[α], ϕ1(g1) = ϕ2(g1), where g1 ∈ G1 implies that ϕ1(g) = ϕ2(g). If
for every α ∈ Γ, g is an α-fixed element, then we say that g is a fixed element.

The set elements of G fixed by G1 denoted by FixG(G1).
Theorem 3.4. Let G1 be a Γ-subsemihypergroup of G and g ∈ G such that eα 	 g =
g 	 eα. Then, g ∈ FixG(G1).
Proof. Suppose that eα 	 g = g 	 eα in the twist product G 	 G. Let H be a Γ-
semihypergroup and ϕ1, ϕ2 : G[α]→ H[α] such that for every x ∈ G1, ϕ1(x) = ϕ2(x)
Then, H is a (Γ, G1)-biset if we define

yδ̂h = ϕ1(y)δh = ϕ2(y)δh, hδ̂y = hδϕ1(y) = hδϕ2(y),
where y ∈ G1, δ ∈ Γ and h ∈ H.

We define ψ : G×G→ H by the rule that
ψ(g, g′) = ϕ1(g)δϕ2(g′),

where g, g′ ∈ G and δ ∈ Γ. Hence ψ is a δ-bimap. Indeed, for all x1, x2 ∈ G and
g1 ∈ G1, we have

ψ(x1δg1, x2) = ϕ1(x1)δϕ1(g1)δϕ2(x2) = ϕ1(x1)δϕ2(g1)δϕ2(x2)
= ϕ1(x1)δϕ2((g1δx2)
= ψ(x1, g1δx2).

This implies that there is a map ψ : G	G→ H such that
ψ(x1 	 x2) = ψ(x1, x2) = ϕ(x1)δϕ2(x2),
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for every (x1, x2) ∈ G	G. Since g 	 eδ = eδ 	 g,

ϕ1(g) = ϕ1(g)δϕ2(eα) = ψ(g 	 eα) = ψ(eα 	 g) = ϕ1(eα)δϕ2(g) = ϕ2(g).

Therefore, g ∈ FixG(G1) and this completes the proof. �

Let X be a left (∆, G)-set. We say that X is flat if for every monomorphism
ϕ : X1 → X2 of right (∆, G)-sets the induced map ϕ	 I : X1 	X → X2 	X is one
to one. A Γ-semihypergroup G is called absolutely flat if all left and right (∆, G)-sets
are flat. A Γ-semihypergroup G is called absolutely extendable if it has the extension
property in every Γ-semihypergroup H containing it as Γ-subsemihypergroup G.

Proposition 3.3. Let G be a absolutely flat Γ-semihypergroup. Then, G is a absolutely
extendable.

Proof. Suppose that G is a absolutely flat and G1 is a Γ-semihypergroup such that
G ≤ G1, X and Y are left (∆, G)- and right (∆, G)-sets. We have

X ∼= X 	G→ X 	G1.

Since the inclusion homomorphism from G into G1 is one to one implies that the
induced map X 	G→ X 	G1 is one to one. By the flatness of Y the following map
is one to one

X 	 Y → X 	G1 	 Y.
This completes the proof. �

Theorem 3.5. Let G be a Γ-semihypergroup such that G1 be a Γ-subsemihypergroup
of G and g be an α-fixed element. Then, eα 	 g = eα 	 g.

Proof. Suppose that X = G	G. Hence X is a (G,Γ, G)-biset by the following actions:

gα(g1 	 g2) = {t	 g2 : t ∈ gαg1}, (g1 	 g2)αg = {g1 	 t : t ∈ g2αg},

where g1, g2, g ∈ G and α ∈ Γ. Let F (X) be abelian group generated by X. We define
a binary relation on G× F (X) as follows:

(g1, x)α̂(g2, y) = {(t1, t2) : t1 ∈ g1αg2, t2 ∈ g1αy + xαg2},

where g1, g2 ∈ G, x, y ∈ F (X) and α ∈ Γ. This binary relation is associative. Indeed,

[(g1, x1)α̂(g2, x2)]β̂(g3, x3) ={(t1, t2) : t1 ∈ g1αg2, t2 ∈ g1αx2 + x1αg2}β(g3, x3)
={(t1, t2) : t1 ∈ (g1αg2)βg3, t2 ∈ (g1αg2)βx3

+ (g1αx3 + x1αg2)βg3}
={(t1, t2) : t1 ∈ g1α(g2βg3), t2 ∈ g1α(g2βx3

+ x3βg3) + x1α(g2βg3)}
=(g1, x1)α̂(g2αg3, g2αx3 + x2βg3)
=(g1, x1)α̂[(g2, x2)β̂(g3, x3)].
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Let g ∈ FixG(G1) and ϕ1 : G→ G× F (X) and ϕ2 : G→ G× F (X) as follows:

ϕ1(g1) = (g1, 0), ϕ2(g2) = (g2, g2 	 eα − eα 	 g2),

where g1, g2 ∈ G and α ∈ Γ is a fixed element. One can see that ϕ1 and ϕ2 are
α-homomorphism. Indeed,

ϕ(g1)αϕ2(g2) = (g1, g1 	 eα − eα 	 g1)α(g2, g2 	 eα − eα 	 g)
= (g1αg2, g1α(g2 	 eα − eα 	 g2) + (g1 	 eα − eα 	 g1)αg2)
= (g1αg2, ((g1αg2)	 eα − eα 	 (g1αg2))
= ϕ2(g1αg2).

If g ∈ G1, then g 	 eα = eα 	 g. This implies that ϕ1(g) = ϕ2(g) and hence for every
g ∈ FixG(G1), ϕ1(g) = ϕ2(g) and so g 	 eα = eα 	 g. This completes the proof. �

Definition 3.3. Let X, Y , Y and P be (∆, G)-sets such that β : X → Y , γ : X → Z,
µ : Y → P and ν : Z → P be morphisms. Then, we say that P is a pushout
(∆, G)-system if there exist a left (∆, G)-set, µ′ : Y → P

′ and ν ′ : Z → P
′ such that

µ
′ ◦ β = ν

′ ◦ γ, then there exists a unique morphism ϕ : P → P
′ such that ϕ ◦ µ = µ

′

and ϕ ◦ ν = ν
′ .

Proposition 3.4. Let X, Y and Z be (∆, G)-sets such that β : X → Y and γ : X →
Z be morphisms. Then, the pushout P exist.

Proof. Suppose that ρ∗ is a regular elation generated by ρ on disjoint union X ∪Y ∪Z

(a, b) ∈ ρ⇔ a ∈ X, β(a) = b or γ(a) = b.

We define ϕ : Y → [X ∪ Y ∪ Z : ρ∗] and ψ : Z → [X ∪ Y ∪ Z : ρ∗] by

ϕ(y) = ρ∗(y), ψ(z) = ρ∗(z).

One can see that [X ∪ Y ∪ Z : ρ∗] is a pushout system. �

Suppose that G is a Γ-semihypergroup, G1 is a Γ-subsemihypergroup of G, X,
Y are left (∆, G)-set and ϕ : X → Y is a morphism. We define the relation % on
T = Y 	G1 G as follows:

(y1 	 t1, y2 	 t2) ∈ %⇔(∃x1, x2 ∈ X, s1, s2 ∈ G, δ ∈ ∆) ϕ(x1) = t1, ϕ(x2) = t2,

x1δs1 = x2δs2.

Theorem 3.6. Let G be a Γ-semihypergroup, G1 be a Γ-subsemihypergroup of G, X
and Y be left and right (∆, G1)-set, respectively, and φ : X → Y be a morphism.
Then, there exist a right (∆, G)-set D and morphisms β : X → D, α : Y → D such
that α ◦ φ = β.

Proof. Suppose that T = Y 	G1 G and D = [T : %∗]. We define α : Y → D by

α(y) = %∗(y 	 e).
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Then, for all y ∈ Y and g1 ∈ G1

α(yδg1) = %∗(yδg1 	 e) = σ∗(y 	 g1) = %∗(y 	 e)δ̂g1 = α(y)δ̂g1.

We define β : X → D by
β(x) = %∗(φ(x)	 e).

Let g ∈ G and x ∈ X. Then,

β(xδg) = %∗(φ(xδx)	 e)
= %∗(φ(x)	 g)
= %∗(φ(x)	 e)δ̂g = β(x)δ̂g.

This implies that β is a morphism. Also,

α ◦ φ(x) = %∗(φ(x)	 e) = β(x).

This completes the proof. �

Theorem 3.7. Let G1 be a Γ-subsemihypergroup of G, X and Y be left and right
(∆, G1)-sets, respectively and φ : X → Y be G1- morphism. Then, D = [Y 	G1 G : %∗]
is a pushout where φ	 IdG : X 	G→ Y 	G, π : Y 	G→ D is a natural morphism,
β : X → D defined by β(x) = φ(x)	 e and γ : X 	G→ X given by γ(x	 g) = xδg,
where g ∈ G, x ∈ X and δ ∈ ∆.

Proof. It is clear that π ◦ (φ	 IdG) = β ◦ γ. Let D1 be a another pushout such that
ξ : Y 	 G → D1, β

′ : X → D1 , ξ ◦ (φ 	 IdG) = β
′ ◦ γ. Let (y1 	 g1, y2 	 g2) ∈ %

where y1, y2 ∈ Y and g1, g2 ∈ G. Then, there exist x1, x2 ∈ X and δ ∈ ∆ such that
φ(x1) = y1, φ(x2) = y2 and x1δg1 = x2δg2. We have

ξ(y1 	 g1) = ξ(φ(x1)	 g1) = ξ(φ	 IdG)(x	 g) = β
′ ◦ γ(x1 	 g1) = β

′(x1δg1)
= β

′(x2δy2) = ξ(φ(x2)	 g2) = ξ(y2 	 g2).

This implies that % ⊆ Kerlξ. Then, %∗ ⊆ Kerlξ. It follows that ξ induced a unique
G-morphism ω : D → D1 given by

ω(%∗(y 	 g)) = ξ(y 	 g),

where g ∈ G and y ∈ Y . Finally,

ω ◦ β(x) = ω(%∗(φ(x)	 e)) = ξ(φ(x)	 e)
= ξ ◦ (φ	 Id)(x	 e) = β

′ ◦ γ(x	 e)
= β

′(x).

This completes the proof. �
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