Kragujevac Journal of Mathematics Volume 42(4) (2018), Pages 485–493.

WHEN IS A BI-JORDAN HOMOMORPHISM BI-HOMOMORPHISM?

A. ZIVARI-KAZEMPOUR

ABSTRACT. For Banach algebras \mathcal{A} and \mathcal{B} , we show that if $\mathcal{U} = \mathcal{A} \times \mathcal{B}$ is commutative (weakly commutative), then each bi-Jordan homomorphism from \mathcal{U} into a semisimple commutative Banach algebra \mathcal{D} is a bi-homomorphism. We also prove the same result for 3-bi-Jordan homomorphism with the additional hypothesis that the Banach algebra \mathcal{U} is unital.

1. Introduction

Let \mathcal{A} and \mathcal{B} be complex Banach algebras and $\varphi : \mathcal{A} \to \mathcal{B}$ be a linear map. Then φ is called an n-homomorphism if for all $a_1, a_2, ... a_n \in \mathcal{A}$,

$$\varphi(a_1 a_2 ... a_n) = \varphi(a_1) \varphi(a_2) ... \varphi(a_n).$$

The concept of an n-homomorphism was studied for complex algebras by Hejazian et al. in [5]. A 2-homomorphism is then just a homomorphism, in the usual sense. One may refer to [1] for certain properties of 3-homomorphisms.

The notion of n-Jordan homomorphisms was dealt with firstly by Herstein in [6]. A linear map φ between Banach algebras $\mathcal A$ and $\mathcal B$ is called an n-Jordan homomorphism if

$$\varphi(a^n) = \varphi(a)^n, \quad a \in \mathcal{A}.$$

A 2-Jordan homomorphism is called simply a Jordan homomorphism.

It is obvious that each n-homomorphism is an n-Jordan homomorphism, but in general the converse is false. The converse statement may be true under certain conditions. For example, it is shown in [2] that every n-Jordan homomorphism between two commutative Banach algebras is an n-homomorphism for $n \in \{2, 3, 4\}$,

 $[\]label{lem:keywords} \textit{Key words and phrases.} \ \text{n-bi-homomorphism, n-bi-Jordan homomorphism, weakly commutative.} \\ 2010 \ \textit{Mathematics Subject Classification.} \ \text{Primary: 47B48.} \ \text{Secondary: 46L05, 46H25.} \\$

Received: March 03, 2017.

Accepted: April 04, 2017.

and this result extended to the case n = 5 in [3]. Lee in [7] generalized this result and proved it for all $n \in \mathbb{N}$. See also [4] for another proof of Lee's theorem.

Zelazko in [9] has given a characterization of Jordan homomorphism, that we mention in the following (see also [8]). We refer to [10] for another approach to the same result.

Theorem 1.1. Suppose that A is a Banach algebra, which need not be commutative, and suppose that B is a semisimple commutative Banach algebra. Then each Jordan homomorphism $\varphi : A \to B$ is a homomorphism.

Also it is shown in [11] that Theorem 1.1 is valid for 3-Jordan homomorphism with the extra condition that the Banach algebra \mathcal{A} is unital. Some significant results concerning Jordan homomorphisms and their generalizations on Banach algebras obtained by the author in [12].

Throughout the paper, let $\mathcal{U} = \mathcal{A} \times \mathcal{B}$. Then \mathcal{U} is a Banach algebra for the multiplication

$$(a,b)(x,y) = (ax,by), (a,b), (x,y) \in \mathcal{U},$$

and with norm

$$||(a,b)|| = ||a|| + ||b||.$$

Let \mathcal{D} be a complex Banach algebra. A bilinear map is a function $\varphi : \mathcal{U} \to \mathcal{D}$ such that for any $a \in \mathcal{A}$ the map $b \mapsto \varphi(a, b)$ is linear map from \mathcal{B} to \mathcal{D} , and for any $b \in \mathcal{B}$ the map $a \mapsto \varphi(a, b)$ is linear map from \mathcal{A} to \mathcal{D} .

A bilinear map φ is called an n-bi-homomorphism if for all $(a_i, b_i) \in \mathcal{U}$,

$$\varphi(a_1 a_2 ... a_n, b_1 b_2 ... b_n) = \varphi(a_1, b_1) \varphi(a_2, b_2) ... \varphi(a_n, b_n),$$

and it is called an n-bi-Jordan homomorphism if

$$\varphi(a^n, b^n) = \varphi(a, b)^n, \quad (a, b) \in \mathcal{U}.$$

The concept of an n-bi-Jordan homomorphism introduced by the author in [13]. A (2-bi-Jordan) 2-bi-homomorphism is called simply a (bi-Jordan) bi-homomorphism.

It is obvious that each n-bi-homomorphism is n-bi-Jordan homomorphism, but in general the converse is not true.

Recently, the author proved [13] that every bi-Jordan homomorphism from unital commutative Banach algebra $\mathcal U$ into a semisimple commutative Banach algebra $\mathcal D$ is a bi-homomorphism.

In this paper, we extended this result for nonunital Banach algebra \mathcal{U} . We also prove the same result for 3-bi-Jordan homomorphism with the additional hypothesis that the Banach algebra \mathcal{U} is unital.

2. Characterization of Bi-Jordan Homomorhisms

The following Theorem is the generalization of Theorem 4 of [13].

Theorem 2.1. Every bi-Jordan homomorphism φ from commutative Banach algebra $\mathfrak U$ into a semisimple commutative Banach algebra $\mathfrak D$ is a bi-homomorphism.

Proof. We first assume that $\mathcal{D} = \mathbb{C}$ and let $\varphi : \mathcal{U} \to \mathbb{C}$ be a bi-Jordan homomorphism. Then for all $(a,b) \in \mathcal{U}$,

(2.1)
$$\varphi(a^2, b^2) = \varphi(a, b)^2.$$

Replacing a by a + x and b by b + y in (2.1), gives

(2.2)
$$\varphi(a^2 + x^2 + 2ax, b^2 + y^2 + 2by) = \varphi(a + x, b + y)^2.$$

By Lemma 1 of [13], for all $(a, b), (x, y) \in \mathcal{U}$ we have

(2.3)
$$\varphi(a^2, by) = \varphi(a, b)\varphi(a, y)$$
 and $\varphi(ax, b^2) = \varphi(a, b)\varphi(x, b)$.

It follows from (2.2) and (2.3) that

(2.4)
$$2\varphi(ax, by) = \varphi(a, b)\varphi(x, y) + \varphi(a, y)\varphi(x, b),$$

for all $(a,b),(x,y)\in \mathcal{U}$. Take $I=\varphi(a,b)\varphi(x,y),\ J=\varphi(a,y)\varphi(x,b)$ and t=I-J. Then we get

(2.5)
$$t^2 = I^2 + J^2 - 2IJ, \quad 4\varphi(ax, by)^2 = I^2 + J^2 + 2IJ.$$

By (2.4) and (2.5), we deduce

$$\begin{split} 4\varphi(ax,by)^2 + t^2 &= 2(I^2 + J^2) \\ &= 2[\varphi(a,b)^2 \varphi(x,y)^2 + \varphi(a,y)^2 \varphi(x,b)^2] \\ &= 2[\varphi(a^2,b^2)\varphi(x^2,y^2) + \varphi(a^2,y^2)\varphi(x^2,b^2)] \\ &= 4\varphi(a^2x^2,b^2y^2) \\ &= 4\varphi(ax,by)^2. \end{split}$$

Hence, t = 0, which proves that I = J. Thus, by (2.4) we have

$$\varphi(ax, by) = \varphi(a, b)\varphi(x, y),$$

for all $(a, b), (x, y) \in \mathcal{U}$, so φ is a bi-homomorphism.

Now suppose that \mathcal{D} is semisimple and commutative. Let $\mathfrak{M}(\mathcal{D})$ be the maximal ideal space of \mathcal{D} . We associate with each $f \in \mathfrak{M}(\mathcal{D})$ a function $\varphi_f : \mathcal{U} \to \mathbb{C}$ defined by

$$\varphi_f(a,b) := f(\varphi(a,b)), \quad (a,b) \in \mathcal{U}.$$

Pick $f \in \mathfrak{M}(\mathcal{D})$ arbitrary. It is easy to see that φ_f is a bi-Jordan homomorphism, so by the above argument it is a bi-homomorphism. Thus, by the definition of φ_f we have

$$f(\varphi(ax,by)) = f(\varphi(a,b))f(\varphi(x,y)) = f(\varphi(a,b)\varphi(x,y)).$$

Since $f \in \mathfrak{M}(\mathcal{D})$ was arbitrary and \mathcal{D} is assumed to be semisimple,

$$\varphi(ax, by) = \varphi(a, b)\varphi(x, y),$$

for all $(a, b), (x, y) \in \mathcal{U}$. This complete the proof.

A bilinear map $\varphi: \mathcal{U} \to \mathcal{D}$ is called co-bi-homomorphism if

$$\varphi(ax, by) = -\varphi(a, b)\varphi(x, y),$$

for all $(a,b),(x,y) \in \mathcal{U}$, and it is called co-bi-Jordan homomorphism if

$$\varphi(a^2, b^2) = -\varphi(a, b)^2, \quad (a, b) \in \mathcal{U}.$$

By a same method as Theorem 2.1, we have the following result for co-bi-Jordan homomorphisms.

Theorem 2.2. Every co-bi-Jordan homomorphism from commutative Banach algebra \mathcal{U} into a semisimple commutative Banach algebra \mathcal{D} is a co-bi-homomorphism.

We say that the Banach algebra \mathcal{A} is weakly commutative if

$$(ax)^2 = a^2x^2$$
 and $ax^2a = x^2a^2$,

for all $a, x \in A$. Clearly, every commutative Banach algebra is weakly commutative, but in general, the converse is false. For example, let

$$\mathcal{A} = \left\{ \begin{bmatrix} a & b \\ 0 & 0 \end{bmatrix} : \quad a, b \in \mathbb{R} \right\}.$$

Then it is obvious to check that with the usual matrix product for all $x, y \in \mathcal{A}$,

$$(xy)^2 = x^2y^2$$
 and $xy^2x = y^2x^2$.

Thus, A is weakly commutative, but it is neither unital nor commutative.

Note that a unital Banach algebra is weakly commutative if and only if it is commutative.

Lemma 2.1. Let \mathcal{U} be a weakly commutative Banach algebra, and $\varphi: \mathcal{U} \to \mathbb{C}$ be a bi-Jordan homomorphism. Then

$$\varphi(ax, by) = \varphi(ax, yb) = \varphi(xa, by),$$

for all $(a,b),(x,y) \in \mathcal{U}$.

Proof. By Lemma 1 of [13],

(2.6)
$$\varphi(a^2, by + yb) = 2\varphi(a, b)\varphi(a, y), \quad (a, b), (a, y) \in \mathcal{U}.$$

Replacing a by ax in (2.6) we get

(2.7)
$$\varphi((ax)^2, by + yb) = 2\varphi(ax, b)\varphi(ax, y).$$

Replacing b by by and y by yb in (2.7), gives

(2.8)
$$\varphi((ax)^2, by^2b + yb^2y) = 2\varphi(ax, by)\varphi(ax, yb).$$

Since \mathcal{U} is weakly commutative, by (2.8) we have

$$2\varphi(ax, by)\varphi(ax, yb) = \varphi((ax)^2, by^2b + yb^2y)$$

$$= \varphi((ax)^2, y^2b^2 + b^2y^2)$$

$$= \varphi((ax)^2, b^2y^2) + \varphi((ax)^2, y^2b^2)$$

$$= \varphi(ax, by)^2 + \varphi(ax, yb)^2.$$

Thus,

$$\left(\varphi(ax, by) - \varphi(ax, yb)\right)^2 = 0,$$

which proves that

$$\varphi(ax, by) = \varphi(ax, yb),$$

for all $(a,b),(x,y) \in \mathcal{U}$. In a similar way, we can prove that $\varphi(ax,by) = \varphi(xa,by)$. This complete the proof.

The next result is the generalization of Theorem 2.1.

Theorem 2.3. Suppose that φ is a bi-Jordan homomorphism from weakly commutative Banach algebra \mathbb{U} into a semisimple commutative Banach algebra \mathbb{D} . Then φ is a bi-homomorphism.

Proof. We first assume that $\mathcal{D} = \mathbb{C}$ and let $\varphi : \mathcal{U} \to \mathbb{C}$ be a bi-Jordan homomorphism. Then for all $(a, b) \in \mathcal{U}$,

Replacing a by a + x and b by b + y in (2.9), gives

(2.10)
$$\varphi(ax + xa, by + yb) = 2\varphi(a, b)\varphi(x, y) + 2\varphi(a, y)\varphi(x, b),$$

for all $(a,b),(x,y) \in \mathcal{U}$. It follows from (2.10) and Lemma 2.1 that

$$4\varphi(ax, by) = \varphi(ax + xa, by + yb)$$

= $2\varphi(a, b)\varphi(x, y) + 2\varphi(a, y)\varphi(x, b)$.

Hence,

$$2\varphi(ax, by) = \varphi(a, b)\varphi(x, y) + \varphi(a, y)\varphi(x, b),$$

for all $(a, b), (x, y) \in \mathcal{U}$. Thus, the relation (2.4) in Theorem 2.1 holds. Now the rest of proof is similar to the proof of Theorem 2.1.

As a consequence of Theorem 2.3 we have the next result.

Corollary 2.1. Suppose that \mathcal{U} is weakly commutative and $\varphi: \mathcal{U} \to \mathbb{C}$ satisfies

$$(2.11) |\varphi(ax, by) - \varphi(a, b)\varphi(x, y)| \le \delta(||(a, b)|| + ||(x, y)||),$$

for all $(a,b),(x,y) \in \mathcal{U}$ and for some $\delta \geq 0$. Then φ is a bi-homomorphism.

Proof. Replacing (x, y) by (a, b) in (2.11), gives

$$(2.12) |\varphi(a^2, b^2) - \varphi(a, b)^2| \le 2\delta(||a|| + ||b||),$$

for all $(a, b) \in \mathcal{U}$. Take $a = 2^n x$ and $b = 2^n y$ in (2.12), then

$$|\varphi(x^2, y^2) - \varphi(x, y)^2| \le \frac{2^{n+1}\delta(||x|| + ||y||)}{2^{4n}} \to 0,$$

as $n \to \infty$. Hence,

$$\varphi(x^2, y^2) = \varphi(x, y)^2, \quad (x, y) \in \mathcal{U}.$$

Therefore, φ is a bi-Jordan and so it is a bi-homomorphism by Theorem 2.3.

Example 2.1. Let

$$\mathcal{U} = \left\{ \left(\begin{bmatrix} a & b \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} x & y \\ 0 & 0 \end{bmatrix} \right) : \quad a, b, x, y \in \mathbb{R} \right\}.$$

Then \mathcal{U} is a weakly commutative Banach algebra, but it is not commutative. Hence by Theorem 2.3, each bi-Jordan homomorphism from \mathcal{U} into a semisimple commutative Banach algebra \mathcal{D} is a bi-homomorphism and via versa.

The commutativity of Banach algebra $\mathcal D$ in Theorem 2.3 is essential. For example, let

$$\mathcal{A} = \left\{ \begin{bmatrix} a & b \\ 0 & 0 \end{bmatrix} : \quad a, b \in \mathbb{R} \right\},\,$$

as above and let \mathcal{A}^{\sharp} be the unitization of \mathcal{A} with the identity matrix as a unit. Set $\mathcal{U} = \mathcal{A} \times \mathcal{A}^{\sharp}$ and define $\varphi : \mathcal{U} \to \mathcal{A}$ by $\varphi(x, y) = xy$. Then for all $(x, y) \in \mathcal{U}$,

$$\varphi(x^2, y^2) = \varphi(x, y)^2.$$

Hence φ is bi-Jordan homomorphism, but it is not bi-homomorphism. Because, let

$$x = \begin{bmatrix} a & b \\ 0 & 0 \end{bmatrix}, \quad y = \begin{bmatrix} c & d \\ 0 & 0 \end{bmatrix}, \quad m = \begin{bmatrix} s & t \\ 0 & 0 \end{bmatrix} \quad \text{and} \quad n = I,$$

where I is the identity matrix. Then $(x, y), (m, n) \in \mathcal{U}$, but

$$\varphi(xm, yn) \neq \varphi(x, y)\varphi(m, n).$$

3. Chracterization of 3-bi-Jordan Homomorhisms

Clearly, the Banach algebra \mathcal{U} is unital if and only if both \mathcal{A} and \mathcal{B} are unital. Without any confusion we denote by e, the unit element of both \mathcal{A} and \mathcal{B} .

Lemma 3.1. Let \mathcal{U} be a unital commutative Banach algebra, and $\varphi : \mathcal{U} \to \mathbb{C}$ be a 3-bi-Jordan homomorphism. Then for all $(a,b) \in \mathcal{U}$,

(a)
$$\varphi(a^3, b^2 + b) = \varphi(a, b)^2 \varphi(a, e) + \varphi(a, b) \varphi(a, e)^2$$
,

(b)
$$\varphi(a^2 + a, b^3) = \varphi(a, b)^2 \varphi(e, b) + \varphi(a, b) \varphi(e, b)^2$$
.

Proof. The proof is straightforward.

Lemma 3.2. By the hypotheses of above Lemma, for all $(a,b),(x,y) \in \mathcal{U}$,

(a)
$$3\varphi(ax^2, b) = \varphi(a, b)\varphi(x, e)^2 + 2\varphi(a, e)\varphi(x, e)\varphi(x, b)$$
,

(b)
$$3\varphi(a,by^2) = \varphi(a,b)\varphi(e,y)^2 + 2\varphi(e,b)\varphi(e,y)\varphi(a,y)$$
.

Proof. We prove (a), that the assertion (b) can be proved similarly. Let $\varphi : \mathcal{U} \to \mathbb{C}$ be a 3-bi-Jordan homomorphism. Then for all $(a,b) \in \mathcal{U}$,

(3.1)
$$\varphi(a^3, b^3) = \varphi(a, b)^3.$$

Replacing b by b + y in (3.1), gives

(3.2)
$$\varphi(a^3, b^2y + by^2) = \varphi(a, b)^2 \varphi(a, y) + \varphi(a, b) \varphi(a, y)^2,$$

for all $(a, b), (a, y) \in \mathcal{U}$. Replacing y by -y in (3.2), we get

(3.3)
$$\varphi(a^3, -b^2y + by^2) = -\varphi(a, b)^2 \varphi(a, y) + \varphi(a, b) \varphi(a, y)^2.$$

By (3.2) and (3.3) we have

(3.4)
$$\varphi(a^3, by^2) = \varphi(a, b)\varphi(a, y)^2.$$

Replacing y by e in (3.4), gives

(3.5)
$$\varphi(a^3, b) = \varphi(a, b)\varphi(a, e)^2.$$

Replacing a by a + x in (3.5), to obtain

(3.6)
$$3\varphi(ax^2 + a^2x, b) = I + J,$$

where

$$I = \varphi(x, b)\varphi(a, e)^{2} + 2\varphi(a, b)\varphi(a, e)\varphi(x, e)$$

and

$$J = \varphi(a, b)\varphi(x, e)^{2} + 2\varphi(a, e)\varphi(x, b)\varphi(x, e).$$

Replacing x by -x in (3.6), we get

(3.7)
$$3\varphi(ax^2 - a^2x, b) = -I + J.$$

By (3.6) and (3.7) we have

$$3\varphi(ax^2, b) = \varphi(a, b)\varphi(x, e)^2 + 2\varphi(a, e)\varphi(x, b)\varphi(x, e),$$

for all $(a, b), (x, e) \in \mathcal{U}$, as required.

Now we state and prove the main Theorem of this section.

Theorem 3.1. Suppose that φ is a 3-bi-Jordan homomorphism from unital commutative Banach algebra \mathcal{U} into \mathbb{C} . Then φ is a 3-bi-homomorphism.

Proof. Let $\varphi: \mathcal{U} \to \mathbb{C}$ be a 3-bi-Jordan homomorphism. Then

(3.8)
$$\varphi(a^3, b^3) = \varphi(a, b)^3, \quad (a, b) \in \mathcal{U}.$$

Replacing both of a and b by e, gives $\varphi(e,e) = \varphi(e,e)^3$. Since $\varphi(e,e) \neq 0$, so $\varphi(e,e) = 1$ or $\varphi(e,e) = -1$. We first assume that $\varphi(e,e) = 1$. Replacing a by a + e and b by b + e in (3.8), and simplifies the result by Lemma 3.1, we get

(3.9)
$$9\varphi(a^2+a,b^2+b) = 3\{\varphi(a,b)^2 + \varphi(a,b) + P + Q + R + S\},\$$

where

$$P = 2\varphi(a,b)\varphi(a,e) + \varphi(e,b)\varphi(a,e)^{2}, \qquad Q = 2\varphi(a,b)\varphi(e,b) + \varphi(a,e)\varphi(e,b)^{2},$$

$$R = 2\varphi(a,e)\varphi(e,b), \qquad S = 2\varphi(a,e)\varphi(a,b)\varphi(e,b).$$

It follows from preceding Lemma that for all $(a, b) \in \mathcal{U}$,

(3.10)
$$P = 3\varphi(a^2, b), \quad Q = 3\varphi(a, b^2), \quad R = 2\varphi(a, b) \text{ and } S = 2\varphi(a, b)^2.$$

By (3.9) and (3.10) we obtain

$$\varphi(a^2, b^2) = \varphi(a, b)^2,$$

for all $(a, b) \in \mathcal{U}$. Hence, φ is bi-Jordan homomorphism and so it is bi-homomorphism by Theorem 2.1. Thus, φ is 3-bi-homomorphism.

Now suppose that $\varphi(e,e) = -1$. Then by a similar argument we have

$$\varphi(a^2, b^2) = -\varphi(a, b)^2, \quad (a, b) \in \mathcal{U}.$$

Therefore by Theorem 2.2, φ is co-bi-homomorphism. That is,

$$\varphi(ax, by) = -\varphi(a, b)\varphi(x, y),$$

for all $(a,b),(x,y)\in\mathcal{U}$. Thus,

$$\varphi(axu, byv) = -\varphi(a, b)[\varphi(xu, yv)]$$

$$= -\varphi(a, b)[-\varphi(x, y)\varphi(u, v)]$$

$$= \varphi(a, b)\varphi(x, y)\varphi(u, v),$$

for all $(a,b),(x,y),(u,v) \in \mathcal{U}$. So φ is 3-bi-homomorphism, as claimed.

As a consequence of Theorem 3.1 we have the next result.

Corollary 3.1. Suppose that φ is a 3-bi-Jordan homomorphism from unital commutative Banach algebra $\mathbb U$ into a semisimple commutative Banach algebra $\mathbb D$. Then φ is a 3-bi-homomorphism.

In view of Theorem 1.1 and Theorem 2.1, the following question suggests itself: does Theorem 2.1 hold without commutativity of U?

Acknowledgements. The author gratefully acknowledges the helpful comments of the anonymous referees.

This research was partially supported by the grant from Ayatollah Borujerdi University with No. 15664–137285.

References

- [1] J. Bračič and M. S. Moslehian, On automatic continuity of 3-homomorphisms on Banach algebras, Bull. Malays. Math. Sci. Soc. **30**(2) (2007), 195–200.
- [2] M. Eshaghi Gordji, n-Jordan homomorphisms, Bull. Aust. Math. Soc. 80(1) (2009), 159–164.
- [3] M. Eshaghi Gordji, T. Karimi and S. Kaboli Gharetapeh, Approximately n-Jordan homomorphisms on Banach algebras, J. Inequal. Appl. 2009 (2009), 1–8.
- [4] E. Gselmann, On approximate n-Jordan homomorphisms, Ann. Math. Sil. 28 (2014), 47–58.
- [5] Sh. Hejazian, M. Mirzavaziri and M. S. Moslehian, *n-homomorphisms*, Bull. Iranian Math. Soc. **31**(1) (2005), 13–23.
- [6] I. N. Herstein, Jordan homomorphisms, Trans. Amer. Math. Soc. 81 (1956), 331–341.
- [7] Y. H. Lee, Stability of n-Jordan homomorphisms from a normed algebra to a Banach algebra, Abstr. Appl. Anal. **2013** (2013), 1–5.
- [8] T. Miura, S.-E. Takahasi and G. Hirasawa, *Hyers-Ulam-Rassias stability of Jordan homomorphisms on Banach algebras*, J. Inequal. Appl. **2005** (2005), 435–441.
- [9] W. Zelazko, A characterization of multiplicative linear functionals in complex Banach algebras, Studia Math. **30** (1968), 83–85.
- [10] A. Zivari-Kazempour, A characterization of Jordan homomorphism on Banach algebras, Chinese J. Math. **2014** (2014), 1–3.
- [11] A. Zivari-Kazempour, A characterization of 3-Jordan homomorphisms on Banach algebras, Bull. Aust. Math. Soc. 93(2) (2016), 301–306.
- [12] A. Zivari-Kazempour, A characterization of Jordan and 5-Jordan homomorphisms between Banach algebras, Asian-Eur. J. Math. (2017) DOI 10.1142/S1793557118500213.
- [13] A. Zivari-Kazempour, A characterization of bi-Jordan homomorphisms on Banach algebras, Int. J. Anal. **2017** (2017), 1–5.

A. ZIVARI-KAZEMPOUR,

DEPARTMENT OF MATHEMATICS,

AYATOLLAH BORUJERDI UNIVERSITY,

BORUJERD, IRAN.

Email address: zivari@abru.ac.ir, zivari6526@gmail.com