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LIE POINT SYMMETRIES, HAMILTONIAN EQUATIONS AND
CONSERVATION LAWS OF THE GEODESICS ON A

SCHWARZSCHILD BLACK HOLE

S. REZA HEJAZI

Abstract. Classification of Schwarzschild geodesics via group analysis of Lie point
symmetries is considered. Lie’s symmetry method of differential equations (DEs) is
applied to the system of Schwarzschild geodesics to classify geodesic curves. In this
method Lie algebra of symmetries will be studied and some useful results in physics
such as Hamiltonian equations and conservation laws are obtained.

1. Mathematical Formulation

That the Schwarzschild geometry is relevant to gravitational collapse follows from
the Birkhoff’s (1923) theorem: let the geometry of a given region of space time
(t, r, θ, ϕ) be spherically symmetric, and √g = e3α be a solution to Einstein field
equation in vacuum. Then the geometry is necessarily a piece of Schwarzschild geome-
try [12]. The external of any spherically neutral, spherical star satisfies the conditions
of Birkhoff’s theorem, whether the star is static, vibrating, or collapsing, therefore
the external field must be a piece of the Schwarzschild geometry.

Birkhoff’s theorem is easily understood on physical grounds. Consider an equlib-
rium configuration that is unstable against gravitational collapse and that, like all
equlibrium configurations, has the Schwarzschild geometry as its external gravitational
field. Perturb this equilibrium configuration is spherically symmetric way, so that it
begins to collapse radially. The perturbation and subsequent collapse cannot affect
the external gravitational field so lang as exact spherical symmetry is maintained.
Just as Maxwell’s laws prohibit monopole electromagnetic waves, so Einsteins’s laws
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prohibit monopole gravitational waves. There is no possible way for any gravitational
influence of the radial collapse to propagate outward.

Not only the Birkhoff’s theorem easy to understand, but it is also fairly easy to
prove. Consider a spherical region of spacetime. Spherical symmetry alone is sufficient
to guarantee that

(i) the set of all equivalent points s under rotational Lie group SO(3) is a two-
dimensional submanifold of a four-dimensional manifold endowed by spacetime
coordinate chart (except for center pointsa, where s is zero-dimensional);

(ii) the metric on s is that of standard 2-sphere. Then on s one will have ds2 =
R2(s)dΩ2, where dΩ2 is the standard metric of a unit sphere, and 2πR is the
circumference of s;

(iii) there is a spherically symmetric 4-velocity field u, defined so that if C(τ) is
one trajectory of u with u=d/dτ , then each rotated curve C under SO(3)
must also be a trajectory of u, and thus to guarantee that one can introduce
Schwarzschild coordinates

ds2 = e2ηdt2 − e2Λdr2 − r2(dθ2 + sin2 θdϕ2),(1.1)

where η = η(t, r) and Λ = Λ(t, r).
Impose Einstein’s vacuum field equation on the metric (1.1), using the orthonormal
components of the Einstein tensor we have

Gt̂t̂ =r−2(1− e−2Λ) + 2r−1Λre
−2Λ = 0,(1.2)

Gt̂r̂ =Gr̂t̂ = 2r−1Λte
−(Λ+η) = 0,(1.3)

Gr̂r̂ =2r−1ηre
−2Λ + r−2(e−2Λ−1) = 0,(1.4)

Gθ̂θ̂ =Gϕ̂ϕ̂ = (ηrr + η2
r − ηrΛr + r−1ηr − r−1Λr)e−2Λ

− (Λtt + Λ2
t − Λtηt)e−2η = 0.(1.5)

Equation (1.3) guarantees that Λ is a function of r only and equation (1.2) then
guarantees that Λ has the same form as for the Schwarzschild metric:

Λ = −1
2 ln

∣∣∣∣1− 2M
r

∣∣∣∣ .(1.6)

Equations (1.4) and (1.5) then become two equivalent equations for η(t, r)-equivalent
by virtue of the Bianchi identity, ∇ ·G = 0-whose solution is

η = 1
2 ln

∣∣∣∣1− 2M
r

∣∣∣∣+ f(t),(1.7)

where f is an arbitrary function. Put expression (1.6) and (1.7) into the metric (1.1);
thereby obtain

ds2 = e2f(t)
(

1− 2M
r

)
dt2 − dr2

1− 2M/r
− r2

(
dθ2 + sin2 θdϕ2

)
.
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Then redefine the time coordinate

tnew =
∫
ef(t)dt,

and thereby bring the line element into the Schwarzschild form

ds2 =
(

1− 2M
r

)
dt2 − dr2

1− 2M/r
− r2(dθ2 + sin2 θϕ2).(1.8)

The Schwarzschild spacetime geometry (1.8) appears to behave badly near r = 2M ,
there gtt becomes zero, and grr becomes infinite. However, one cannot be sure without
careful study whether this pathology in the line element is due to a phathology of the
(t, r, θ, ϕ) coordinate system near r = 2M . (As an example of a coordinate-induced
pathology, consider the neighborhood of θ = 0 on one of the invariant spheres, t =const
and r =const. Then gϕϕ becomes zero because that coordinates system behaves badly,
however, the intrinsic, coordinate-independent geometry of the sphere is well-behaved
there).

The worrisome region of the Schwarzschild geometry, r = 2M , is called the “grav-
itational radius” or the “Schwarzschild radius” or the “Schwarzschild surface” or
the “Schwarzschild horizon” or the “Schwarzschild sphere”. It is also called the
“Schwarzschild singularity” in some of older litarature, but that is misnomer, since, as
will be shown, the space time geometry is not singular there.

A Schwarzschild black hole or static black hole is a black hole that has no charge
or angular momentum. A Schwarzschild black hole has a Schwarzschild metric, and
cannot be distinguished from any other Schwarzschild black hole except by its mass.
The Schwarzschild black hole is characterized by a surrounding spherical surface,
called the event horizon, which is situated at the Schwarzschild radius, often called
the radius of a black hole. Any non-rotating and non-charged mass that is smaller
than its Schwarzschild radius forms a black hole. The solution of the Einstein field
equations is valid for any mass M , so in principle (according to general relativity
theory) a Schwarzschild black hole of any mass could exist if conditions became
sufficiently favorable to allow for its formation.

The structure of the paper is the following. Section 1, is devoted to the mathematical
formulation of the Schwarzschild geometry for using the results in the main idea, the
geodesics of the black hole as an Riemannian geodesics are given in this section. In
Section 2, the method for finding Lie point symmetries are presented, classification of
Lie subalgebras up to an inner automorphism and classification of geodesics due to Lie
point symmetries is done in this section. The third section is specified to study some
classical similarity solution of the geodesics. Hamiltonian equations and Hamiltonian
symmetry symmetry groups are found in forth and fifth and the last section gives
some local conservation laws for the system of geodesics.

1.1. Geodesics of Schwarzschild sphere. In differential geometry if we have a
spacetime coordinate such as x = (x1(τ), . . . , xn(τ)), the geodesic equation [10], for
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its world line is:

ẍα +
n∑

α=1
Γαµν ẋµẋν = 0, µ, ν = 1, ..., n,(1.9)

where Γαµν is the Christoffel symbol of the second type obtained by

Γαµν = 1
2

n∑
`=1

gα`
(
∂gν`
∂xµ

+ ∂gµ`
∂xν

− ∂gµν
∂x`

)
,

for Riemannian metric gµν .
The nonzero components of the Christoffel symbols are:

Γ1
12 = −Γ2

22 = − a

2r(a− r) , Γ2
11 = −a(a− r)

2r3 , Γ2
33 = a− r,

Γ2
44 = (a− r) sin2 θ, Γ3

23 = Γ4
24 = 1

r
, Γ3

44 = −1
2 sin 2θ, Γ4

34 = cot θ.

By substituting these symbols in (1.9) we obtain geodesics system for metric (1.8)
such as:

t′′(τ)− a
r(a−r)t

′(τ)r′(τ) = 0,

r′′(τ) + a
2r(a−r)r

′(τ)2 + (a− r)
[
θ′(τ)2 + sin2 θϕ′(τ)2 − a

2r3 t
′(τ)2

]
= 0,

θ′′(τ) + 2
r
r′(τ)θ′(τ)− 1

2 sin 2θϕ′(τ)2 = 0,
ϕ′′(τ) + 2

r
r′(τ)ϕ′(τ) + 2 cot θθ′(τ)ϕ′(τ) = 0.

2. Lie Point Symmetries

Symmetry plays a very important role in various fields of nature. As is known to
all, Lie method is an effective method and a large number of equations [7] are solved
with the aid of this method. There are still many authors using this method to find
the exact solutions [14, 15] of non-linear DEs. It is also a powerful tool for finding
exact solutions of non-linear problems [15,16]. One of the most important application
of symmetry’s method is the reducing systems of DEs, i.e., finding equivalent systems
of DEs of simpler form, that is called reduction. This method provides a systematic
computational algorithm for determining a large classes of special solutions. The
solutions of the obtained equivalent system will correspond to solutions of the original
system. Many examples of applications to physical problems have been demonstrated
in a huge number of papers and a lot of excellent books. The general procedure to
obtain Lie symmetries of differential equations, and their applications to find analytic
solutions of the equations are described in detail in several monographs on the subject
(e.g. [7, 14,15]) and in numerous papers in the literature (e.g. [2, 5, 6, 13]).

Nowadays the group theory of DEs is extended to DEs of fractional order. This sub-
ject is the rapidly growing field of research. In recent years, fractional order DEs have
been the focus of many studies due to their frequent appearance in various applica-
tions in fluid mechanics, viscoelasicity, biology, probability, mathematical physics and
engineering [11, 17]. The same effective approach for investigating and constructing
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solutions of fractional DEs is the group analysis based on the fractional calculas such
as Riemann-Liouville, Caputo and etc. methods. Here the calculations are different
from the classical method which is the main purpose of the present paper, but the
obtained results are more interesting and newer [9, 18]. We will discause the classical
group theory method for DEs in the sequel.

Consider a system of DE (PDE or ODE) in the dependent variables uα(1 ≤ α ≤ m)
and dependent variables xi(1 ≤ i ≤ n) of the form:

∆s(xi, uα, uαi , uαij, . . .) = 0, 1 ≤ s ≤ k,(2.1)

where the subscripts denote partial derivatives (e.g. uαi = ∂uα/∂xi). To determine
continuous symmetries of (2.1), it is useful to consider infinitesimal Lie transformations
of the form:

x̃i = xi + εξi +O(ε2), ũα = uα + εηα +O(ε2),(2.2)

that leave the equation system invariant to O(ε2). Lie point symmetries correspond
to the case where the infinitesimal generators ξi = ξi(xi, uα) and ηα = ηα(xi, uα)
depend only on the xi and the uα and not on the derivatives or integrals of the uα.
Generalized Lie symmetries are obtained in the case when the transformations (2.2)
also depend on the derivatives or integrals of the uα.

The infinitesimal transformations for the first and second derivatives to O(ε2) are
given by the prolongation formulae:

ũαi = uαi + εζαi , ũαij = uαij + εζαij,

where
ζαi = Diη̂α + ξsuαsi, ζαij = DiDj η̂

α + ξsuαsij.(2.3)
Here

η̂α = ηα − ξsuαs ,(2.4)

corresponds to the canonical Lie transformation for which x̃i = xi and ũα = uα + εη̂α.
The symbolDi in (2.3) denotes the total derivative operator with respect to xi. Similar
formulae to (2.3) apply for the transformation of the higher order derivatives.

The condition for invariance of the DE system (2.1) to O(ε2) under the Lie trans-
formation (2.2) can be expressed in the form:

Lv∆s ≡ ṽ(∆s) = 0 whenever ∆s = 0, 1 ≤ s ≤ k,(2.5)
where

ṽ = v + ζαi
∂

∂uαi
+ ζαij

∂

∂uαij
+ · · ·

is the prolongation of the vector field

v = ξi
∂

∂xi
+ ηα

∂

∂uα
,
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associated with the infinitesimal transformation (2.2). The symbol Lv∆s in (2.5)
denotes the Lie derivative of ∆s with respect to the vector field v (i.e., Lv∆s =
d∆s

dε |ε=0).
The Lie symmetries of the Schwarzschild geodesics system (1.10) for t, r, θ and ϕ can

be found by solving the Lie determining equation (2.5) for the infinitesimal generators
of the Lie group. Below we first write down the Lie determining equations that
correspond to the point Lie group. the point Lie algebra system is briefly described,
and the symmetries are used to obtain some results for the solutions of system (1.10).

The infinitesimal Lie transformations for the system (1.10) are of the form:

τ̃ = τ + εξτ , t̃ = t+ εηt, r̃ = r + εηr, θ̃ = θ + εηθ, ϕ̃ = ϕ+ εηϕ.

(2.6)

The corresponding canonical symmetry generators η̂t, η̂r, η̂θ and η̂ϕ are given by the
formulae analogous to (2.4). Thus

η̂α = ηη − ξτητ ,

relates the canonical symmetry generator η̂α to ηα, where α can be any of the depen-
dent variables t, r, θ and ϕ.

The Lie determining equations (2.5) for the infinitesimal generators of the system
(1.10) can be written in the form:

ξt = 0, ξr = 0, ξθ = 0,
ξττ = 0, η1τ = 0, η1t = 0,
η2 = 0, η3τ = 0, η3t = 0,
η3θ = 0, η3ϕ = 0, η1θθ = −η1θ cot θ,
η1ϕϕ = 1

2 sin 2θη1θ, ξϕ = 0, η1r = 0,
η3r = 0, η1θϕ = −1

2 sec 2θη1ϕ,

(2.7)

for the vector field

v = ξ
∂

∂τ
+ η1

∂

∂t
+ η2

∂

∂r
+ η3

∂

∂θ
+ η4

∂

∂ϕ
.

Solving the system (2.7) we obtain:

ξ = C4τ + C5, η1 = C3 + (C1 sinϕ+ C2 cosϕ) cot θ,
η2 = 0, η3 = C6, η4 = −C1 cosϕ+ C2 sinϕ.

The general vector field v in the point Lie algebra corresponding to the transfor-
mations (2.6) can be written in the form:

v =
6∑
i=1

aivi,
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Table 1. Commutators Table of G

[vi,vj] v1 v2 v3 v4 v5 v6
v1 0 0 0 0 0 0
v2 0 0 0 0 0 0
v3 −v1 0 0 0 −v6 v5
v4 0 0 0 0 0 0
v5 0 0 v6 0 0 −v3
v6 0 0 −v5 0 v3 0

where the basis vector fields {vi : 1 ≤ i ≤ 6} are

v1 = ∂

∂τ
, v2 = ∂

∂t
, v3 = ∂

∂ϕ
, v4 = τ

∂

∂τ
,(2.8)

v5 = sinϕ ∂

∂θ
+ cot θ cosϕ ∂

∂ϕ
, v6 = − cosϕ ∂

∂θ
+ cot θ sinϕ ∂

∂ϕ
.

The commutator table of the Lie algebra G spanned by the vector fields vi’s are given
in Table 1.

A straight forward calculation shows that if u = (t, r, θ, ϕ) be a geodesic curve of
metric (1.8), then so are:

ũ(τ) = u(t(τ + ε), r(τ + ε), θ(τ + ε), ϕ(τ + ε)),
ũ(τ) = u(t(τ) + ε, r(τ), θ(τ), ϕ(τ)),
ũ(τ) = u(t(τ), r(τ), θ(τ), ϕ(τ) + ε),
ũ(τ) = u(t(eετ), r(eετ), θ(eετ), ϕ(eετ)),

ũ(τ) = u(t(τ), r(τ), ε sinϕ(τ), arcsin(εθ(τ)) + ε
√

1− ε2θ2(τ) cot θ(τ)),

ũ(τ) = u(t(τ), r(τ),− cosϕ(τ), arccos(−εθ(τ)) + ε
√

1− ε2ϕ2(τ) cot θ(τ)).
The first and forth curve demonstrate the time, radius, colatitude and longitude
angle invariance of the system, second and third curves show genuinely local group of
transformations.

We know that evaluation of the flow of vector fields in G serves to define the
exponential map exp : G→ G. Since exp(0) = e, d exp(0) = Id, the exponential map
defines a local diffeomorphism in a neighborhood of 0 ∈ G. Consequently, all Lie
groups having the same Lie algebra look locally the same in a neighborhood of the
identity; only the global topological properties are different. Globally, the exponential
map is not necessarily one-to-one nor onto. However, if a Lie group is connected, it
can be completely recovered by successive exponentiations.

The most general one parameter group of symmetries is obtained by considering
a general linear combination c1v1 + · · ·+ c6v6 of the given vector fields; the explicit
formulae for the group transformations are very complicated. In particular if g is near
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the identity, it can be represented uniquely in the form
g = exp(ε6v6) ◦ · · · ◦ exp(ε1v1).(2.9)

For instance if ε1 = ε4 = 0 then the most general Lie group action with respect to
(2.9) is

g =
(
t+ ε2, r, ε5 − cos

(
arcsin(ε5θ) + ε5

√
1− ε2

5θ
2 cot θ

)
,
√

1− ε2
5ε

2
6 sin2 ϕ

+ε6

√
1− ε6

[
arcsin(ε5θ) + ε5

√
1− ε5θ2 cot θ

]2
cot(ε5 sinϕ) + ε3

 .
2.1. Classification of subalgebras. As is well known, the theoretical Lie group
method plays an important role for finding exact solutions and performing symmetry
reductions of DE. Since any linear combination of infinitesimal generators is also an
infinitesimal generator, there are always infinitely many different symmetry subgroups
for the DE. So, a mean of determining which subgroups would give essentially different
types of solutions is necessary and significant for a complete understanding of the
invariant solutions. As any transformation in the full symmetry group maps a solution
to another solution, it is sufficient to find invariant solutions which are not related by
transformations in the full symmetry group, this has led to the concept of an optimal
system [9]. The problem of finding an optimal system of subgroups is equivalent to
that of finding an optimal system of subalgebras. For one-dimensional subalgebras,
this classification problem is essentially the same as the problem of classifying the
orbits of the adjoint representation. This problem is attacked by the naive approach
of taking a general element in the Lie algebra and subjecting it to various adjoint
transformations so as to simplify it as much as possible. The idea of using the adjoint
representation for classifying group-invariant solutions is due to [15,16].

Optimal system of a Lie algebra is equivalent to find nonessentially different in-
variant solutions which are not in a same orbit of adjoint actions. It means that the
problem of finding invariant solutions under a group action G or its subgroups is
reduced to problem of constructing optimal system of its corresponding subalgebras.
As a result if the optimal system of subalgebras is found this optimality is meant that
it is the smallest subspace in the set of solutions possesing the following property:
Any invariant solution which can be found from any subgroup of G; is contained in
one of the orbit of G−action, i.e., optimal system.

The problem of finding optimal system is divided to two method; a) using the
generators of Lie algebra directly and b) using the ideal of Lie algebra. The first
method is processing in the sequel. But second method has two levels. Finding optimal
system from ideals and extend it on the whole Lie algebra. It means that suppose G

is a subalgebra spanned by n vector fields X1, . . . , Xn with m ideals G1, . . . ,Gm. This
method is starting by selecting X1 ∈ G1 and we introduce it a member of the optimal
system. Next by selecting X2 ∈ G2 where X2 is not in G1. Thus, X1 + aX2 is another
member of optimal system and if it is possible we can normalize the coefficient a by
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adjoint action. This procedure will continue until the las ideal. Finally we normalize
the linear combination of obtained members with other generators of G that are not
in any ideals with adjoint action. The last level gives us the one-dimensional optimal
system.

2.1.1. One-dimensional optimal system. The adjoint action is given by the Lie series

Ad(exp(εvi)vj) = vj − ε[vi,vj] + ε2

2 [vi, [vi,vj]]− · · · ,

where [vi,vj] is the commutator for the Lie algebra, ε is a parameter, and i, j =
1, 2, . . . , 6. Let F ε

i : G → G defined by v 7→ Ad(exp(εvi)v) is a linear map, for
i = 1, 2, . . . , 6. The matrices M ε

i of F ε
i , i = 1, 2, . . . , 6, with respect to basis

{v1,v2,v3,v4,v5,v6} are given by

M ε
1 =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
−ε 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


, M ε

2 =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1


,

M ε
3 =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 cos ε sin ε
0 0 0 0 − sin ε cos ε


, M ε

4 =



eε 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


,

M ε
5 =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 cos ε 0 0 − sin ε
0 0 0 1 0 0
0 0 0 0 1 0
0 0 − sin ε 0 0 cos ε


, M ε

6 =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 cos ε 0 0 sin ε
0 0 0 1 0 0
0 0 − sin ε 0 cos ε 0
0 0 0 0 0 1


.

By acting these matrices on a vector field v alternatively we can show that a one-
dimensional optimal system of G is given by:

v2, v6, a1v1 + a2v2, a1v2 + a2v5, a1v2 + a2v3 + a3v4,(2.10)

where a1, a2 and a3 are real constants. The process above begins with the selection of
vector X = ∑

i aivi and its image under M ε
i , obtained by the adjoint automorphism.

If M ε
i is the matrix of the automorphism M ε in the basis {vi}, then the components

on the image of X in the basis are given by an equation in the form of

M ε
ijaj, j = 1, 2, . . . , 6.(2.11)

The next step is the selection of values of the parameter M ε
i , on which this automor-

phism depends, to achieve the maximum possible simplification of the set of equations
(2.11). This permits the choice of simplest representative of class of similar algebras
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to which the element X belongs. Usually, this means choosing the maximum possible
number of null values for these components.

2.1.2. Two-dimensional optimal system. Next step is to construct two-dimensional
optimal system, i.e., classification of two-dimensional subalgebras of G. The process
is by selecting one of the vector fields in (2.10), say, any vector field of (2.10). Let
us consider X1 (or Xi, i = 2, 3, 4, 5, 6). Corresponding to it, a vector field X =
a1v1 + · · · + a4v6, where ai’s are smooth functions of (τ, t, r, θ, ϕ) is chosen, so we
must have

[X1, X] = λX1 + µX.(2.12)

Equation (2.12) leads us to the system

Ci
jkαjak = λai + µαi, i = 1, . . . , 6.(2.13)

The solutions of the system (2.13), give one of the two-dimensional generator and
the second generator is X1 or, Xi, i = 2, 3, 4, 5, 6 if selected. After the construction
of all two-dimensional subalgebras, for every vector fields of (2.10), they need to be
simplified by the action of adjoint matrices in the manner analogous to the way of
one-dimensional optimal system. Thus the two-dimensional optimal system of G has
three classes of G’s members combinations such as

α1v1 + α2v2, β1v3 + β2v4 + β3v5 + β4v6,(2.14)
α1v2 + α2v5, β1v1 + β2v4 + β3v6,

α1v1 + α2v6, β1v2 + β2v2 + β3v4.

2.1.3. Three-dimensional optimal system. This system can be developed by the meth-
od of expansion of two-dimensional optimal system. For this take any two-dimensional
subalgebras of (2.14), let us consider the first two vector fields of (2.14), and call
them Y1 and Y2, thus, we have a subalgebra with basis {Y1, Y2}, find a vector field
Y = a1v1 + · · ·+ a6v6, where ai’s are smooth functions of (τ, t, r, θ, ϕ), such the triple
{Y1, Y2, Y } generates a basis of a three-dimensional algebra. For that it is necessary
an sufficient that the vector field Y satisfies the equations

[Y1, Y ] = λ1Y + µ1Y1 + ν1Y2, [Y2, Y ] = λ2Y + µ2Y1 + ν2Y2,(2.15)

and following from (2.15), we obtain the system

Ci
jkβ

j
rak = λ1ai + µ1β

i
r + ν1β

i
s, Ci

jkβ
j
sak = λ2ai + µ2β

i
r + ν2β

i
s.(2.16)

The solutions of system (2.16) is linearly independent of {Y1, Y2} and give a three-
dimensional subalgebra. This process is used for the another two couple vector fields
of (2.14).
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Consequently the three-dimensional optimal system of G is given by

v1,v3,v4,(2.17)
v2,v3, α1v4 + α2v5,

v1,v2, α1v3 + α2v4 + α3v5 + α4v6.

2.1.4. Four-dimensional optimal system. This system can be developed by the method
of expansion of three-dimensional optimal system. For this take any three-dimensional
subalgebras of (2.17), let us consider the first three vector fields of (2.17), and call
them Y1, Y2 and Y3, thus, we have a subalgebra with basis {Y1, Y2, Y3}, find a vector
field Y = a1v1 + · · ·+ a6v6, where ai’s are smooth functions of (τ, t, r, θ, ϕ), such the
quadruple {Y1, Y2, Y3, Y } generates a basis of a three-dimensional algebra. For that it
is necessary an sufficient that the vector field Y satisfies the equations

[Y1, Y ] = λ1Y + µ1Y1 + ν1Y2 + γ1Y3,(2.18)
[Y2, Y ] = λ2Y + µ2Y1 + ν2Y2 + γ2Y3,

[Y3, Y ] = λ3Y + µ3Y1 + ν3Y2 + γ3Y3,

and following from (2.18), we obtain the system

Ci
jkβ

j
rak = λ1ai + µ1β

i
r + ν1β

i
s + γ1β

i
l ,(2.19)

Ci
jkβ

j
sak = λ2ai + µ2β

i
r + ν2β

i
s + γ2β

i
l ,

Ci
jkβ

j
l ak = λ3ai + µ3β

i
r + ν3β

i
s + γ3β

i
l .

The solutions of system (2.19) is linearly independent of {Y1, Y2, Y3} and give a four-
dimensional subalgebra. This process is used for the another triple vector fields of
(2.17).

Consequently the four-dimensional optimal system of G is given by

v2,v3,v5,v6,(2.20)
v1,v2,v4, α1v3 + α2v5,

v3,v5,v6, α1v2 + α2v4.

2.1.5. Five-dimensional optimal system. A similar method such as another n− di-
mensional optimal system for vector fields (2.20), leads us to find all five-dimensional
subalgebras of G. By omitting calculations, we are only giving five-dimensional subal-
gebras in the sequel;

v1,v2,v3,v5,v6, v1,v3,v4,v5,v6, v2,v3,v4,v5,v6.

All previous calculations lead to the Table 2, 3 and 4 for the optimal system of G.
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Table 2. Optimal system of subalgebras

dimension 1 2
〈v2〉 〈α1v2 + α2v5, β1v1 + β2v4 + β3v6〉

subalgebras 〈v6〉 〈α1v1 + α2v6, β1v2 + β2v2 + β3v4〉
〈a1v1 + a2v2〉 〈α1v1 + α2v2, β1v3 + β2v4 + β3v5 + β4v6〉
〈a1v2 + a2v5〉

〈a1v2 + a2v3 + a3v4〉

Table 3. Optimal system of subalgebras

dimension 3 4
〈v1,v3,v4〉 〈v2,v3,v5,v6〉

subalgebras 〈v2,v3, α1v4 + α2v5〉 〈v1,v2,v4, α1v3 + α2v5〉
〈v1,v2, α1v3 + α2v4 + α3v5 + α4v6〉 〈v3,v5,v6, α1v2 + α2v4〉

Table 4. Optimal system of subalgebras

dimension 5 6
〈v1,v2,v3,v5,v6〉

subalgebras 〈v1,v3,v4,v5,v6〉 G

〈v2,v3,v4,v5,v6〉

2.2. Classification of similarity solution. An optimal system of n−parameter
similarity solutions to a system of DE is a collection of solutions u = f(x) with the
following properties.

i) Each solution in the list is invariant under some n−parameter symmetry group
of the system of differential equations.

ii) If u = f̃(x) is any other solution invariant under an n−parameter symmetry
group, then there is a further symmetry g of the system which maps f̃ to a
solution f = g · f̃ on the list.

Consequently, there is an one-to-one corresponding between optimal system and
similarity solutions. One say that if G be a symmetry group of a system of PDE and
{Θα} be an optimal system on n-parameter subgroups of G. Then the collection of
all Θα-invariant solutions, for Θα in the optimal system, forms an optimal system of
n-parameter similarity solutions to the mentioned system.

According to our optimal system of symmetry group of the system (1.10), finding
n-parameter of similarity solutions we need only find those for n-parameter subgroups.
In the next section we give some similarity solutions for the system (1.10) by using
one-dimensional optimal system.
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3. Classical Similarity Solutions

Lie point symmetries of the system (1.10) are determined by solving the overdeter-
mined Lie determining equation (2.5) for the infinitesimal generators {ξi : 1 ≤ i ≤ n}
and the {ηα : 1 ≤ α ≤ m}. Classical similarity solutions of (1.10) are obtained by
requiring the solution surfaces for the uα are map onto the same set of surfaces, in
the sense that u′α(x) = uα(x′). These conditions, to O(ε2) yield the first order PDE

ξiuαi = ηα,

with characteristics (2.4) being given by the group trajectories:
dxi

dε
= ξi and duα

dε
= ηα, 1 ≤ i ≤ n, 1 ≤ α ≤ m.

Integration of the group trajectories yields the invariants of the point Lie group
admitted by the system, and these may be used to construct the classical similarity
solutions of the system (1.10).

In this section, we obtain some classical similarity solutions [1,3] of the Schwarzschi-
ld geodesics system (1.10). The most useful solutions are the traveling wave solutions
associated with the space and time translation symmetries. Another solutions are
given in the sequel.

3.1. Similarity solution corresponding to a1v2 + a2v3 + a3v4. The general Lie
point symmetry operator X corresponding to v2,v3,v4 is

X = a1
∂

∂t
+ a2

∂

∂ϕ
+ a3τ

∂

∂τ
,

where (τ, t, r, θ, ϕ) are the basis variables.
The classical similarity solutions of the system (1.10) for this operator are obtained

by integrating the group trajectories
dτ

dε
= a3τ,

dt

dε
= a1,

dϕ

dε
= a2,

dr

dε
= dθ

dε
= 0,

where ε is a parameter along the trajectories. Integration of the above system yields
the integrals:

ϕ− αt = I1, ln |τ | − βt = I2, r = I3, θ = I4,

for the group invariants {I1, I2, I3, I4}, where

α = a2

a1
, β = a3

a1
,

(we implicity assume a1 6= 0). Thus, we obtain classical similarity solution:

t = ln |τ | − ν
β

,

where ν is a constant.
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3.2. Similarity solution corresponding to a1v1 + a2v2. The general Lie point
symmetry for these vector fields is:

X = a1
∂

∂τ
+ a2

∂

∂t
,

where (τ, t, r, θ, ϕ) are the basis variables. By similar way to find the classical similarity
solution we should integrate the group trajectories

dτ

dε
= a1,

dt

dε
= a2,

dr

dε
= dϕ

dε
= dθ

dε
= 0,

where ε is a parameter for trajectories. By integrating this system we have:

t− ατ = I1, r = I2, θ = I3, ϕ = I4,

for the group invariant {I1, I2, I3, I4} and

α = a2

a1
, a1 6= 0.

Thus, in this case

t = αt+ ν,

is the similarity solution and wave traveling similarity variable where ν is an arbitrary
constant.

3.3. Similarity solution corresponding to a1v1 + a2v2 + a6v6. The general Lie
point symmetry for this case is:

X = a1
∂

∂τ
+ a2

∂

∂t
+ a3

(
− cosϕ ∂

∂ϕ

)
+ a4 cot θ sinϕ ∂

∂θ
.

By integrating the group trajectories:
dτ

dε
= a1,

dt

dε
= a2,

dr

dε
= 0, dθ

dε
= −a3 cosϕ, dϕ

dε
= a4 cot θ cosϕ,

where ε is a parameter for trajectories. Integration of this system yields the similarity
variables:

t− αt = I1, θ + βτ cosϕ = I2, ln | cscϕ− cotϕ| − a4 cot θ = I3, r = I4,

for the group invariant {I1, I2, I3, I4} where

α = a2

a1
, β = −a3

a1
,

for a1 6= 0. Thus, in this case

ln | cscϕ− cotϕ| − a4 cot(βτ + c) = c̃,

is the similarity solution with two constant parameter c and c̃.
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3.4. Similarity solution corresponding a1v2 + a2v5. The general Lie point sym-
metry for case above is:

X = a1
∂

∂t
+ a2 sinϕ ∂

∂θ
+ a3 cosϕ cot θ ∂

∂ϕ
.

By integrating the group trajectories:
dτ

dε
= 0, dt

dε
= a1,

dr

dε
= 0, dθ

dε
= a2 sinϕ, dϕ

dε
= a3 cot θ cosϕ,

where ε is a parameter for trajectories. Integration of this system yields the similarity
variables:

t− αt = I1, θ + αt = I2, ln | secϕ+ tanϕ| − β cot θ = I3, r = I4,

for the group invariant {I1, I2, I3, I4} where

α = a2

a1
, β = a3

a1
,

for a1 6= 0. Thus, in this case

ln | secϕ+ tanϕ| − α cot(βτ + c) = c̃,

is the similarity solution with two constant parameter c and c̃.

4. Hamiltonian Equations

Consider the six-dimensional Lie algebra G, (2.8), of the symmetry group for
Schwarzschild geodesics. Let ω1, . . . , ω6 be a dual basis for G∗ and u = u1ω1+· · ·+u6ω6
a typical point therein. If F : G∗ → R, then its gradient is the vector

∇F = ∂F

∂u1v1 + · · ·+ ∂F

∂u6v6.

Thus the Lie-Poisson bracket on G∗ is

{F,H} =u1
(
∂F

∂u1
∂H

∂u3 −
∂F

∂u3
∂H

∂u1

)
+ u5

(
∂F

∂u3
∂H

∂u6 −
∂F

∂u6
∂H

∂u3

)

+ u6
(
∂F

∂u3
∂H

∂u5 −
∂F

∂u5
∂H

∂u3

)
.

The structure matrix J(u) = (J ij(u)), where J ij = {ui, uj} is given by

J(u) =



0 0 u1 0 −u6 0
0 0 0 0 0 0
−u1 0 0 0 0 −u5

0 0 0 0 0 0
u6 0 0 0 0 0
0 0 −u5 0 0 0


.
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Hamilton’s equations corresponding to the Hamiltonian function H(u) are therefore

dui

dt
= J(u)∇H(u).(4.1)

For example, if

H(u) =
6∑
i=1

(ui)2

2Ii
,(4.2)

where I ′is are certain constants, then Hamilton’s equations become the equations of a
rigid body

du1

dε
= u1u3

I3
− u5u6

I5
,

du3

dε
= −(u1)2

I1
− u5u6

I6
,

du5

dε
= u1u6

I1
,

du6

dε
= −u

3u5

I3
,

in which (I1, . . . , I6) are the moments of inertia about the coordinate axes and
u1, . . . , u6 the correspopnding body angular momenta. (The angular velocities are
ωi = ui/Ii). The Hamiltonian function is the kinetic energy of the body.

4.1. Hamiltonian Symmetry Group. In this section we will find the Hamiltonian
symmetry generator for equations (4.1).

Lemma 4.1. The Hamiltonian vector field associated with H(u) has the form

vH =
m∑

i,j=1
J ij(u)∂H

∂uj
∂

∂ui
.(4.3)

Consider a system of ODE in Hamiltonian form
du

dt
= J(u)∇H(u, t),(4.4)

where H(u, t) is a Hamiltonian funtion and J(u) is the structure matrix determining
the Poisson bracket.

Theorem 4.1. A function P (u, t) is a first integral for the Hamiltonian system (4.4)
if and only if

∂P

∂t
+ {P,H} = 0,

for all u, t. In particular, a time-independent function P (u) is a first integral if and
only if {P,H} = 0 everywhere.

Corollary 4.1. If ut = J∇H is any Hamiltonian system with time-independent
Hamiltonian funtion H(u), then H(u) itself is automatically a first integral.
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For a Hamiltonian system symmetry groups are one-parameter Hamiltonian sym-
metry groups whoese infinitesimal generators (in evolutionary form) are Hamiltonian
vector fields. The comming lemma shows that any first integral leads to such a
symmetry group.

Lemma 4.2. Let P (u, t) be a first integral of a Hamiltonian system. Then the
Hamiltonian vectir field vP determined by P generates a one-parameter symmetry
group of the system.

Generally there is not a one-to-one correspondence between Hamiltonian vector
fields and their corresponding Hamiltonian function. More generally, we can add
any time-dependent function C(u, t) (meaning that for each fixed t, C is a time-
independent function) to a given function P without changing the form of its Hamil-
tonian vector field. Once we recognize the possibility of modifying the function
determining a Hamiltonian symmetry group, we can readily prove a converse to the
preceding proposition. This forms the Hamiltonian version of Noether’s theorem.

Theorem 4.2. A vector w generates a Hamiltonian symmetry group of a Hamiltonian
system of ODE if and only if there exists a first integral P (u, t) so that w = vP is
the corresponding Hamiltonian vector field. A second function P̃ (u, t) determines
the same Hamiltonian symmetry if and only if P̃ = P + C for some time-dependent
function C(u, t).

Using this theorem and equation (4.3) we conclude that the Hamiltonian symmetry
group for the system (1.10) corresponding to the Hamiltonian function (4.2) is given
by

vH =
(
u1u3

I3
− u5u6

I5

)
∂

∂u1 +
((
u1
)2
I1 −

u5u6

I6

)
∂

∂u3 +
(
u1u6

I1

)
∂

∂u5

−
(
u3u5

I3

)
∂

∂u6 .

5. Noether Symmetries

The main significant of variational symmetries is celbrated Noether’s theorem [4].
According to this theorem there is a procedure which relates the constants of the
motion of the given Lagrangian system to its symmetry transformations [15]. Lie
symmetries of the system of the geodesic equations for a spacetime yield conserved
quantities but there are also non-Noether symmetries which have not any relation-
ship to conservation laws and hence are of no interest of our purpose. To compute
symmetries of a system of geodesic equation is so complicated, as it involves the
second prolongation of infinitesimal generators. On the other hand, the symmetries
of a Lagrangian yield directly the conserved quantities which are of our interest, and
it is wotrh mentioning that here only the first prolongation of the corresponding
infinitesimal generators is required.
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Noether symmetries, or symmetries of a Lagrangian, are defined as follows: consider
a vector field

v = ξ(τ, xα) ∂
∂τ

+ ηβ(τ, xα) ∂

∂xβ
,(5.1)

where α, β = 1, 2, 3, 4. The first prolongation of the vector field (5.1) defined on the
real parameter fiber bundle over the tangent bundle of the manifold, is expressed such
as

v(1) = v +
(
∂ηβ

∂τ
+ ∂ηβ

∂xα
− ∂ξ

∂τ

∂xβ

∂τ
− ∂ξ

∂xα
∂xα

∂τ

∂xβ

∂τ

)
∂

∂x′β
,

where x′β = ∂xβ/∂τ .
Since the geodesic equations are second order ODE, one generally takes first order

Lagrangian. Particulary, we take L(τ, xα, x′α) then we obtain a set of second ODE

x′′α = g(τ, xα, x′α).(5.2)

The vector field (5.1) is called the Noether point symmetry of this Lagrangian if there
exist a gauge function, Φ(τ, xα), such thet the identity

v(1)(L) + (Dτξ)L = DτΦ,(5.3)

holds for the total differential operator

Dτ = ∂

∂τ
+ x′α

∂

∂xα
.

Consider a Lagrangian minimizing the arc lengh τ which results the system (1.10), as
the Euler-Lagrange equations,

L[xα, x′α] = gαβ
dxα

dτ

dxβ

dτ
,(5.4)

for the Schwarzschild metric (1.1). Thus, the equation (5.4) becomes as:

L =
(

1− 2M
r

)
t′′2 −

(
1− 2M

R

)−1
r′′2 − r2θ′

2 − r2 sin2 θϕ′
2
.(5.5)

Equations (5.3) including (5.5), yields defining equations for the six uknown functions
ξ, ηα and Φ. thus, the Lie algebra of Noether symmetries is spanned by the following
infinitesimal generators

v1 = ∂

∂τ
, v2 = ∂

∂t
, v3 = ∂

∂ϕ
,

v4 = sinϕ ∂

∂θ
+ cot θ cosϕ ∂

∂ϕ
, v5 = − cosϕ ∂

∂θ
+ cot θ sinϕ ∂

∂ϕ
.
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6. Conservation Laws

A conservation law of a non-degenerate system od DE is a divergence expression
[1, 4], that vanishes on all solutions of the given system. In general, any such non-
trivial expression that yields a local conservation law of the system arises from a
linear combination formed local multipliers (characteristics) with each DE in the
system, where the multipliers depend on the independent and dependent variables
as well as at most a finite number of the dependent variables of the given system of
DE. It turns out that a divergence expression depending on independent variables,
dependent variables and their derivatives to some finite order is annihilated by the
Euler operators associated with each of its dependent variables; conversely, if the
Euler operators, associated with each dependent variable in an expression involving
independent variables, dependent variables and their derivatives to some finite order,
annihilated the expression, then the expression is a divergence expression. From this
it follows that a given system of DE has a local conservation laws if and only if
there exist a set of local multipliers whoese scalar product with each DE in system
is identically annihilated without restricting the dependent variables in the scalar
product to solution of the system, i.e., the independent variables, as well as each of
their derivatives, are treated as arbitrary functions.

There are several method for constructing conservation laws of a system of DE.
One of the most interesting systematic method for determinig conservation laws is
related to Emmy Noether. She showed that for those PDE systems which are self
adjoint, conservation laws arise from variational symmetries, i.e., symmetries which
preserve the action integral [6, 8]. However, since the most of PDE systems arising in
application are not self adjoint, thus the applicable of Noether’s theorem is so limited.
But there is a general systematic and computational mathod called direct method is
applicable to all DE systems with no any special property. In this section we compute
the conservation laws of the system (1.10) via Noether’s method.

6.1. Conseravtion Laws via Noether’s Method. Consider an n−th order DE
system ∆s(xi, uα, uα(1), . . . , u

α
(n)) = 0 defined such as (2.1). A conservation law of this

system is in the form of Di(Λi) = 0, on its soloutions, where Di is the total derivative
with respect to xi. The p−tuple Λ = (Λ1, . . . ,Λp) is called the conserved vector of
the system. Using a significant theorem we can find the conserved vectors of a given
system of DE vie Noether symmetries.
Theorem 6.1. If v is a Noether point symmetry corresponding to a Lagrangian
L(τ, xα, x′α), then

Λ = ξL+ (ηα − x′αξ) ∂

∂x′α
− Φ,

is a first integral of (5.2) corresponding to v, where Φ = Φ(τ, xα) is the gauge function.
Applying this theorem gives gives all the conservede vectors corresponding to

Noether symmetries. The results are comming in the Table 5.
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Table 5. Conservation laws arised from Noether symmetrieas

Noether symmetry conserved vectors
v1 = ∂

∂τ Λ1 =
(
1− 2M

r

)
t′2 −

(
1− 2M

r

)−1
r′2 − r2θ′2 − t2 sin2 θϕ′2

v2 = ∂
∂t Λ2 = 2

(
1− 2M

r

)
t′

v2 = ∂
∂ϕ Λ3 = 2r2 sin2 θϕ′

v4 = − cosϕ ∂
∂θ + cot θ sinϕ ∂

∂ϕ Λ4 = −2r2 cosϕθ′ + 2r2 cot θ cosϕ sin2 θϕ′

v5 = sinϕ ∂
∂θ + cot θ cosϕ ∂

∂ϕ Λ5 = 2r2 sinϕθ′ + 2r2 cot θ cosϕ sin2 θϕ′

6.2. Lie point symmetries and conservation laws. In this subsection we show
if any DE system such as (2.1) maps to DE system

Γs(x, uα, uα(1), . . . , u
α
(n)) = 0,(6.1)

by an invertible transformation, then any conservation laws of ∆ν(x, u(n)) maps to a
conservation laws of Γν(x, u(n)). When this transformation is a symmetry of system
∆ then, the corresponding conservation laws is a conservation laws of Γ.

Consider the system (2.1), let

∆ν [U ] = ∆ν(x, U, ∂U, . . . , ∂nU) = 0, ν = 1, . . . , `,(6.2)

where U(x) = (U1(x), . . . , U q(x)) is a solution of the system (6.2). Consider an
invertible point transformation

xi =xi(z,W ), i = 1, . . . , p,(6.3)
Uα =Uα(z,W ), α = 1, . . . , q,

where U(x) = (U1(x), . . . , U q(x)), z = (z1, . . . , zq) and W (z) = (W 1(z), . . . ,W q(z)).
Under the transformation (6.3) and its prolongation, any function ∆ν [U ] maps to

a function

Γν [W ] = Γν(z,W, ∂W, . . . , ∂nW ).

In a special case Γν [W ] = ∆ν [U ], the components x, U, ∂U, . . . , ∂nU is written in the
form of components z,W, ∂W, . . . , ∂nW in (6.3). If U(x) = u(x) is a solution of the
system (6.2), then W (z) = w(z) is a solution of the system (6.1) in the form of

Γν [w] = Γν(z, w, ∂w, . . . , ∂nw) = 0, ν = 1, . . . , `,

with p-independent variables z = (z1, . . . , zp) and q-dependent variables w = (w1, . . . ,
wq).

Theorem 6.2. Suppose DiΦi[U ] = 0 is a conservation laws of system DE systm (6.2).
There are some functions {Ψi[W ]}pi=1 under transformations (6.3) such that

J[W ]DiΦi[U ] = D̃iΨi[W ],
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holds when Ψi[W ] clearly determined in terms of a determinant which is replaced by
the i-th column of the Jaccobian determinant

J[W ] = D(x1, . . . , xp)
D(z1, . . . , zq) ,

with the column


Φ1[u]
...

Φp[U ]

, which is

Ψ1[u] = det


Φ1[ũ] D2x̃

1 · · · Dpx̃
1

Φ2[ũ] D2x̃
2 · · · Dpx̃

2

... ... . . . ...
Φp[ũ] D2x̃

n · · · Dpx̃
p

 ,
...(6.4)

Ψp[u] = det


D1x̃

1 · · · Dp−1x̃
1 Φ1[ũ]

D1x̃
2 · · · Dp−1x̃

2 Φ2[ũ]
... . . . ... ...

D1x̃
p · · · Dp−1x̃

p Φp[ũ]

 .
Let us consider the invertible transformations (6.3) is a symmetry of system (6.2).

Then, there are smooth functions Aντ [W ] such that:
∆ν [U ] = Γν [W ] = Aντ [W ]∆τ [U ].

Corollary 6.1. If a point transformation (x, u) 7→ (x̃(x, y), ũ(x, u)) be a symmetry
of system (6.2), then, a conservation law DiΦi[u] = 0 leads to a conservation law
DiΨi[u] = 0 such that (6.4) holds for every conservation laws.

This corollary shows that the action of a symmetry transformation of system (6.2)
on a conservation laws DiΦi[u] = 0 leads us to a new conservation laws DiΨi[u] = 0.

Theorem 6.3. Suppose the point transformation (6.3) is a symmetry of system (6.2).
If {Λν [U ]}`ν=1 be a set of conservation laws multipliers with conservation laws DiΦi[u],
then

Λ̃τ [W ]∆τ [W ] = D̃iΨi[W ],
where

Λ̃τ [W ] = J[W ]Aντ [W ]Λν [U(z,W )], τ = 1, . . . , `.

Corollary 6.2. The set of multipliers {Λ̃ν [U ]}`ν=1 generates new conservation laws for
system (6.2) if and only if it is a linear independent set on the solutions U(x) = u(x).

The main result of these section is, we can act point symmetries on the obtained
conservation laws for finding new conservation laws. Now we apply it to find new
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conservation laws for system (1.10). Thus the functional independent conserved
vectors are:

Φ1 =4
(
r−2r′t′2 +

(
1− 2M

r
t′t′′

))
,

Φ2 =2t sin2 θϕ′2,

Φ3 =t2 sin 2θ sinϕϕ′2,
Φ4 =t2 sin 2θ cosϕϕ′2,
Φ5 =r2 sin 2θ sinϕϕ′,
Φ6 =r2 sin 2θ cosϕϕ′,
Φ7 =2r2 sinϕθ′ + r2 sin 2θ sinϕϕ′,
Φ8 =2r2 cosϕ− r2 sin 2θ sinϕϕ′,
Φ9 =4r(sin θϕ′r′ + r cos θϕ′θ′ + r sin θϕ′′) sin θϕ′,

Φ10 = sin 2ϕ cos 2θr2ϕ′ + r2 cot θ cosϕ(2 sinϕθ′ − sin 2θ sinϕϕ′),
Φ11 =− 2r2 cos 2θ cos2 ϕ+ r2(2 sinϕθ′ − sin 2θ sinϕϕ′),
Φ12 =− 4r2 cos 2θ cos2 ϕ2r

2 cot θ cosϕ(cosϕθ′ − sin 2θ sinϕϕ′),
Φ13 =− 4r2 cos 2θ cos2 ϕ+ 2r2 cot θ cosϕ(cosϕθ′ − sin 2θ sinϕϕ′),

Φ14 =2M
r
r′t′′ + 2

(
1− 2M

r

)
t′t′′ + 2Mr−2

(
1− 2M

r

)−2
r′3 − 2

(
1− 2M

r

)−1
r′r′′

− 2rr′θ′2 − 2r2θ′θ′′ − 2t sin2 θt′ϕ′2 − 2t2 sin2 θ cos θθ′ϕ′2 − 2t2 sinθ ϕ′ϕ′′,
Φ15 =− 4r cos2 ϕr′θ′ + r2 sin 2ϕθ′ϕ′ − 4r2 cosϕ θ′′ + 4r2 cot θ cos 2ϕθ′ϕ′

− 4r2 sin2 ϕ cos3 ϕϕ′ + 2r2 sin 2θ cot2 ϕ cos2 ϕθ′ϕ′ + 1
2r

2 sin2 2θ cos2 ϕ′′,

Φ16 =− 4r sin2 ϕr′θ′ + r2 sin 2ϕθ′ϕ′ + 2r2 cos2 ϕθ′′ + 4r2 cot θ cosϕ θ′ϕ′

− 4r2 sin3 ϕ cos2 ϕϕ′ + 2r2 sin 2θ cot2 ϕ cos2 ϕθ′ϕ′ + 1
2r

2 sin2 2θ cos2 ϕ′′.

7. Conlusion

The Lie theory has a vast applications to study physical phenomena. This theory
gives us so much useful devices for analyzing DEs, which qualify a lot of natural
occurrences. In this paper we used Lie theory to study one of the cosmological
happening which incidents in a special kind of black hole. For instance we classified
geodesics of metric (1.8), by using the symmetries of geodesics system of differential
equations, this allows us to have some interpretations for motions on geodesics curve
in Schwarzschild black hole which could be useful for cosmologists. Classification of
subalgebras helps us to find similarity solutions and exact solutions (if it is possible)
for the system (1.10) and etc. Hamiltonian equations and conservatiopns laws via
Noether’s theorem are found in fourth and fifth sections respectively. Here we should
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thanks to prof. Cheviakov for the GeM, a useful package for Maple and symmetry
computations.
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