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ON PRIME LABELING OF SOME UNION GRAPHS

S. K. PATEL1 AND JAYESH VASAVA1

Abstract. The cycle Cn is a well-known example of a prime graph and also it is
quite easy to establish that the graph C

(k)
n which is the one point union of k copies

of the cycle Cn, is a prime graph. In this paper we investigate prime labeling for
graphs which are either union of C

(k)
n ’s or union of cycle graphs.

1. Introduction

We consider only finite, simple and undirected graphs. For a graph G, its vertex
and edge sets are denoted by V (G) and E(G) respectively and further, |V (G)| and
|E(G)| denote their cardinalities. We follow Gross and Yellen [4] for graph theoretic
terminology and notations and [1] for elementary number theory results. We begin
with the definition of prime labeling which was originated by Entringer and was
discussed in a paper by Tout et al.[8].

Definition 1.1. A bijection f : V (G)→ {1, 2, 3, . . . , n} is said to be a prime labeling
of a graph G with n vertices, if f(u) and f(v) are relatively prime numbers (i.e.,
gcd(f(u), f(v)) = 1) whenever u are v are adjacent vertices of G. A graph that
admits a prime labeling is called a prime graph.

Since the introduction of prime labeling about thirty five years ago, varieties of
graphs have been studied for prime labeling. In the recent years, some of the variants of
prime labeling have also been introduced and studied extensively. See for instance [7]
and [5], where prime cordial labeling and neighborhood-prime labeling are introduced
and studied respectively. A brief summary of the results regarding prime labeling
and its variants is available in the dynamic survey of graph labeling maintained by
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Gallian [3]. In this paper, we mainly investigate prime labeling for graphs which are
union of C(k)

n (defined below).

Definition 1.2. The graph C(k)
n (where k ≥ 2) is known as the one point union

of k copies of the cycle Cn and it is obtained from the k copies of the cycle Cn by
identifying exactly one vertex of each of these k copies of Cn.

The graph C(k)
n consists of k(n − 1) + 1 vertices and kn edges as can be seen in

the graph of C(3)
4 below. In the past four decades, such graphs have been studied

Figure 1. Graph of C(3)
4

for the various types of labeling, but here our aim is to study the union of such
graphs for prime labeling. Just like Cn, it is quite trivial to show that C(k)

n is a prime
graph for all n and k. But things get non-trivial when we think about graphs that
are union of Cn or C(k)

n . It is known that Cn
⋃
Cm is a prime graph if and only if

either n is even or m is even. We derive a similar result for the graph C(j)
n

⋃
C(k)

m in
this paper, although technically it is much more difficult as compared to the case of
union of cycles. Further, we also derive results about prime labeling of the graphs
C

(2)
2n

⋃
C

(2)
2m

⋃
C

(2)
k , C(2)

2n

⋃
C

(2)
2m+1

⋃
C

(2)
2k+1 and C2n

⋃
C2n

⋃
C2n

⋃
C2n

⋃
C2m

⋃
Ck.

Now before moving to the section of main results, we state a lemma which is useful
in showing that certain graphs are not prime.

Lemma 1.1. Let β0(G) denote the independence number (i.e., the maximum cardi-
nality of an indepenedent set) of G. If β0(G) <

⌊
|V (G)|

2

⌋
, then G is not a prime graph

(where bxc denotes the greatest integer not exceeding x).

The proof of this lemma is not very difficult and it is available in [2].

2. Main Results

LetG = Cn
⋃
Cm. If n amdm both are odd, then β0(G) = n+m

2 −1 < n+m
2 =

⌊
|V (G)|

2

⌋
and so in view of Lemma 1.1, G is not a prime graph. However, if n is even and
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{v1, v2, . . . , vn} and {u1, u2, . . . , um} are the vertex sets of Cn and Cm respectively
then it is easy to see that f : V (G)→ {1, 2, . . . , n+m} defined by

f(vi) = i+ 1, 1 ≤ i ≤ n,

f(u1) = 1,
f(ui) = i+ n, 2 ≤ i ≤ m,

is a prime labeling of G = Cn
⋃
Cm. Thus Cn

⋃
Cm is a prime graph if and only if

either n or m is even. Here we prove the same result for the graph C(j)
n

⋃
C(k)

m .

Theorem 2.1. If n and m both are odd, then C(j)
n

⋃
C(k)

m is not a prime graph.

Proof. Let G denote the graph C(j)
n

⋃
C(k)

m . Since n and m are odd, the independence
numbers of the cycles Cn and Cm are n−1

2 and m−1
2 respectively and further it may be

verified that

β0(G) = j
(
n− 1

2

)
+ k

(
m− 1

2

)
.

But |V (G)| = j(n− 1) + k(m− 1) + 2 and so⌊
|V (G)|

2

⌋
= j(n− 1) + k(m− 1)

2 + 1.

Thus,

β0(G) <
⌊
|V (G)|

2

⌋
.

Therefore in view of Lemma 1.1, we conclude that G is not a prime graph . �

Theorem 2.2. C(j)
2n

⋃
C(k)

m is a prime graph for all n and m.

Proof. Let G = C
(j)
2n

⋃
C(k)

m . Let the vertices of the hth cycle of C(j)
2n be

{v1, v(2n−1)(h−1)+2, v(2n−1)(h−1)+3, . . . , v(2n−1)(h−1)+2n},

where h = 1, 2, 3, . . . , j, and the vertices of the lth cycle of C(k)
m be

{vj(2n−1)+2, vj(2n−1)+(m−1)(l−1)+3, vj(2n−1)+(m−1)(l−1)+4, . . . , vj(2n−1)+(m−1)(l−1)+m+1},
where l = 1, 2, 3, . . . , k. We prove the theorem by considering two cases as under.
Case 1: k(m− 1) is odd.

Let p be a randomly chosen prime number lying strictly between k(m−1)+1
2 and

k(m − 1) + 1, which exists due to Bertrand’s postulate which states that for any
positive integer N > 1, there is a prime number lying strictly between N and 2N .
With the help of this number p, we now define a prime labeling g : V (G)→ {1, 2, 3, . . . ,
j(2n− 1) + k(m− 1) + 2} as follows:

g(v1) = 1,
g(vi) = i+ k(m− 1) + 1, i = 2, 3, 4, . . . , j(2n− 1) + 1,

g(vj(2n−1)+2) = p,
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g(vi+j(2n−1)+2) = i+ p, i = 1, 2, 3, . . . , k(m− 1)− p+ 2,
g(vi+j(2n−1)+k(m−1)−p+4) = i+ 1, i = 1, 2, 3, . . . , p− 2.

The definition of g is illustrated in Figure 2. Note that if two vertices of G are adjacent,

Figure 2. Prime Labeling of C(3)
6
⋃
C

(5)
8

then either both of them are vertices of C(j)
2n or both are vertices of C(k)

m . It is easy to
see that any two adjacent vertices of C(j)

2n have relatively prime labels because either
these two labels are consecutive integers or one of the two labels is equal to 1. Also
note that unless one of the vertices is either vj(2n−1)+2 or vj(2n−1)+k(m−1)−p+4, any two
adjacent vertices of the C(k)

m have consecutive labels. Further, suppose any vertex say
u of C(k)

m is adjacent to the vertex vj(2n−1)+2, then g(u) and g(vj(2n−1)+2) are relatively
prime because g(vj(2n−1)+2) = p where as g(u) < 2p. Finally, if a vertex u (which is
different from vj(2n−1)+2) of the C(k)

m is adjacent to the vertex vj(2n−1)+k(m−1)−p+4 then
either u = vj(2n−1)+k(m−1)−p+3 or u = vj(2n−1)+k(m−1)−p+5. But g(vj(2n−1)+k(m−1)−p+3)
and g(vj(2n−1)+k(m−1)−p+4) are consecutive integers where as g(vj(2n−1)+k(m−1)−p+5) = 2
is relatively prime to g(vj(2n−1)+k(m−1)−p+4) = k(m− 1) + 2 because we have assumed
k(m − 1) to be odd. Thus g defines a prime labeling. Now we consider the second
case.
Case 2: k(m− 1) is even.

Let p be a randomly chosen prime number lying strictly between k(m−1)+2
2 and

k(m− 1) + 2. Here we consider two subcases.
Sub-case 1: p− 1 6≡ 0 (mod 3).

Define f : V (G)→ {1, 2, . . . , j(2n− 1) + k(m− 1) + 2} as

f(v1) = 1,
f(vi) = i+ k(m− 1) + 2, i = 2, 3, . . . , 2n,

f(v2n+1) = 2,
f(vi) = i+ k(m− 1) + 1, i = 2n+ 2, 2n+ 3, . . . , j(2n− 1) + 1,
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f(vj(2n−1)+2) = p,

f(vi+j(2n−1)+2) = i+ p, i = 1, 2, . . . , k(m− 1)− p+ 3,
f(vi+j(2n−1)+k(m−1)−p+5) = i+ 3, i = 1, 2, . . . , p− 4,

f(vj(2n−1)+k(m−1)+2) = 3.

The definition of f is illustrated in Figure 3. The definition of f clearly suggests

Figure 3. Prime Labeling of C(3)
6
⋃
C

(5)
7

that unless one of the vertices is v2n+1; the labels of any two adjacent vertices of
C

(j)
2n are either consecutive integers or one of the labels is equal to 1. Further, the

two neighbors of v2n+1 are v1 and v2n+2 whose labels are 1 and 2n + k(m − 1) + 3
respectively. But k(m − 1) is assumed to be even and hence 2n + k(m − 1) + 3 is
an odd number where as f(v2n+1) = 2. Thus, we conclude that any two adjacent
vertices of C(j)

2n have relatively prime labels under f . Now suppose u and v are any
two adjacent vertices of C(k)

m . If one of them say u = vj(2n−1)+2, then f(u) and f(v)
are relatively prime because f(u = vj(2n−1)+2) = p and f(v) < 2p. On the other hand
if u and v are adjacent and both are different from the vertex vj(2n−1)+2, then they
have relatively prime labels since either they are consecutive integers or else one of
the following two possibilities occur:

gcd(f(vj(2n−1)+k(m−1)−p+5), f(vj(2n−1)+k(m−1)−p+6)) = gcd(k(m− 1) + 3, 4) = 1,
gcd(f(vj(2n−1)+k(m−1)+1), f(vj(2n−1)+k(m−1)+2)) = gcd(p− 1, 3) = 1.

So we are done in this subcase.
Sub-case 2: p− 1 ≡ 0 (mod 3) (and hence p+ 1 6≡ 0 (mod 3)).

When p− 1 ≡ 0 (mod 3), we observe that the function f defined above is no more
a prime labeling of G because

gcd(f(vj(2n−1)+k(m−1)+1), f(vj(2n−1)+k(m−1)+2)) = gcd(p− 1, 3) = 3.
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To eliminate this problem we modify f by defining F : V (G) → {1, 2, 3, . . . ,
j(2n− 1) + k(m− 1) + 2} as

F (vi) =


f(vi), 1 ≤ i ≤ j(2n− 1) + 2,
f(vj(2n−1)+k(m−1)+2), i = j(2n− 1) + 3,
f(vi−1), j(2n− 1) + 4 ≤ i ≤ j(2n− 1) + k(m− 1) + 2.

The definition of F is illustrated in Figure 4. Note that under F , the label 3 is

Figure 4. Prime Labeling of C(3)
6
⋃
C

(5)
7

adjacent to p and p+ 1 but not to p− 1. Since the detailed verification that F , is a
prime labeling of G is almost similar to that of f in Sub-case 1, we do not discuss it
here. �

In view of Theorem 2.1 and Theorem 2.2, we conclude that the necessary and the
sufficient condition for the graph C(j)

n

⋃
C(k)

m to be prime is that either n is even or m
is even. Our next result gives a necessary condition for a graph to be prime when it
is union of three or more C(2)

n ’s.

Theorem 2.3. Let G =
(

N⋃
k=1

C(2)
nk

)⋃( M⋃
j=1

C(2)
mj

)
, where each nk is an odd integer and

each mj is an even integer. Then G is not a prime graph if M ≤ N − 2.

Proof. Since the independence number of each C(2)
nk

and each C(2)
mj

is nk − 1 and mj

respectively, we have

β0(G) =
N∑

k=1
(nk − 1) +

M∑
j=1

mj

=
N∑

k=1
nk +

M∑
j=1

mj −N.(2.1)
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Also,

|V (G)| = (2n1 − 1) + (2n2 − 1) + · · ·+ (2nN − 1)
+ (2m1 − 1) + (2m2 − 1) + · · ·+ (2mM − 1)

=
N∑

k=1
(2nk) +

M∑
j=1

(2mj)− (N +M).

So if dxe denotes the smallest integer ≥ x and bxc denotes the greatest integer ≤ x,
then ⌊

|V (G)|
2

⌋
=

N∑
i=1

nk +
M∑

j=1
mj −

⌈
(N +M)

2

⌉
.(2.2)

Since M ≤ N − 2, it follows from (2.1) and (2.2) that

β0(G) <
⌊
|V (G)|

2

⌋
.

Therefore G is not a prime graph due to Lemma 1.1. �

It is known that C2n
⋃
C2m

⋃
Ck is a prime graph for all n,m and k [6]. We prove

the same for the one point union of cycles in our next theorem.

Theorem 2.4. C(2)
2n

⋃
C

(2)
2m

⋃
C

(2)
k is a prime graph for all n,m and k.

Proof. Let G = C
(2)
2n

⋃
C

(2)
2m

⋃
C

(2)
k . Let {v1, v2, v3, . . . , v2n} and {v1, v2n+1, v2n+2, . . . ,

v4n−1} be sets of vertices of two cycles of C(2)
2n , {v4n, v4n+1, v4n+2, . . . , v4n+2m−1} and

{v4n, v4n+2m, v4n+2m+1, . . . , v4n+4m−2} be sets of vertices of two cycles of C(2)
2m and,

{v4n+4m−1, v4n+4m, v4n+4m+1,. . ., v4n+4m+k−2} and {v4n+4m−1, v4n+4m+k−1, v4n+4m+k,. . . ,

v4n+4m+2k−3} be sets of vertices of two cycles of C(2)
k .

Case 1: n+ 2m 6≡ 0 (mod 3).
Define f : V (G)→ {1, 2, 3, . . . , 4n+ 4m+ 2k − 3} as

f(v1) = 2n+ 3,
f(vi) = i+ 2, i = 2, 3, . . . , 2n and 4n+ 1, 4n+ 2, . . . , 4n+ 2m− 2,
f(vi) = i+ 3, i = 2n+ 1, 2n+ 2, . . . , 4n− 1,
f(vi) = i+ 1, i = 4n+ 2m, 4n+ 2m+ 1, . . . , 4n+ 4m− 2,
f(v4n) = 2,

f(v4n+2m−1) = 3,
f(v4n+4m−1) = 1,

f(vi) = i, i = 4n+ 4m, 4n+ 4m+ 1, . . . , 4n+ 4m+ 2k − 3.

The definition of f is illustrated in Figure 5. Here the labels of any two adjacent
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Figure 5. Prime Labeling of C(2)
6
⋃
C

(2)
8
⋃
C

(2)
9

vertices of the C(2)
k are either consecutive integers or one of the labels is equal to 1.

Further, for the vertices of the C(2)
2n , we observe that

gcd(f(v1), f(v2)) = gcd(2n+ 3, 4) = 1,
gcd(f(v1), f(v4n−1)) = gcd(2n+ 3, 4n+ 2) = gcd(2n+ 3, 2n+ 1) = 1

and except these two pairs, the labels of any other pair of adjacent vertices of C(2)
2n

are consecutive integers. Further, unless one of the vertices is v4n or v4n+2m−1, any
two adjacent vertices of the C(2)

2m are also consecutive integers. Next, the vertices
that are adjacent to v4n are v4n+1, v4n+2m−1, v4n+2m and v4n+4m−2 whose labels are
4n + 3, 3, 4n + 2m + 1 and 4n + 4m − 1 respectively, which are all odd numbers,
where as f(v4n) = 2. Finally, the vertices that are adjacent to v4n+2m−1 are v4n and
v4n+2m−2 whose labels are 2 and 4n+ 2m respectively. But f(v4n+2m−1) = 3 and since
n+ 2m 6≡ 0 (mod 3), we have gcd(3, 4n+ 2m) = 1. Thus, f is a prime labeling of G
if n + 2m 6≡ 0 (mod 3). Note that this f is not a prime labeling when n + 2m ≡ 0
(mod 3). So we need to make some changes in f for the resulting function g to be
prime labeling for that case.
Case 2: n+ 2m ≡ 0 (mod 3).

Define g : V (G)→ {1, 2, 3, . . . , 4n+ 4m+ 2k − 3} as

g(w) = f(w), w 6= v4n+2m−1, v4n+2m,

g(v4n+2m−1) = f(v4n+2m),
g(v4n+2m) = f(v4n+2m−1).

The definition of g is illustrated in Figure 6. Note that the labels of v4n+2m and
v4n+2m+1 are 3 and 4n + 2m + 2 respectively. Since n + 2m ≡ 0 (mod 3), they are
relatively prime. The detailed verification that the given function g defines prime
labeling on graph G is similar to that of in Case 1. �
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Figure 6. Prime Labeling of C(2)
6
⋃
C

(2)
12
⋃
C

(2)
9

In view of Lemma 1.1, it is easy to establish that if a graph G is union of three cycles
out of which two are odd, then G is not prime. However, if G = C

(2)
2n

⋃
C

(2)
2m+1

⋃
C

(2)
2k+1,

then β0(G) =
⌊
|V (G)|

2

⌋
= 2(n + m + k), and so there is a hope for positive results in

this case. Our next result gives some of these positive results.

Theorem 2.5. Let G = C
(2)
2n

⋃
C

(2)
2m+1

⋃
C

(2)
2k+1. Then G is a prime graph in each of

the following cases:
(i) n ≡ 0 (mod 3) and m ≡ 0 (mod 3) or n ≡ 2 (mod 3) and m ≡ 2 (mod 3);
(ii) n ≡ 1 (mod 3) and m ≡ 2 (mod 3);
(iii) n ≡ 1 (mod 3) and 2m ≡ 1 (mod 3) or n ≡ 2 (mod 3) and m ≡ 0 (mod 3).

Proof. Let {v1, v2, v3, . . . , v2n} and {v1, v2n+1, v2n+2, v2n+3, . . . , v4n−1} be the vertex
sets of the two cycles of C(2)

2n ; {v4n, v4n+1, v4n+2, . . . , v4n+2m} and {v4n, v4n+2m+1,

v4n+2m+2, v4n+2m+3, . . . , v4n+4m} be the vertex sets of the two cycles of C
(2)
2m+1

and {v4n+4m+1, v4n+4m+2, v4n+4m+3, . . . , v4n+4m+2k+1} and {v4n+4m+1, v4n+4m+2k+2,

v4n+4m+2k+3, . . . , v4n+4m+4k+1} be the vertex sets of the two cycles of C(2)
2k+1.

Case 1: n ≡ 0 (mod 3) and m ≡ 0 (mod 3) or n ≡ 2 (mod 3) and m ≡ 2 (mod 3).
Define f : V (G)→ {1, 2, 3, . . . , 4n+ 4m+ 4k + 1} as

f(v1) = 2n+ 3,
f(vi) = i+ 2, i = 2, 3, 4, . . . , 2n,
f(vi) = i+ 3, i = 2n+ 1, 2n+ 2, . . . , 4n− 1,
f(v4n) = 3,

f(v4n+1) = 2,
f(vi) = i+ 1, i = 4n+ 2, 4n+ 3, . . . , 4n+ 4m,

f(v4n+4m+1) = 1,
f(vi) = i, i = 4n+ 4m+ 2, 4n+ 4m+ 3, . . . , 4n+ 4m+ 4k + 1.
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For any two arbitrary vertices u and v of G, we show that gcd(f(u), f(v)) = 1. If this
pair of vertices is of C(2)

2n or C(2)
2k+1, then this can be done as in Theorem 2.4 and so we

assume that u and v are adjacent vertices of C(2)
2m+1. Here if u and v are different from

the vertex v4n then gcd(f(u), f(v)) = 1 follows because either both are consecutive
integers or else one of them is equal to 2 and the other is an odd integer 4n + 3.
Finally, if say u = v4n, then f(u) = 3, where as f(v) is one of the four values which
are 2, 4n+ 2m+ 1, 4n+ 2m+ 2 and 4n+ 4m+ 1. But the integer 3 is relatively prime
to all of them under the assumptions of the first case and so f is a prime labeling on
G. Since this function f may not be a prime labeling of G under the assumptions of
second and third cases; we modify the function f to get new prime labelings in the
second and the third case as shown below. As the verification is essentially the same
we skip the details.
Case 2: n ≡ 1 (mod 3) and m ≡ 2 (mod 3).

Define g : V (G)→ {1, 2, 3, . . . , 4n+ 4m+ 4k + 1} as

g(vi) =


f(vi), i 6= 4n+ 1, 4n+ 2, 4n+ 3, . . . , 4n+ 2m,
f(vi+1), i = 4n+ 1, 4n+ 2, 4n+ 3, . . . , 4n+ 2m− 1,
f(v4n+1), i = 4n+ 2m.

Case 3: n ≡ 1 (mod 3) and 2m ≡ 1 (mod 3) or n ≡ 2 (mod 3) and m ≡ 0 (mod 3).
Define h : V (G)→ {1, 2, 3, . . . , 4n+ 4m+ 4k + 1} as

h(vi) =


f(vi), i 6= 4n+ 1, 4n+ 2, 4n+ 3, . . . , 4n+ 4m,
f(vi+1), i = 4n+ 1, 4n+ 2, 4n+ 3, . . . , 4n+ 4m− 1,
f(v4n+1), i = 4n+ 4m.

�

Our final result is about the union of cycles. In [6] it has been shown that
C2n

⋃
C2m

⋃
Ck, C2n

⋃
C2n

⋃
C2m

⋃
C2m, C2n

⋃
C2n

⋃
C2m

⋃
C2k+1 and C2n

⋃
C2n

⋃
C2n⋃

C2m
⋃
Ck are prime graphs. Here we derive a prime labeling for the union of six

cycles.

Theorem 2.6. C2n
⋃
C2n

⋃
C2n

⋃
C2n

⋃
C2m

⋃
Ck is a prime graph for all n,m and k.

Proof. Let G = C2n
⋃
C2n

⋃
C2n

⋃
C2n

⋃
C2m

⋃
Ck. Let {v1, v2, . . . , v2n}, {v2n+1, v2n+2,

. . . , v4n}, {v4n+1, v4n+2, . . . , v6n}, {v6n+1, v6n+2, . . . , v8n}, {v8n+1, v8n+2, . . . , v8n+2m}
and {v8n+2m+1, v8n+2m+2, . . . , v8n+2m+k} be the vertex sets of the six cycles of G.

Define f : V (G)→ {1, 2, 3, . . . , 8n+ 2m+ k} as

f(vi) = i+ 2, i = 1, 2, 3, . . . , 2n− 2,
f(v2n−1) = 4n+ 1,
f(v2n) = 6n+ 2,
f(vi) = i, i = 2n+ 1, 2n+ 2, . . . , 4n and
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8n+ 2m+ 2, 8n+ 2m+ 3, . . . , 8n+ 2m+ k,

f(vi) = i+ 1, i = 4n+ 1, 4n+ 2, . . . , 6n and
8n+ 4, 8n+ 5, . . . , 8n+ 2m,

f(vi) = i+ 4, i = 6n+ 1, 6n+ 2, . . . , 8n,
f(v8n+1) = 2,
f(v8n+2) = 6n+ 3,
f(v8n+3) = 6n+ 4,

f(v8n+2m+1) = 1.
Observe that
gcd(f(v1), f(v2n)) = gcd(3, 6n+ 2) = 1,
gcd(f(v2n−2), f(v2n−1)) = gcd(2n, 4n+ 1) = 1,
gcd(f(v2n−1), f(v2n)) = gcd(4n+1, 6n+2) = gcd(4n+1, 2n+1) = gcd(1, 2n+1) = 1,
gcd(f(v2n+1), f(v4n)) = gcd(2n+ 1, 4n) = 1,
gcd(f(v4n+1), f(v6n)) = gcd(4n+2, 6n+1) = gcd(4n+2, 2n−1) = gcd(4, 2n−1) = 1,
gcd(f(v6n+1), f(v8n)) = gcd(6n+5, 8n+4) = gcd(6n+5, 2n−1) = gcd(8, 2n−1) = 1,
gcd(f(v8n+1), f(v8n+2)) = gcd(2, 6n+ 3) = 1,
gcd(f(v8n+1), f(v8n+2m)) = gcd(2, 8n+ 2m+ 1) = 1,
gcd(f(v8n+3), f(v8n+4)) = gcd(6n+4, 8n+5) = gcd(6n+4, 2n+1) = gcd(1, 2n+1) = 1,
gcd(f(v8n+2m+1), f(v8n+2m+2)) = gcd(1, 8n+ 2m+ 2) = 1,
gcd(f(v8n+2m+1), f(v8m+2m+k)) = gcd(1, 8n+ 2m+ k) = 1.
Except these cases every other pair of adjacent vertices have consecutive labels and
therefore f is a prime labeling on G. �

3. Conclusion

We have shown that the necessary and sufficient condition for the graph C(j)
n

⋃
C(k)

m

to be prime is that at least one of n andm is an even number. Further, it is shown that
C

(2)
2n

⋃
C

(2)
2m

⋃
C

(2)
k is a prime graph for all n,m and k and that C(2)

2n

⋃
C

(2)
2m+1

⋃
C

(2)
2k+1 is

a prime graph under certain assumptions on n and m. Although difficult, it will be
interesting to prove this result without any assumptions on n and m. We leave it as
an open problem. One may also think about generalizing or extending Theorem 2.6
by considering more than 3 variables or by considering more than six cycles.
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