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CONVERGENCE ANALYSIS OF LEAST SQUARES-EPSILON-RITZ
ALGORITHM FOR SOLVING A GENERAL CLASS OF

PANTOGRAPH EQUATIONS

S. A. YOUSEFI1, M. NOEI KHORSHIDI1, AND A. LOTFI1

Abstract. In this paper, we propose an approximate method for solving a general
class of pantograph differential equations. The proposed method is based on a
combination of least squares, epsilon and Ritz methods. The convergence properties
of the method are analyzed and discussed. Finally, several numerical examples are
given to illustrate the applicability and efficiency of the method.

1. Introduction

Pantograph equations are a kind of functional differential equations which have wide
applications in various fields such as analytic number theory, nonlinear dynamical
systems and probability theory on algebraic structures [3, 13, 14]. The name panto-
graph originated from the Ockendon and Tayler’s work on the collection of current
by the pantograph head of an electric locomotive [16]. In recent years there has been
the growing interest in the pantograph equations [1, 3,11,15]. Pantograph equations
are usually difficult to solve analytically, so numerical methods are required. There
has been number of some numerical methods for solving pantograph equations are
presented by researchers of this field. So far various numerical methods have been pro-
posed to solve pantograph equations such as the variational and modified variational
iteration method [2,11,19,27], the homotopy method [28], Taylor polynomial method
[21–23], the Bessel collocation method [24,29,30], the reproducing kernel space method
[4], the discontinuous Galerkin methods [1], the Runge-Kutta methods [9] and [10],
the θ-methods [25] and [26], the Chebyshev polynomials method [20], the Hermite
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method [31], the rational approximation method [7], the linear multistep methods
[6], the shifted Legendre approximation method [32], the generalized fractional-order
Bernoulli wavelet method [17] and the shifted orthonormal Bernstein polynomials
method [8].

In this work, by combining least square and epsilon methods [5, 12] we present an
efficient method for solving the multi-pantograph equation. The remainder of the
paper is structured as follows. After explaining the problem, we obtain the least
squares-Epsilon method for solving the multi-pantograph equation in Section 3 and
Section 4. In Section 5, the convergence results of the least squares-epsilon method are
given. We use numerical example to confirm the efficiently of the method in Section 6.

2. Statement of the Problem

Our goal in this article is to find approximate solution for multi-pantograph equation
of the following form

ρ∑
i=1

fi(x)
xl(x− λ)d

ui(x) +
ρ̄∑
i=1

gi(x)
xl(x− λ)d

u(i)(x) +
δ∑
i=1

γ∑
j=1

αi,j(x)
xl(x− λ)d

ui(pjx)

+
δ̄∑
i=1

γ̄∑
j=1

βi,j(x)
xl(x− λ)d

u(i)(qjx) = h(x), 0 < x < λ,(2.1)

with boundary conditions

u(i)(0) = η0,i, u(j)(λ) = η1,j,(2.2)

i = 0, 1, . . . , n1− 1, j = 0, 1, . . . , n2− 1, n1 +n2 = n = max{ρ̄, δ̄}, where 0 < pi, qj < 1
and l, d ∈ Z+. Here we suppose that fi(x), gi(x), αi,j(x), βi,j(x), h(x) ∈ C(0, λ). In
this problem unknown function u(x) belongs to the space Cn(0, λ).

The problem (2.1) with boundary conditions (2.2) is a singular equation defined
on the open interval (0, λ). In the subsequent development, we proceed solving the
following problem

ρ∑
i=1

fi(x)ui(x) +
ρ̄∑
i=1

gi(x)u(i)(x) +
δ∑
i=1

γ∑
j=1

αi,j(x)ui(pjx)

+
δ̄∑
i=1

γ̄∑
j=1

βi,j(x)u(i)(qjx) = xl(x− λ)dh(x), 0 6 x 6 λ,(2.3)

u(i)(0) = η0,i, u(j)(λ) = η1,j,(2.4)

i = 0, 1, . . . , n1−1, j = 0, 1, . . . , n2−1, n1+n2 = n = max{ρ̄, δ̄}, where u(x) ∈ Cn[0, λ]
and fi(x), gi(x), αi,j(x), βi,j(x), h(x) ∈ C[0, λ]. It is obvious that the solution of
the problem (2.3) with conditions (2.4) also satisfies the problem (2.1) with con-
ditions (2.2).
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3. Least Squares-Epsilon method

In this section, we develop an approximate method for solving problem (2.3) with
conditions (2.4) by combining least square and epsilon methods. Without loss of
generality, we consider λ = 1 in (2.3) and (2.4). Consider Equation (2.3) in the
following form

F (x, u(x), u(1)(x), . . . , u(ρ̄)(x), u(p1x), . . . , u(pγx), u(1)(q1x), . . . , u(1)(qγ̄x), . . . ,(3.1)

u(δ̄)(q1x), . . . , u(δ̄)(qγ̄x)) = 0, 0 ≤ x ≤ 1.
Define functional J : M → R as follows

J [u] :=
∫ 1

0
F 2dx = ‖F‖2

L2 ,(3.2)

where
M :={u ∈ Cn[0, 1] : u(i)(0) = η0,i, u

(j)(1) = η1,j, i = 0, 1, . . . , n1 − 1,(3.3)
j = 0, 1, . . . , n2 − 1}.(3.4)

Now we assume that Equation (2.3) has a solution uex in M . So, the functional J
has a minimizing solution uex ∈ M with minimum value J [uex] = 0. Our purpose
is to find an approximate minimizing solution for the functional J given by (3.2) on
M . The minimization problem min J |M is a constrained optimization problem. By
applying the epsilon method, we transform the constrained optimization problem into
the following unconstrained problem

J̃ [u] =
∫ 1

0
F 2dx+ 1

ε

n1−1∑
i=0

(u(i)(0)− η0,i)2 +
n2−1∑
j=0

(u(j)(1)− η1,j)2

 ,(3.5)

where ε > 0 is given.
We minimize the functional J̃ on Cn[0, 1]. It is obvious that uex is also a minimizing

solution for J̃ for any considered value of ε and J̃ [uex] = 0. Theorem 5.2 ensures that
solving the problem minJ̃ |Cn[0,1] by utilizing the Ritz method leads to an approximate
minimizing solution for the functional J on M .

4. Approximate Solution of Pantograph Equation

Consider expansion uk,ε(t), in the following form

uk(t) = Ck
T .Ψk(t), Ψk(t) =


φ0(t)
φ1(t)
...

φk(t)

 , Ck =


c0
c1
...
ck

 .(4.1)

Here, φj(t), j ∈ {0}
⋃N are shifted Legendre orthonormal polynomials

φj(t) =
√

2j + 1
j∑

k=0
(−1)j+k (j + k)!tk

(j − k)!(k!)2 , j = 0, 1, 2, . . . , t ∈ [0, 1].(4.2)
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Substituting uk into (3.5) gives us

J̃ [c0, . . . , ck] =
∫ 1

0
F 2
k dx+ 1

ε

n1−1∑
i=0

(u(i)
k (0)− η0,i)2 +

n2−1∑
j=0

(u(j)
k (1)− η1,j)2

 ,(4.3)

where

Fk :=F (x, uk(x), u(1)
k (x), . . . , u(ρ̄)

k (x), uk(p1x), . . . , uk(pγx), u(1)
k (q1x), . . . ,

u
(1)
k (qγ̄x), . . . , u(δ̄)

k (q1x), . . . , u(δ̄)
k (qγ̄x)),

which is an algebraic function of unknowns cj, j = 0, 1, . . . , k. If cjs be determined by
minimizing function J̃ , then by (4.1) we achieve function that approximate minimum
value of J̃ in (4.3). According to differential calculus, the following system of equations
is the necessary condition of optimization for the multidimensional function (4.3)

∂J̃

∂cj
= 0, 0 ≤ j ≤ k.(4.4)

By solving system (4.4), we can determine minimizing values of cj, j = 0, 1, . . . , k, for
function (4.3). Hence, we achieve functions uj, by (4.1), which approximate minimum
value of J by

J [c0, . . . , ck] =
∫ 1

0
F 2
k dx,

while

u
(i)
k (0) 'η0.i, i = 0, 1, . . . , n1 − 1,

u
(j)
k (1) 'η1,j, j = 0, 1, . . . , n2 − 1.

5. On the Convergence of the Method

In this section we discuss the convergence of the method presented in Section 4.
Lemma 5.1 shows that the functional J̃ is continuous on Cn[0, 1] with respect to the
norm, ‖.‖n, defined as follows

‖u‖n = ‖u‖∞ + · · ·+ ‖u(n)‖∞.

We use this important property later in Theorem 5.2. The following theorem from
real analysis plays key roll in the proof of Lemma 5.1.

Theorem 5.1. Let f be continuous mapping of a compact metric space X into a
metric space Y , then f is uniformly continuous.

Proof. See [18]. �

Lemma 5.1. The functional J is continuous on Cn[0, 1].
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Proof. Let u∗ ∈ Cn[0, 1]. Notice that ∆ > 0 is given. Consider d > 0 and

I = [0, 1]×
1+ρ̄+γ+γ̄δ̄∏

i=1
[−L− d, L+ d],

where L = max{‖u‖∞, ‖u′‖∞, . . . , ‖u(n)‖∞}. Obviously

U∗(x) :=(x, u∗(x), u∗(1)(x), . . . , u∗(ρ̄)(x), u∗(p1x), . . . , u∗(pγx), u∗(1)(q1x), . . . ,(5.1)

u∗(1)(qγ̄x), . . . , u∗(δ̄)(q1x), . . . , u∗(δ̄)(qγ̄x)) ∈ I, x ∈ [0, 1].
∆1 > 0 is given. Let δ1 > 0 and ‖u− u∗‖n < δ1, then we have

‖ u(j) − u∗(j) ‖∞< δ1, 1 ≤ j ≤ ρ̄,(5.2)

max{|u(pjx)− u∗(pjx)| : x ∈ [0, 1]} < δ1, 1 ≤ j ≤ γ,(5.3)

max{|u(i)(qjx)− u∗(i)(qjx)| : x ∈ [0, 1]} < δ1, 1 ≤ j ≤ γ̄, 1 ≤ i ≤ δ̄.(5.4)
According to (5.2)-(5.4) it is easy to see that for small enough value of δ1 we have

U(x) :=(x, u(x), u(1)(x), . . . , u(ρ̄)(x), u(p1x), . . . , u(pγx), u(1)(q1x), . . . , u(1)(qγ̄x), . . . ,
(5.5)

u(δ̄)(q1x), . . . , u(δ̄)(qγ̄x)) ∈ I, x ∈ [0, 1],

| U(x)− U∗(x) |< ∆1, x ∈ [0, 1].
Since function F is continuous on I and I is a compact set, according to Theorem 5.1, F
is uniformly continuous on I. So if δ1 > 0 be sufficiently small, then | U(x)−U∗(x) |<
∆1 implies that | F (U(x))− F (U∗(x)) |< ∆, x ∈ [0, 1], and | J [u]− J [u∗] |< ∆. �

Define Lε : Cn[0, 1]→ R as follows

Lε[u] := 1
ε

n1−1∑
i=0

(u(i)(0)− η0,i)2 +
n2−1∑
j=0

(u(j)(1)− η1,j)2

 .(5.6)

It is easy to observe that the functional Lε is continuous on Cn[0, 1] with respect to
‖.‖n. So by Lemma 5.1, for any selection of ε ∈ R, the functional J̃ is continuous on
Cn[0, 1].

Theorem 5.2. Let µ̂k = J̃ [uk] be the minimum of the functional J̃ on Pk[0, 1] and
µk := J [uk], then

lim
k→∞

µk = 0,

and
lim
j→∞
|u(i)
k (0)− η0.i| =0, i = 0, 1, ..., n1 − 1,

lim
j→∞
|u(i)
k (1)− η1,i| =0, i = 0, 1, ..., n2 − 1.
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Table 1. The approximate values of µk for k = 2, 3, 4 for Example 6.1

k µk
2 0.000813977
3 9.440282× 10−6

4 1.3411× 10−7

Proof. For any given ∆ > 0, we consider u∗ ∈ Cn[0, 1] such that
J̃ [u∗] < ∆.(5.7)

Such u∗ exists by the properties of minimum. On the other hand, J̃ is continuous on
Cn[0, 1] so we have

| J̃ [u]− J̃ [u∗] |< ∆,(5.8)
provided that ‖u−u∗‖n < η. According to Weierstrass theorem given in [18], for large
enough value of k, there exist pk(x) ∈ Pk[0, 1] such that ‖ pk − u∗ ‖< η. Moreover let
uk be the element of Pk[0, 1] such that J̃ [uk] = µ̂k, then using (5.7) and (5.8) we have

0 ≤ J̃ [uk] ≤ J̃ [pk] < 2∆.
Since ∆ > 0 is arbitrary, it follows that limk→∞ µ̂k = 0 and the result can be easily
obtained. �

6. Test Problems

Example 6.1. As the first example, we study the following singular multi-pantograph
delay differential equation

u(2)(x) + 1
x
u(1)

(
x

2

)
+ 1
x2u

(1)
(
x

4

)
− 1
x− 1u(x) = h(x), 0 < x 6 1,

u(0) = 1, u(1) = e,

h(x) = ex + 1
x
e

x
2 + 1

x2 e
x
4 − 1

x− 1e
x.

For above problem, we can see that exact solution is u(x) = ex. Applying the method
presented in Section 4, we achieve the approximate solution for the problem. The
approximate values of µk, for different number of basis functions k, are demonstrated
in Table 1. Also Table 2 shows absolute error |uk(x)− uex(x)|.

Example 6.2. In this example, we consider the following nonlinear equation

u(1)(x) + 2u2
(
x

2

)
= 1, 0 < x 6 1,

u(0) = 0.
Noting to this problem, we can verify that the exact solution is u(x) sin(x). Table 3
shows the values of µk for different values of k and Table 4 demonstrates the absolute
error |uk(x)− uex(x)|.
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Table 2. Absolute error for k = 2, 3, 4 for Example 6.1

x k = 2 k = 3 k = 4
0 1.71305× 10−7 2.2301× 10−8 5.19587× 10−9

0.1 0.000846204 2.18047× 10−6 2.23933× 10−6

0.2 0.0022476 0.00099343 0.0000524334
0.3 0.00811796 0.00236922 0.0000851558
0.4 0.0154792 0.00362989 0.0000788594
0.5 0.0229106 0.00441537 0.0000430139
0.6 0.0288417 0.004515 3.88571× 10−6

0.7 0.0315373 0.00388327 0.0000111775
0.8 0.0290793 0.00265722 8.8842× 10−6

0.9 0.0193481 0.00117555 0.0000396475
1 1.08041× 10−6 9.01796× 10−8 7.90223× 10−9

Table 3. The approximate values of µk for k = 1, 3, 5 for Example 6.2

k µk
1 0.0124095
3 2.19831× 10−6

5 2.27916× 10−11

Table 4. Absolute error for k = 1, 3, 5 for Example 6.2

x k=1 k=3 k=5
0 3.37176× 10−6 1.27022× 10−9 1.89865× 10−14

0.1 0.0142226 0.000169393 1.15815× 10−7

0.2 0.0274443 0.000108566 4.02153× 10−7

0.3 0.038681 0.0000550637 3.08125× 10−7

0.4 0.0469649 0.000213911 2.1473× 10−7

0.5 0.0513579 0.000289893 5.49804× 10−7

0.6 0.0509607 0.000243804 3.47773× 10−7

0.7 0.0449217 0.0000843014 1.61122× 10−7

0.8 0.0324459 0.000123587 3.33028× 10−7

0.9 0.0128025 0.00025052 1.60343× 10−7

1 0.0146676 0.0000955398 4.00845× 10−8

From the above numerical results, we can see that the proposed method is quite
efficient.

7. Conclusion

This paper have developed an approximate method based on least squares, ep-
silon and Ritz methods for solving a general class of singular and nonsingular multi-
pantograph equations. The convergence of the method has been extensively discussed
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and illustrative test examples have been included to demonstrate validity and appli-
cability of the new method.
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