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SOME REFINEMENTS OF HERMITE-HADAMARD INEQUALITY
AND AN OPEN PROBLEM

SLAVKO SIMIC!

ABSTRACT. We presented here a refinement of Hermite-Hadamard inequality as a
linear combination of its end-points. The problem of best possible constants is closely
connected with well known Simpson’s rule in numerical integration. It is solved here
for a wide class of convex functions, but not in general. Some supplementary results
are also given.

1. INTRODUCTION

A function f: I C R — R is said to be convex on an non-empty interval I if the
inequality

(1.1) flpx +qy) <pf(x)+aqf(y)

holds for all x,y € I and all non-negative p,q;p + q = 1.

If the inequality (1.1) reverses, then f is said to be concave on I [1].

Let f: I C R — R be a convex function on an interval I and a,b € [ with a < b.
Then

(1.2) f (a;b> < bia/abf(t)dtg f(a);f(b)

This double inequality is well known in the literature as Hermite-Hadamard integral
inequality for convex functions. See, for example, [2] and references therein.
If f is concave, both inequalities in (1.2) hold in the reversed direction.
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Our task in this paper is to improve the inequality (1.2) in a simple manner, i.e.,
to find some positive constants «, 3,7, such that the relations

w3) st oy +or (50) < 1o [ o < atr@soar (450

2 “b—a
hold for any convex f.
Taking f(t) = Ct,C € R/{0}, it can be easily seen that both conditions

(1.4) 20+ =1; 2v+4d=1,
are necessary for (1.3) to hold.
Denote

M00) = Myfatind) = (@) + £0) 67 (5.

and

N(a, §) = Ny(a,b;, 8) = alf(@) + F(b)) + 1 ( ’ ”) |

N(a, ) =(20) (JW) 8/ <a+b>

Since

<max{f(a);f(b)’f(a;rb)} _ f(a);-f(b)’
and, consequently
i) =) (L) o (212)
2 { L0 by g (220,

it follows that the inequality (1.3) represents a refinement of Hermite-Hadamard
inequality (1.2).

Now, it can be seen that the bound M (0, 1) is best possible in general case. Indeed,
let v € (0,1/2] be fixed and the relation

M;(0,1;7,6) < /01 F(t)dt

holds for arbitrary convex f.

Then the convex function f(t) = t/7 gives a counter-example.

This means that the left-hand side of Hermite-Hadamard inequality cannot be
improved, in general, by the form of (1.3).

Nevertheless, such improvement is possible for some special classes of convex func-
tions (see Corollary 2.1 below).
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The case of the bound N («, ) is significantly harder. We found value N(1/4,1/2)
for which the right-hand side of (1.3) holds for any integrable convex function. Since
N(a, ) is monotone increasing in «, because

d a+b

mNsatia ) = @)+ £ -2f (150 o

it follows that the right-hand side of (1.3) also holds for a € [1/4,1/2].
In search for best possible constants, note that

o> Bl SO = F(57)

fla) + f(b) = 2f(*5*)
and, if f € C*(I) and f”(t) > 0 for ¢ € I, then lim;_,, Ff(a,b) = 1/6, independently
of f.

Therefore, we obtain a potentially best possible bound N(1/6,2/3). Unfortunately,
as is shown in Theorem 2.3, this bound is best possible only for the class of differen-
tiable convex functions for which f*(¢) > 0,t € I.

Hence, we can formulate the following.

Open Question: find the best possible bound N (a*, 5*) valid for all convexr map-
pings from the class C*°(I).

Since the function g(t) = AWVE 2 convex on | = [0,1], gives the value a =

35 120
18128 > 1/6, we have that o* € [.18128,.25].

Ff((l, b)

2. RESuULTS AND PROOFS

We shall begin with the basic contribution to the problem defined above.

Theorem 2.1. Let f: I C R — R be a convex function on an interval I and a,b € I
with a < b. Then

s e < @+ g0+ 57 (0] = v,

Proof. We shall derive the proof by Hermite-Hadamard inequality itself. Indeed,
applying twice the right part of this inequality, we get

o o (s (15),
bfa/a;f(t)dtﬁ;<f<&;b>+f(b)>.

Summing, the result appears. Therefore, HH inequality has a self-improving prop-
erty. [

and




352 S. SIMIC

For the sake of further refinements, we shall consider in the sequel functions from
the class C(™)(I) i.e., functions which are continuously differentiable up to m-th order
on an interval I C R.

We give firstly a sharp improvement of the result from Theorem 2.1.

Theorem 2.2. Let f € C(I) be convexr on I together with its second derivative.
Then for each a,b € I,a < b,

(b ;;) o ( . b) < N(1/4,1/2) - 2 / "rya < O ;g” [£"(a) + 1"(0)].

If f is convex and f" concave on I, then

(b—a)*
96

@+ o)< N - i< CL (40,

Proof. We need the following two assertions.

Lemma 2.1. [3] If h is convex on I = [a,b] and, for x,y € [,x+y = a+b, then

o%h (a ; b) < h(z) + h(y) < h(a) + h(b).

Remark 2.1. Note that this result is a pre-HH inequality, i.e., HH inequality is its
direct consequence. Indeed, let x = pa + gb,y = qa + pb for p,q > 0,p 4+ g = 1. Then
x,y € I and x +y = a+b. Hence,

2h (a ;_ b) < h(pa + gb) + h(ga + pb) < h(a) + h(b).

Integrating this expression over p € [0, 1] we obtain the very HH inequality.

Lemma 2.2. Let f € C?(I) and a,b € I,a < b.Then the following identity holds.

N2 - [ rwa =2 M)+ e,

with == at+b(1 - %),y :=b5+a(l —1%).

It is not difficult to prove this identity by double partial integration of its right-hand
side.

Since x+y = a+b and f” is convex/concave, applying Lemma 2.1 the proof readily
follows. [

Another improvement of HH inequality is given in the next

Theorem 2.3. Let f € CY(I) and a,b € I,a < b. If f, f" are convex on I, then

1
b—a

/bf(t)dt < N(1/6,2/3),
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and the coefficients 1/6,2/3 are best possible for this class of functions.
If " is concave on I then the reversed inequality takes place.

Proof. Note that the coeflicients 1/6 and 2/3 are involved in well-known Simpson’s
rule which is of importance in numerical integration. It says that

Lemma 2.3. [4] For an integrable f, we have

[ 50 = gh(h+ 4+ ) = G D). (01 < € < o)
where f; = f(x;) and h := x9 — 11 = 3 — X3.

Now, taking x; = a,29 = (a + b)/2,23 = b, we get h = (b — a)/2. Also, convex-
ity /concavity of f” on I implies that f*(¢) = 0 and the proof follows. O

Combining the second part of this theorem with the result of Theorem 2.1, we get

Corollary 2.1. For f € CYW(I) let f be convex and f" concave on I. Then

N(1/6,2/3) < b_la /bf(t)dt < N(1/4,1/2),

which gives a proper answer, regarding this class of functions, to the problem posed in
Introduction.

Further refinement of the assertion from Theorem 2.3 is possible.

Theorem 2.4. For f € CY(I) let f and f" be convex on I. Then

o<glrta s+ 37 (50) - 1 [

S(b?;Z)2 [f”(a) + f//(b) _ 2f// <Cl —2i_ b>‘| )

If f is convex and " concave on I, then

(b—a)? a+b

<ol (“50) - @+ ).

The above theorem tightly refines Simpson’s rule for this class of functions.

o<y [ a0 g @ s ar (450

Proof. The left part is proved in Theorem 2.3. For the right part we shall use an
integral identity.
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Lemma 2.4. For f € C?(I), we have

Ne.23) - [ =" M st + e

where x and y are the same as in Lemma 2.2.

Writing,

[ =it = [ e s~ [ i)

2/3

and applying Lemma 2.1 to each integral separately, the result appears since

v 2 —3t)d 1 3t —2)d 1

t(2—3t t:/ t(3t — t=—.

/0 ( ) 2/3( ) 27
O

Remark 2.2. Note that the convexity condition on f in last three theorems is su-
perfluous. It is stated there just to keep the connection with Hermite-Hadamard
inequality.

3. APPLICATIONS IN MEANS THEORY

A meanis amap M : R, x Ry — R, with a property

min{a, b} < M(a,b) < max{a,b},

for each a,b € R,.
Hence M is necessary reflexive, M(a,a) = a.
Most known ordered family of means is the following family A of elementary means,

A: HKGLKLLZI<KALS,
where
b—a

H=H(a,b):=2(1/a+1/b)" G =G(a,b) :=Vab; L= L(a,b):= logh—loga’

1 b a
I=1(a,b) = —(/a) /O A= A(a,d) = T S = S(a,b) = astiba,
e

are the harmonic, geometric, logarithmic, identric, arithmetic and Gini mean, respec-
tively.

As an illustration of our results, we shall give in the sequel some sharp approxima-
tions of logarithmic and identric means.
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Theorem 3.1. The inequality G < L < A can be improved to

1 2 /A —G\? 1
“(A+2G)— —([——=) (A < L<=(A+20).
3(+G> 81( L )<+G)— —3(+G>

Similarly, an approximation of 1/L in terms of the arithmetic and harmonic means
is given by

A—H<1(1 1) 1<A(A—H)<Iz§ j)

oz S2\atH) LS e
Proof. Applying Theorem 2.4 with f = €', we obtain
1 2 = T — Y
0 Sé(@x + ey) + ge# — em _Z
=y
- 324
Since x and y are arbitrary real numbers, putting x = logb,y = log a, we get

(" +e¥ — Qez#).

1 (logb — log a)?
<= — L < —
0 _3(A +2G) - L < 160 (A—-GQ)

4 (logb—loga ? 2 (A—G\?
2 () -0 =g (F77) e

and the proof is done.
For the second part, applying Theorem 2.2 with f = 1/t, f" = 2/t3, we get
(b—aj 1 _ 1(1 1)+ L1 (b—a)2<1 . 1>
24 A3 T 4 '

o p)TmaT s s @t
Now, the identities 1/a + 1/b = 2/H, (b — a)> = 4A(A — H), AH = G? yields the
proof. [l

Finally, we shall give some interesting inequalities for the identric mean.
Theorem 3.2. For arbitrary positive a,b we have
. . A—H? /1 2
233 < T < A2/3(01/3 ( ( ) ,
APGHR < T < AYPE exp<162H A+H ;
i (A(CL, b) _ H(a> b))2
81 A(a,b)H(a,b)

Proof. Applying Theorem 2.4 with f = —logt, we obtain the proof.
For the second part, for f = tlogt, we get

AY3(a,b)S*3(a,b) exp ( ) < I(a®b*) < A*3(a,b)S*3(a,b).

1 b 1 (b*logb® — a*loga® a+b 9 19
b—a/aﬂt)dt_él( P —(a—i—b))- 1 log I(a®, b%).

Since f” = 1/t, Theorem 2.4 yields
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1 2 b—a?/1 1 2

~(al 1 ZAlogA - VY (2 -2

6(a oga+blogh) + 3 ©8 324 (a b A)
b 1 2

<¢ + log I(a®,b?) < é(aloga + blogb) + §AlogA,

and the proof follows by dividing the last expression with a + b = 2A. 0
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