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SOME MONOTONICITY PROPERTIES AND INEQUALITIES FOR
THE (p, k)-GAMMA FUNCTION

KWARA NANTOMAH!, FATON MEROVCI?, AND SULEMAN NASIRU?

ABSTRACT. In this paper, the authors present some complete monotonicity prop-
erties and some inequalities involving the (p, k)-analogue of the Gamma function.
The established results provide the (p, k)-generalizations for some results known in
the literature.

1. INTRODUCTION

In a recent paper [12], the authors introduced a (p, k)-analogue of the Gamma
function defined for p € N, &k > 0 and x € R as

D L tk p
T, u(z) = / i1 D) a
pvk(x) 0 ( pk>

(p+ 1)kt (pk) s
z(x + k) (x4 2k)...(x+pk)’

and satisfying the basic properties:

(1.1) -

pkx
1.2 r kY= ——T
(12 o+ 1) = — L Tu(z),
1
T, (ak) = p‘;ka-lrpm), a € RY,
T, (k) = 1.
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The (p, k)-analogue of the Digamma function is defined for = > 0 as

d 1 P 1
1. InT = —In(pk) —
( 3) wp,k‘( ) d n pk( ) kf n(p ) nz::onk+x
1 00 | — e k(p+1)t
=gy [Ty,
k (pk) - 0 1 — ekt e di
Also, the (p, k)-analogue of the Polygamma functions are defined as
P (=1)" !
1.4 o)
( ) 77Dp,k ( ) dxmd)pk Z nk‘ +ZE m+1

n—O

1 — e ktD)
_ (—1)m+1/ () tme=at gt
0 1—ek

where m € N and @f’,ﬁ(@ = Y, i(T).

The functions I', ;(x) and v, x(x) satisfy the following commutative diagrams.

Ly i) == Tu(x) Up(2) = ()
kﬁll lk%l kall ik—)l
Pp(2) 555 T(2), Up(2) 5= ().
From the identity (1.2), the following relations are established:
(15) Wl +B) = Ypule) =~
(1.6) (x4 k) — (@) = (=V"ml __ (=1)"m! m € N.

amtl (x + pk + k)ym+1’
It follows easily from (1.3) and (1.4) that for z > 0,
(i) Ypr(x) is increasing;
(ii) @Z)I(:,z) (x) is positive and decreasing if m is odd;
(iii) wz(:;) (x) is negative and increasing if m is even.
Next, we recall the following definitions and lemmas which will be used in the

paper.
A function f is said to be completely monotonic on an interval I, if f has derivatives
of all order and satisfies

(1.7) (=)™ (z) >0, for xz€l,méeN,.

If the inequality (1.7) is strict, then f is said to be strictly completely monotonic on 1.
A positive function f is said to be logarithmically completely monotonic on an
interval I, if f satisfies

(1.8) (=1)™[In f(z)]"™ >0, for z €I méeN,.
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If the inequality (1.8) is strict, then f is said to be strictly logarithmically completely
monotonic on I.

Lemma 1.1 ([1]). If h is completely monotonic on (0,00), then exp(—h) is also
completely monotonic on (0,00).

Lemma 1.2 ([1]). Let a; and bz, = 1,2,...,n be real numbers such that 0 < a; <
as < - <ay, 0<b <by <--- < by andzllal<2f‘:1bifor)\€N. If fisa
decreasing and convex function on R, then

S () < éf(a)

Lemma 1.3 ([4]). Let f"(x) be completely monotonic on (0,00). Then for 0 <s <1,
the functions

pe) =exp (= (fe+ 1) = fa+8) - =9 (2+27))),

2
o) =e ()= g9 - U5 ek 4 o)

are logarithmically completely monotonic on (0, 00).

In this paper, our goal is to establish some complete monotonicity properties and
some inequalities involving the (p, k)-analogue of the Gamma function. For additional
information on results of this nature, one could refer to [3], [8] and the related
references therein.

2. MAIN RESULTS

We now present our findings in this section.

Theorem 2.1. Let p € N, k > 0 and m € No. Then the function i, () is strictly
completely monotonic on (0,00).

Proof. 1t follows directly from (1.4) that

()™ (e (@)™ = (=1l @)
P (—1) 2 (m + 1))

-y

= (nk + :c)m+2

1)!
o 2m+2 )
a Z nk + x)m+2 >0,

which concludes the proof. 0

Remark 2.1. It follows from Lemma 1.1 that exp(—1,x(x)) is also completely mono-
tonic.
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Theorem 2.2. Letp € N, k>0 and a € (0,1). Then the function
Qz) = Ypp(z + a) — Ypx(z),
is strictly completely monotonic on (0,00). In particular, Q is decreasing and convex.
Proof. By direct computation, we obtain
(D)™ Q@)™ = (=1)" [y (x + a) — ¥y ()]

P (=1)™Fim! P (=1)" ! ]

= (=" [Z (nk +x +a)mt! B HZ::O (nk 4 z)m+1

1 1
— 2m+1 | -
" Z l nk +x+a)™tt  (nk+ a:)mH]

> 0,
which establishes the result. In particular, Q'(x) = ¢, (z + a) — ¥, ,(z) < 0 since
;’) 1(7) is decreasing. Hence @ is decreasing. Furthermore, Q"(x) = ¢y, (v + a) —
k(1) > 0 implying that @ is convex. O

Remark 2.2. Theorem 2.2 generalizes the the previous result [10, Theorem 1].
In the following theorem, we prove a generalization of the results of Mortici [11].

Theorem 2.3. Let p € N, k>0 and o € (0,1). Then the function
«

T(gj) = %,k(l’ + Oz) - ¢p,k($) -
is strictly completely monotonic on (0,00). Particularly, T is decreasing and convez.

Proof. Similarly, by direct computation, we obtain
(—)™ (T (x))™

—(-1)" [W)(a: +a) =gl (@) = ()™ = 1=

zp: (=)™ m! zp: (=1)™Hm! (=)™ 2a(m —1)!
— (nk + x4+ a)mtl = (nk + )™t amtl
1 1 a(m —1)!
: 2m+1 | o -1 2m+2
e Z [ nk+x+ o)™t (nk+ :z:)mH] =D il

>0.

Hence T is strictly completely monotonic on (0,00). In particular,

T'(x) = ) 40 + ) = U u(e) + =

1 L 1 +04
2?2 (z+pata)?  a?
1 -« 1

- <0
x? +(m+pa+a)2 -

)
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as a result of (1.6). Thus 7" is decreasing. Next,

T"(z) = Yy (o +a) =y () — —

Hence T is convex. O

Remark 2.3. By letting p — oo and k£ = 1 in Theorem 2.3, we obtain the main result
of [11].

Theorem 2.4. Let p € N, k > 0, m € Ny, a; and b;, 1 = 1,2,...,n, be such that
O<ar<ar < <y, 0<b <by <o < b, and Sy a; < X2 b; for A € N.
Then the function

H(x) = ] 2ot )
i1 Up(z + ;)

is completely monotonic on (0, 00).

Proof. Let h be defined by h(z) = 37 [InTpi(x +b;) —InT,x(x + a;)]. Then for

m € Np, we have

(1) (W)™ =(=1)" 3 [0+ b) = 6  + )]

P m!

=(=” Zn: [(_1)7” ; (sk + @ + by)m+!

m!
- (=1 Z (sk+z+ ai)mH]

s=0

n 1 1
2m+1 | _
m;;][sk—irx—l—bi)m“ (sk + x + a;)m+!

Since g%m is decreasing and convex on R for m € Ny, then by Lemma 1.2 we obtain

z": 1 - 1 ]SO‘

= (sk+x+b)mt (sk+x+a;)mH!

Thus, (=1)™ (K'(z))™ > 0 for m € Ny. Hence h/(z) is completely monotonic on
(0,00). Then by Lemma 1.1,

5 Tk(x 4 a;)
=H
exp(— l;[1 (1 b (),

is completely monotonic on (0, 00). O
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Remark 2.4. By letting p — oo in Theorem 2.4, we obtain the result of [6, Theorem
2.6].

Remark 2.5. By letting k = 1 in Theorem 2.4, we obtain the result of [7, Theorem
13].

Remark 2.6. By letting p — oo and k& = 1 in Theorem 2.4, we obtain the result of [1,
Theorem 10].

Theorem 2.5. Let p € N, k> 0 and a € (0,1). Then the inequality
alp+1)
_ < )
is satisfied for x € [1,00).

Proof. Let @ be defined as in Theorem 2.2. Since @ is decreasing, then for z € [1, 00),
we obtain

0= lim Q(x) < Q@) < Q1) = tyila+1) — (L),
which by (1.5) yields the desired result. O
Theorem 2.6. Let p € N and k > 0. Then the inequality

1 pkx 1 1 1 pkx
2.1 -n|l————| -+ ——-< <-In{——F—
21) kn<x+pk+k> x+x+pk+k—%”“<x>—kn<x+pk+k>’
holds for x > 0.

Proof. It follows from (1.2) that InT', x(x + k) —InT'), x(z) = In (xf;kﬁk). Let g(z) =

InT', x(z). Then by the classical mean value theorem, the exits a A € (x,x + k) such
that

g(r + k:; —g(x) _ Inl,.(z+ k‘k): —InT) k() ().

Since ¥, x(x) is increasing, then for A € (z,x + k), we have

Vpi() < Vpir(N) < Yp i + k),
which implies

1 pkx
<-In|———| < k).
77Z1p’k<a7) — k’ n<$+pk'—|—k?> —¢p7k(x+ )
Then by (1.5) we obtain
1 pkx 1 1
<-Im|—2" )< -
Vpr(@) < k n<$+pk+k’> _%’k(x)+x r+pk+k’

yielding the result (2.1). O
Remark 2.7. Let p — oo and k = 1 in (2.1). Then we obtain the result

(2.2) Inz — i <¢Y(r)<Inz,

for the classical digamma function, 1 (z).
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Theorem 2.7. Let p € N and k > 0. Then the inequality

O R T DS 7 S S TS SR
T k\x x+pk+k) P\ =\ x+pk+k 22 (x+pk+ k)%’
holds for x > 0.

Proof. Consider the function 1, (z) on the interval (z,z + k). By the mean value
theorem, the exits a ¢ € (z, 2 + k) such that

1/1 1 _ U@+ k) — (@)
k <ac B x+pk+k> B k = Vrale)

Since 1, ;.(7) is decreasing, then for ¢ € (z,r + k), we have

l%,k(f +k) < ¢;,k(c) < ¢;,k(x)7

which implies

1/1 1
! HN< [ - —— | < .
Then by (1.6), we obtain
1 1 1/1 1
/ . - < - - < /
wp’k(x) 22 + (x+pk+k)? ~ k (m x+pk+k> _Q/}p’k(x)’
which results to (2.3). O

Remark 2.8. Let p — oo and k =1 in (2.3). Then we obtain the result
1 1 1
< <-4+ =
—sY@) s -+
)

(2.4)

for the trigamma function, ¢'(x).

Remark 2.9. The right side of (2.2) and the left side of (2.4) are however weaker than
the results obtained in [5, Theorem 3].

Theorem 2.8. Let p e N, k>0 and 0 < s < 1. Then the functions

u(z) = gii; exp(( )¢pk<x+1;3>)’
wle) = A exp (5 (Wpala + 1)+ vyalo + ).

are logarithmically completely monotonic on (0, 00).

Proof. Let f(x) =1InT,,(z) and recall that f”(z) = 4, () is completely monotonic
n (0,00) (See Theorem 2.1). Then the results follow directly from Lemma 1.3. [
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Theorem 2.9. Letp e N, k>0 and 0 < s < 1. Then the inequality

25) exp (5 Wyl ) bl 1)) < m
< exp <(1 — $)Upk (ac + ! ; S)) ,

is satisfied for x > 0.

Proof. We employ the Hermite-Hadamard’s inequality which states that: if f(x) is
convex on [a, b], then

(45 =5 [ < KO0

Let f(z) = —¢pi(x), a =2+ s and b = x + 1. Then we have

1+s><_ 1 /m k(t)dt<_¢p7k(:p+s)+¢p,k(x+1)
2 )7 1—s5 P -

_¢p,k (ZE +
which implies

Ypr(z+8) + iz +1) < 1 Lpr(r+1) < <x+ 1 +s>.

+s 2 ’

< In
2 1—s Tpe(x+s) 2

Then by taking exponents, we obtain the desired result. O

Remark 2.10. By letting p — oo in Theorems 2.8 and 2.9, we respectively obtain the
results of Theorems 2.1 and 2.3 of [6].

Remark 2.11. By letting £k = 1 in Theorems 2.8 and 2.9, we respectively obtain the
results of Theorems 2.3 and 2.4 of [9].

Remark 2.12. The g-analogue of these results can also be found in [4].

The following theorem is a (p, k)-generalization of Lemma 2.1 of [2]. We derive our
results by using similar techniques.
Theorem 2.10. Let p € N and k > 0. Then the function
1
fl#) = ——,
Loz + k)=
is logarithmically completely monotonic on (0,00).

Proof. We employ the Leibniz’s rule for n-times differentiable functions v and v, which
is given by

)] = 3 (2 )u e,

s=0 s
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That is,

s=0 s
o - n ' n—s (n S 1)
__:z;”“Z(s)( 1)%slx ok (x + k)
s=0
1
2 _xn+1¢($)'

This implies

n—1
+ z" ($ + k’ + Z <S j: 1) (_1)S+1($ + 1)!;5”—5—1 Z(:Lk—s—l)(x + k’)

= z K ) n—s) <S Z 1) (s + 1)1 (—1)%s!(n — s)a" ="l (@ + k)

+ xnwp,k (ZE + k)
=z" (") oz + k)

—r n n+1 Z
Suppose that n is odd. Then,

¢ (x) >0 = ¢(x) > ¢(0) =0 = (In f(z))™ <.

Thus (—1)" (In f(z))™ > 0. Also, suppose that n is even. Then

¢(x) <0 = o(z) < $(0) =0 = (In f(z))™ >0,

n)
k(s+1)+x)ntt




296 K. NANTOMAH, F. MEROVCI, AND S. NASIRU

yielding (—1)" (In f(a:))(”) > (. Therefore, for every n € N, we have
(—=1)" (In f(2))™ >0,
which concludes the proof. 0

Remark 2.13. By letting p — oo in Theorem 2.10, we recover the results of Theorem
2.8 of [6].

Remark 2.14. By letting kK = 1 in Theorem 2.10, we recover the results of Theorem
2.1 of [9].

3. CONCLUSION

In the study, the authors established some complete monotonicity properties and
some inequalities involving the (p, k)-analogue of the Gamma function which was
recently introduced in [12]. The established results provide the (p, k)-generalizations
for some results known in the literature.
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