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SOME MONOTONICITY PROPERTIES AND INEQUALITIES FOR
THE (p, k)-GAMMA FUNCTION

KWARA NANTOMAH1, FATON MEROVCI2, AND SULEMAN NASIRU3

Abstract. In this paper, the authors present some complete monotonicity prop-
erties and some inequalities involving the (p, k)-analogue of the Gamma function.
The established results provide the (p, k)-generalizations for some results known in
the literature.

1. Introduction

In a recent paper [12], the authors introduced a (p, k)-analogue of the Gamma
function defined for p ∈ N, k > 0 and x ∈ R+ as

Γp,k(x) =
∫ p

0
tx−1

(
1− tk

pk

)p
dt

= (p+ 1)!kp+1(pk)x
k
−1

x(x+ k)(x+ 2k) . . . (x+ pk) ,(1.1)

and satisfying the basic properties:

Γp,k(x+ k) = pkx

x+ pk + k
Γp,k(x),(1.2)

Γp,k(ak) = p+ 1
p

ka−1Γp(a), a ∈ R+,

Γp,k(k) = 1.

Key words and phrases. Gamma function, (p, k)-analogue, completely monotonic function, loga-
rithmically completely monotonic function, inequality.
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The (p, k)-analogue of the Digamma function is defined for x > 0 as

ψp,k(x) = d

dx
ln Γp,k(x) = 1

k
ln(pk)−

p∑
n=0

1
nk + x

(1.3)

= 1
k

ln(pk)−
∫ ∞

0

1− e−k(p+1)t

1− e−kt e−xt dt.

Also, the (p, k)-analogue of the Polygamma functions are defined as

ψ
(m)
p,k (x) = dm

dxm
ψp,k(x) =

p∑
n=0

(−1)m+1m!
(nk + x)m+1(1.4)

= (−1)m+1
∫ ∞

0

(
1− e−k(p+1)t

1− e−kt

)
tme−xt dt,

where m ∈ N and ψ(0)
p,k(x) ≡ ψp,k(x).

The functions Γp,k(x) and ψp,k(x) satisfy the following commutative diagrams.

Γp,k(x)

k→1
��

p→∞ // Γk(x)

k→1
��

Γp(x) p→∞
// Γ(x),

ψp,k(x)

k→1
��

p→∞ // ψk(x)

k→1
��

ψp(x) p→∞
// ψ(x).

From the identity (1.2), the following relations are established:

ψp,k(x+ k)− ψp,k(x) = 1
x
− 1
x+ pk + k

,(1.5)

ψ
(m)
p,k (x+ k)− ψ(m)

p,k (x) = (−1)mm!
xm+1 − (−1)mm!

(x+ pk + k)m+1 , m ∈ N.(1.6)

It follows easily from (1.3) and (1.4) that for x > 0,
(i) ψp,k(x) is increasing;
(ii) ψ(m)

p,k (x) is positive and decreasing if m is odd;
(iii) ψ(m)

p,k (x) is negative and increasing if m is even.
Next, we recall the following definitions and lemmas which will be used in the

paper.
A function f is said to be completely monotonic on an interval I, if f has derivatives

of all order and satisfies

(1.7) (−1)mf (m)(x) ≥ 0, for x ∈ I,m ∈ N0.

If the inequality (1.7) is strict, then f is said to be strictly completely monotonic on I.
A positive function f is said to be logarithmically completely monotonic on an

interval I, if f satisfies

(1.8) (−1)m[ln f(x)](m) ≥ 0, for x ∈ I,m ∈ N0.
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If the inequality (1.8) is strict, then f is said to be strictly logarithmically completely
monotonic on I.

Lemma 1.1 ([1]). If h is completely monotonic on (0,∞), then exp(−h) is also
completely monotonic on (0,∞).

Lemma 1.2 ([1]). Let ai and bi, i = 1, 2, . . . , n be real numbers such that 0 < a1 ≤
a2 ≤ · · · ≤ an, 0 < b1 ≤ b2 ≤ · · · ≤ bn and ∑λ

i=1 ai ≤
∑λ
i=1 bi for λ ∈ N. If f is a

decreasing and convex function on R, then
n∑
i=1

f(bi) ≤
n∑
i=1

f(ai).

Lemma 1.3 ([4]). Let f ′′(x) be completely monotonic on (0,∞). Then for 0 ≤ s ≤ 1,
the functions

µ(x) = exp
(
−
(
f(x+ 1)− f(x+ s)− (1− s)f ′

(
x+ 1 + s

2

)))
,

η(x) = exp
(
f(x+ 1)− f(x+ s)− (1− s)

2 (f ′(x+ 1) + f ′(x+ s))
)
,

are logarithmically completely monotonic on (0,∞).

In this paper, our goal is to establish some complete monotonicity properties and
some inequalities involving the (p, k)-analogue of the Gamma function. For additional
information on results of this nature, one could refer to [3], [8] and the related
references therein.

2. Main Results

We now present our findings in this section.

Theorem 2.1. Let p ∈ N, k > 0 and m ∈ N0. Then the function ψ′p,k(x) is strictly
completely monotonic on (0,∞).

Proof. It follows directly from (1.4) that

(−1)m
(
ψ′p,k(x)

)(m)
= (−1)mψ(m+1)

p,k (x)

= (−1)m
p∑

n=0

(−1)m+2(m+ 1)!
(nk + x)m+2

= (−1)2m+2
p∑

n=0

(m+ 1)!
(nk + x)m+2 > 0,

which concludes the proof. �

Remark 2.1. It follows from Lemma 1.1 that exp(−ψp,k(x)) is also completely mono-
tonic.
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Theorem 2.2. Let p ∈ N, k > 0 and a ∈ (0, 1). Then the function
Q(x) = ψp,k(x+ a)− ψp,k(x),

is strictly completely monotonic on (0,∞). In particular, Q is decreasing and convex.

Proof. By direct computation, we obtain
(−1)m (Q(x))(m) = (−1)m

[
ψ

(m)
p,k (x+ a)− ψ(m)

p,k (x)
]

= (−1)m
[ p∑
n=0

(−1)m+1m!
(nk + x+ a)m+1 −

p∑
n=0

(−1)m+1m!
(nk + x)m+1

]

= (−1)2m+1m!
p∑

n=0

[
1

(nk + x+ a)m+1 −
1

(nk + x)m+1

]
> 0,

which establishes the result. In particular, Q′(x) = ψ′p,k(x + a) − ψ′p,k(x) ≤ 0 since
ψ′p,k(x) is decreasing. Hence Q is decreasing. Furthermore, Q′′(x) = ψ′′p,k(x + a) −
ψ′′p,k(x) ≥ 0 implying that Q is convex. �

Remark 2.2. Theorem 2.2 generalizes the the previous result [10, Theorem 1].

In the following theorem, we prove a generalization of the results of Mortici [11].

Theorem 2.3. Let p ∈ N, k > 0 and α ∈ (0, 1). Then the function

T (x) = ψp,k(x+ α)− ψp,k(x)− α

x
,

is strictly completely monotonic on (0,∞). Particularly, T is decreasing and convex.

Proof. Similarly, by direct computation, we obtain
(−1)m (T (x))(m)

=(−1)m
[
ψ

(m)
p,k (x+ α)− ψ(m)

p,k (x)− (−1)m+1(m− 1)! α

xm+1

]
=(−1)m

[ p∑
n=0

(−1)m+1m!
(nk + x+ α)m+1 −

p∑
n=0

(−1)m+1m!
(nk + x)m+1 + (−1)m+2α(m− 1)!

xm+1

]

=(−1)2m+1m!
p∑

n=0

[
1

(nk + x+ α)m+1 −
1

(nk + x)m+1

]
+ (−1)2m+2α(m− 1)!

xm+1

>0.
Hence T is strictly completely monotonic on (0,∞). In particular,

T ′(x) = ψ′p,k(x+ α)− ψ′p,k(x) + α

x2

= − 1
x2 + 1

(x+ pα + α)2 + α

x2

= −1− α
x2 + 1

(x+ pα + α)2 ≤ 0,
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as a result of (1.6). Thus T is decreasing. Next,

T ′′(x) = ψ′′p,k(x+ α)− ψ′′p,k(x)− 2α
x3

= 2
x3 −

2
(x+ pα + α)3 −

2α
x3

= 2
(

1− α
x3 − 1

(x+ pα + α)3

)
≥ 0.

Hence T is convex. �

Remark 2.3. By letting p→∞ and k = 1 in Theorem 2.3, we obtain the main result
of [11].

Theorem 2.4. Let p ∈ N, k > 0, m ∈ N0, ai and bi, i = 1, 2, . . . , n, be such that
0 < a1 ≤ a2 ≤ · · · ≤ an, 0 < b1 ≤ b2 ≤ · · · ≤ bn and ∑λ

i=1 ai ≤
∑λ
i=1 bi for λ ∈ N.

Then the function

H(x) =
n∏
i=1

Γp,k(x+ ai)
Γp,k(x+ bi)

,

is completely monotonic on (0,∞).

Proof. Let h be defined by h(x) = ∑n
i=1 [ln Γp,k(x+ bi)− ln Γp,k(x+ ai)]. Then for

m ∈ N0, we have

(−1)m (h′(x))(m) =(−1)m
n∑
i=1

[
ψ

(m)
p,k (x+ bi)− ψ(m)

p,k (x+ ai)
]

=(−1)m
n∑
i=1

[
(−1)m

p∑
s=0

m!
(sk + x+ bi)m+1

− (−1)m
p∑
s=0

m!
(sk + x+ ai)m+1

]

=(−1)2m+1m!
n∑
i=1

p∑
s=0

[
1

(sk + x+ bi)m+1 −
1

(sk + x+ ai)m+1

]
.

Since 1
xm is decreasing and convex on R for m ∈ N0, then by Lemma 1.2 we obtain

n∑
i=1

[
1

(sk + x+ bi)m+1 −
1

(sk + x+ ai)m+1

]
≤ 0.

Thus, (−1)m (h′(x))(m) ≥ 0 for m ∈ N0. Hence h′(x) is completely monotonic on
(0,∞). Then by Lemma 1.1,

exp(−h(x)) =
n∏
i=1

Γp,k(x+ ai)
Γp,k(x+ bi)

= H(x),

is completely monotonic on (0,∞). �
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Remark 2.4. By letting p→∞ in Theorem 2.4, we obtain the result of [6, Theorem
2.6].
Remark 2.5. By letting k = 1 in Theorem 2.4, we obtain the result of [7, Theorem
13].
Remark 2.6. By letting p→∞ and k = 1 in Theorem 2.4, we obtain the result of [1,
Theorem 10].
Theorem 2.5. Let p ∈ N, k > 0 and a ∈ (0, 1). Then the inequality

0 < ψp,k(x+ a)− ψp,k(x) ≤ a(p+ 1)
1 + a(p+ 1) ,

is satisfied for x ∈ [1,∞).
Proof. Let Q be defined as in Theorem 2.2. Since Q is decreasing, then for x ∈ [1,∞),
we obtain

0 = lim
x→∞

Q(x) < Q(x) ≤ Q(1) = ψp,k(a+ 1)− ψp,k(1),
which by (1.5) yields the desired result. �

Theorem 2.6. Let p ∈ N and k > 0. Then the inequality

(2.1) 1
k

ln
(

pkx

x+ pk + k

)
− 1
x

+ 1
x+ pk + k

≤ ψp,k(x) ≤ 1
k

ln
(

pkx

x+ pk + k

)
,

holds for x > 0.

Proof. It follows from (1.2) that ln Γp,k(x+ k)− ln Γp,k(x) = ln
(

pkx
x+pk+k

)
. Let g(x) =

ln Γp,k(x). Then by the classical mean value theorem, the exits a λ ∈ (x, x+ k) such
that

g(x+ k)− g(x)
k

= ln Γp,k(x+ k)− ln Γp,k(x)
k

= ψp,k(λ).

Since ψp,k(x) is increasing, then for λ ∈ (x, x+ k), we have
ψp,k(x) ≤ ψp,k(λ) ≤ ψp,k(x+ k),

which implies

ψp,k(x) ≤ 1
k

ln
(

pkx

x+ pk + k

)
≤ ψp,k(x+ k).

Then by (1.5) we obtain

ψp,k(x) ≤ 1
k

ln
(

pkx

x+ pk + k

)
≤ ψp,k(x) + 1

x
− 1
x+ pk + k

,

yielding the result (2.1). �

Remark 2.7. Let p→∞ and k = 1 in (2.1). Then we obtain the result

(2.2) ln x− 1
x
≤ ψ(x) ≤ ln x,

for the classical digamma function, ψ(x).
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Theorem 2.7. Let p ∈ N and k > 0. Then the inequality

(2.3) 1
k

(
1
x
− 1
x+ pk + k

)
≤ ψ′p,k(x) ≤ 1

k

(
1
x
− 1
x+ pk + k

)
+ 1
x2 −

1
(x+ pk + k)2 ,

holds for x > 0.

Proof. Consider the function ψp,k(x) on the interval (x, x + k). By the mean value
theorem, the exits a c ∈ (x, x+ k) such that

1
k

(
1
x
− 1
x+ pk + k

)
= ψp,k(x+ k)− ψp,k(x)

k
= ψ′p,k(c).

Since ψ′p,k(x) is decreasing, then for c ∈ (x, x+ k), we have

ψ′p,k(x+ k) ≤ ψ′p,k(c) ≤ ψ′p,k(x),

which implies

ψ′p,k(x+ k) ≤ 1
k

(
1
x
− 1
x+ pk + k

)
≤ ψ′p,k(x).

Then by (1.6), we obtain

ψ′p,k(x)− 1
x2 + 1

(x+ pk + k)2 ≤
1
k

(
1
x
− 1
x+ pk + k

)
≤ ψ′p,k(x),

which results to (2.3). �

Remark 2.8. Let p→∞ and k = 1 in (2.3). Then we obtain the result

(2.4) 1
x
≤ ψ′(x) ≤ 1

x
+ 1
x2 ,

for the trigamma function, ψ′(x).

Remark 2.9. The right side of (2.2) and the left side of (2.4) are however weaker than
the results obtained in [5, Theorem 3].

Theorem 2.8. Let p ∈ N, k > 0 and 0 ≤ s ≤ 1. Then the functions

u(x) = Γp,k(x+ s)
Γp,k(x+ 1) exp

(
(1− s)ψp,k

(
x+ 1− s

2

))
,

w(x) = Γp,k(x+ 1)
Γp,k(x+ s) exp

(
−1− s

2 (ψp,k(x+ 1) + ψp,k(x+ s))
)
,

are logarithmically completely monotonic on (0,∞).

Proof. Let f(x) = ln Γp,k(x) and recall that f ′′(x) = ψ′p,k(x) is completely monotonic
on (0,∞) (See Theorem 2.1). Then the results follow directly from Lemma 1.3. �
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Theorem 2.9. Let p ∈ N, k > 0 and 0 ≤ s ≤ 1. Then the inequality

(2.5) exp
(1− s

2 (ψp,k(x+ s) + ψp,k(x+ 1))
)
≤ Γp,k(x+ 1)

Γp,k(x+ s)

≤ exp
(

(1− s)ψp,k
(
x+ 1 + s

2

))
,

is satisfied for x > 0.

Proof. We employ the Hermite-Hadamard’s inequality which states that: if f(x) is
convex on [a, b], then

f

(
a+ b

2

)
≤ 1
b− a

∫ b

a
f(x) dx ≤ f(a) + f(b)

2 .

Let f(x) = −ψp,k(x), a = x+ s and b = x+ 1. Then we have

−ψp,k
(
x+ 1 + s

2

)
≤ − 1

1− s

∫ x+1

x+s
ψp,k(t) dt ≤ −

ψp,k(x+ s) + ψp,k(x+ 1)
2 ,

which implies
ψp,k(x+ s) + ψp,k(x+ 1)

2 ≤ 1
1− s ln Γp,k(x+ 1)

Γp,k(x+ s) ≤ ψp,k

(
x+ 1 + s

2

)
.

Then by taking exponents, we obtain the desired result. �

Remark 2.10. By letting p→∞ in Theorems 2.8 and 2.9, we respectively obtain the
results of Theorems 2.1 and 2.3 of [6].

Remark 2.11. By letting k = 1 in Theorems 2.8 and 2.9, we respectively obtain the
results of Theorems 2.3 and 2.4 of [9].

Remark 2.12. The q-analogue of these results can also be found in [4].

The following theorem is a (p, k)-generalization of Lemma 2.1 of [2]. We derive our
results by using similar techniques.

Theorem 2.10. Let p ∈ N and k > 0. Then the function

f(x) = 1
[Γp,k(x+ k)]

1
x

,

is logarithmically completely monotonic on (0,∞).

Proof. We employ the Leibniz’s rule for n-times differentiable functions u and v, which
is given by

[u(x)v(x)](n) =
n∑
s=0

(
n

s

)
u(s)(x)v(n−s)(x).
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That is,

(ln f(x))(n) =
[(1
x

)
(− ln Γp,k(x+ k))

](n)

=
n∑
s=0

(
n

s

)(1
x

)(s)
(− ln Γp,k(x+ k))(n−s)

= − 1
xn+1

n∑
s=0

(
n

s

)
(−1)ss!xn−sψ(n−s−1)

p,k (x+ k)

, − 1
xn+1φ(x).

This implies

φ′(x) =
n∑
s=0

(
n

s

)
(−1)ss!(n− s)xn−s−1ψ

(n−s−1)
p,k (x+ k)

+
n∑
s=0

(
n

s

)
(−1)ss!xn−sψ(n−s)

p,k (x+ k)

=
n−1∑
s=0

(
n

s

)
(−1)ss!(n− s)xn−s−1ψ

(n−s−1)
p,k (x+ k)

+ xnψ
(n)
p,k (x+ k) +

n∑
s=1

(
n

s

)
(−1)ss!xn−sψ(n−s)

p,k (x+ k)

=
n−1∑
s=0

(
n

s

)
(−1)ss!(n− s)xn−s−1ψ

(n−s−1)
p,k (x+ k)

+ xnψ
(n)
p,k (x+ k) +

n−1∑
s=0

(
n

s+ 1

)
(−1)s+1(s+ 1)!xn−s−1ψ

(n−s−1)
p,k (x+ k)

=
n−1∑
s=0

[(
n

s

)
(n− s)−

(
n

s+ 1

)
(s+ 1)

]
(−1)ss!(n− s)xn−s−1ψ

(n−s−1)
p,k (x+ k)

+ xnψ
(n)
p,k (x+ k)

=xnψ(n)
p,k (x+ k)

=xn(−1)n+1
p∑
s=0

n!
(k(s+ 1) + x)n+1 .

Suppose that n is odd. Then,

φ′(x) > 0 =⇒ φ(x) > φ(0) = 0 =⇒ (ln f(x))(n) < 0.

Thus (−1)n (ln f(x))(n) > 0. Also, suppose that n is even. Then

φ′(x) < 0 =⇒ φ(x) < φ(0) = 0 =⇒ (ln f(x))(n) > 0,
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yielding (−1)n (ln f(x))(n) > 0. Therefore, for every n ∈ N, we have

(−1)n (ln f(x))(n) > 0,

which concludes the proof. �

Remark 2.13. By letting p→∞ in Theorem 2.10, we recover the results of Theorem
2.8 of [6].

Remark 2.14. By letting k = 1 in Theorem 2.10, we recover the results of Theorem
2.1 of [9].

3. Conclusion

In the study, the authors established some complete monotonicity properties and
some inequalities involving the (p, k)-analogue of the Gamma function which was
recently introduced in [12]. The established results provide the (p, k)-generalizations
for some results known in the literature.
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