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TERNARY HYPERGROUPS OF TYPE U ON THE RIGHT

B. DAVVAZ1, F. DEHGHAN1, AND M. FARSHI1

Abstract. In this paper, it will be generalized the notion of hypergroups of type
U on the right to ternary hypergroups of type U on the right and some of their
properties will be investigated. We will determine all ternary hypergroups of size 2
and 3. Quotient ternary hypergroups of type U on the right, by defining a regular
relation, are considered and it will be proved that arisen ternary hypergroup is right
reversible.

1. Introduction and Basic Definitions

In this section, after gathering the history and related works, we review all definitions
and simple properties we require of hyperstructures. The hyperstructure theory was
emerged in 1934, when Marty introduced the notion of a hypergroup [20]. Later on
this subject studied by many mathematicians. Hyperstructure theory both extends
some well-known group results and leads us to a wide variety of applications. The
principal notions of the theory of hyperstructures can be found in [3–5, 23]. As we
know, in a classical group, the composition of two elements is an element, while in a
hypergroup, the composition of two elements is a set, i.e., in a hyperstructure (H, ∗)
we have x ∗ y ⊆ H, for each two elements x, y ∈ H.
n-ary generalizations of algebraic structures is the most natural way to study their

fundamental properties. It seems that early research on n-ary algebras goes back
to Krasner’s lecture at the 53rd annual meeting of the American Association of the
Advancement of Science in 1904. Recently, a research about n-hypergroups as a
suitable generalization of hypergroups in the sense of Marty has been inchoated by
Davvaz and Vougiouklis [7]. Then, this concept has been studied by many authors,
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for example see Anvariyeh et al. [1,2], Ghadiri and Waphare [24], Leoreanu-Fotea and
Davvaz [6, 17–19], Mirvakili and Davvaz [21,22], Davvaz et al. [8, 9].

In [12], the concept of hypergroups of type U on the right has been introduced
in order to analyze properties of quotient hypergroups H/h of a hypergroup H with
respect to a subhypergroup h ⊆ H ultraclosed on the right. In [13], Freni showed that
if H is a finite hypergroup of type U on the right such that its right scalar identity is
also a left identity, then all sub-semihypergroups of H are also hypergroups. In [14],
it has been proved that every right scalar identity of a hypergroup of type U on the
right of size ≤ 5 is also a left identity. Also, some examples of hypergroups of type
U on the right of size ≥ 6 where a right scalar identity is not a left identity has been
presented. A characterization of hypergroups of type U on the right of size 5 can be
found in [15,16]. Also see [11].

Let H be a non-empty set, n ≥ 2 a natural number, and P∗(H) be the set of all
non-empty subsets of H. An n-hyperoperation on H is a mapping f : Hn → P∗(H),
where Hn is the n-times cartesian product of H. If A1, . . . , An are non-empty subsets
of H, then we define

f(A1, . . . , An) =
⋃

xi∈Ai

f(x1, . . . , xn).

We shall use the notation xji to denote the sequence xi, xi+1, . . . , xj.
Let H be a non-empty set and f : Hn → P∗(H) be an n-hyperoperation.
(1) The couple (H, f) is called an n-hypergroupoid.
(2) An n-hypergroupoid (H, f) is called an n-semihypergroup if the following asso-

ciative axiom holds:

f(xi−1
1 , f(xn+i−1

i ), x2n−1
n+i ) = f(xj−1

1 , f(xn+j−1
j ), x2n−1

n+j ),

for every i, j ∈ {1, . . . , n} and for every x2n−1
1 ∈ H.

(3) An n-semihypergroup (H, f) is called an n-hypergroup if f(xi−1
1 , H, xni+1) = H,

for every i ∈ {1, . . . , n} and xn1 ∈ H. The above condition is called the
reproduction axiom.

An n-hypergroup (H, f) is called a hypergroup if n = 2 and it is called a ternary
hypergroup if n = 3.

Whenever a semihypergroup (H, ◦) contains an element e with the property that,
for all x ∈ H, one has x ∈ x ◦ e (resp. x ∈ e ◦ x), then we say that e is a right identity
(resp. left identity) of H. The element e is called an identity, if x ∈ x ◦ e∩ e ◦ x holds,
for all x ∈ H. If x ◦ e = {x} (resp. e ◦ x = {x}), for all x ∈ H, then e is called a right
scalar identity (resp. left scalar identity).

Definition 1.1. [15] A hypergroup (H, ◦) is said to be of type U on the right if it
fulfills the following conditions:

(1) H has a right scalar identity e,
(2) x ∈ x ◦ y implies that y = e, for all x, y ∈ H.
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Example 1.1. [10] We know that every group can be considered as a hypergroup. It
is not difficult to see that the groups (Z2,+2) and (Z3,+3) are hypergroups of type
U on the right.

Example 1.2. [10] Let S3/S2 be the set of all cosets of the subgroup S2 = 〈(1 2)〉 of
the symmetric group S3, i.e., S3/S2 = {S2, (1 3)S2, (2 3)S2}. Set e = S2, x = (1 3)S2,
and y = (2 3)S2. Then, S3/S2 with the following table is a hypergroup of type U on
the right.

∗ e x y
e {e} {x, y} {x, y}
x {x} {e, y} {e, y}
y {y} {e, x} {e, x}

2. Ternary Hypergroups of Type U on the Right

In this section, we introduce the notion of ternary hypergroups of type U on the
right which is a generalization of the idea presented by Freni et al. In this regards,
several examples and properties of them will be expressed.

If a ternary hypergroup (H, f) contains an element e with the property that, for
all x ∈ H, one has x ∈ f(x, e, e) (resp. x ∈ f(e, x, e) or x ∈ f(e, e, x)), then we say
that e is a right identity (resp. central identity or left identity) of H. The element e
is called an identity, if x ∈ f(x, e, e) ∩ f(e, x, e) ∩ f(e, e, x). If for all x ∈ H, one has
f(x, e, e) = {x} (resp. f(e, x, e) = {x} or f(e, e, x) = {x}), then e is called a right
scalar identity (resp. central scalar identity or left scalar identity).

Definition 2.1. A ternary hypergroup (H, f) is called of type U on the right if it
fulfills the following conditions:
(U1) H has a right scalar identity e,
(U2) for all x, y ∈ H, from x ∈ f(x, e, y) it follows that y = e.

We shall use the notation (H, f, e) to say that e is a right scalar identity.

Example 2.1. Let (H, ◦) be a hypergroup of type U on the right. We consider a ternary
hyperoperation f on H as follows:

f(x, y, z) = x ◦ y ◦ z, for all x, y, z ∈ H.
Then, (H, f) is a ternary hypergroup of type U on the right. (H, f) is called the ternary
hypergroup on the right extracted from (H, ◦) and shall be denoted by ext(H).

In the next theorem we will show a special construction of a hypergroup of type U
on the right starting from a ternary hypergroup of type U on the right. We premise
a proposition that has already been demonstrated in [8].

Proposition 2.1. An n-semihypergroup (H, f) is an n-hypergroup if and only if for
some a ∈ H and all b, c ∈ H there exist x, y ∈ H such that

b ∈ f(c,
(n−2)
a , x) ∩ f(y,

(n−2)
a , c).
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Proof. See Proposition 2.2 in [8]. �

Theorem 2.1. Let (H, f) be a ternary semihypergroup. Then, the following assertions
are equivalent:

(1) (H, f, e) is a ternary hypergroup of type U on the right,
(2) (H, ◦, e) is a hypergroup of type U on the right, where

x ◦ y = f(x, e, y), for all x, y ∈ H.

(H, ◦, e) is called the hypergroup induced by (H, f, e).

Proof. (1)⇒ (2) Since f is associative, it ensues that ◦ is associative. For each x ∈ H
we have x ◦ H = f(x, e,H) = H and H ◦ x = f(H, e, x) = H, whence (H, ◦) is a
hypergroup. Moreover, for each x ∈ H we have x ◦ e = f(x, e, e) = {x}. Now, let
x ∈ x ◦ y. Then, x ∈ f(x, e, y), which implies that y = e.

(2) ⇒ (1) Let b, c ∈ H be arbitrary elements. Set a = e. Since (H, ◦) is a
hypergroup, there exists x ∈ H such that b ∈ c◦x = f(c, e, x). Also, there exists y ∈ H
such that b ∈ y◦c = f(y, e, c). So, b ∈ f(c, e, x)∩f(y, e, c) and therefore by Proposition
2.1, (H, f) is a ternary hypergroup. For all x ∈ H we have f(x, e, e) = x ◦ e = {x}.
Let x ∈ f(x, e, y), for some elements x, y ∈ H. Then, we have x ∈ x ◦ y. Since (H, ◦)
is a hypergroup of type U on the right, we deduce that y = e. This completes the
proof. �

We recall that the ternary hypergroup extracted from a hypergroup (H, ◦) is (H, f),
where f(x, y, z) = x ◦ y ◦ z, for all x, y, z ∈ H. Note that the hypergroup induced by
(S3\A3, f), defined in Example 2.4, is equal to (Z3,+3). But, the ternary hypergroup
extracted from (Z3,+3) is not equal to (S3\A3, f).

Example 2.2. Let G be a group and let H be a subgroup of G. Then, the quotient
set G/H is a ternary hypergroup of type U on the right with respect to the ternary
hyperoperation f defined by

f(xH, yH, zH) = {tH | t ∈ xHyHz}.

It is easy to see that H is the identity element of (H, f).

Example 2.3. Let f be a ternary hyperoperation on Z as follows:

f(x, y, z) = {x+ y + z, x+ y − z, x− y + z, x− y − z}.

It is easy to check that (Z, f) is a ternary hypergroup of type U on the right. The
element 0 is a right identity but it is not a left and central identity.

Example 2.4. Let S3\A3 = {(1 2), (1 3), (2 3)} be the set of all odd permutations of
S3. Set e = (1 2), x = (1 3) and y = (2 3). Then, (S3\A3, f) is a ternary group of
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type U on the right, where f is defined as follows:
f(e, e, e) = f(e, x, x) = f(x, e, y) = f(e, y, y) = f(x, x, e) = f(y, e, x) = f(y, y, e)

= f(x, y, x) = f(y, x, y) = {e},
f(e, x, y) = f(y, x, e) = f(x, x, x) = f(e, e, x) = f(x, e, e) = f(y, e, y) = f(e, y, e)

= f(x, y, y) = f(y, y, x) = {x},
f(e, y, x) = f(y, y, y) = f(e, e, y) = f(y, e, e) = f(x, e, x) = f(x, y, e) = f(e, x, e)

= f(x, x, y) = f(y, x, x) = {y}.

3. Ternary Hypergroups of Type U on the Right of Size 2 and 3

In this section, we determine all ternary hypergroups of type U on the right of size
2 and 3.

Definition 3.1. Let (H, f, e) be a ternary hypergroup of type U on the right. Then,
an element x ∈ H is said to be a T -element if

f(x, e, y) = H\{x}, for all y ∈ H\{e}.

Example 3.1. Let f be a ternary hyperoperation defined on H = {e, x, y} as follows:
f(x, e, x) = f(x, e, y) = f(x, y, e) = f(x, x, e) = {e, y},
f(y, e, x) = f(y, e, y) = f(y, x, e) = f(y, y, e) = {e, x},
f(e, e, x) = f(e, e, y) = f(e, x, e) = f(e, y, e) = {x, y},
f(x, y, y) = f(x, y, x) = f(x, x, x) = f(x, x, y) = f(e, x, x) = f(e, x, y) = H,
f(e, y, x) = f(e, y, y) = f(y, x, x) = f(y, x, y) = f(y, y, x) = f(y, y, y) = H,
f(x, e, e) = x, f(y, e, e) = y, f(e, e, e) = e.

It is easy to check that (H, f) is a ternary hypergroup of type U on the right and each
element of H is a T -element.

Proposition 3.1. Let (H, f, e) be a ternary hypergroup of type U on the right with
at least two elements. Let x ∈ H be a T -element. Then, the following assertions hold.

(1) For all y, z ∈ H\{e} we have e ∈ f(y, e, z).
(2) If |H| ≥ 3, then for all y, z ∈ H\{e} we have |f(y, e, z)| ≥ 2.

Proof. (1) It is a direct consequence of Lemma 3.7 (3).
(2) Let y, z ∈ H\{e} be arbitrary elements. By reproduction axiom, there exists

w ∈ H such that x ∈ f(w, e, y). Since (H, f) is a ternary hypergroup of type U on
the right, we have w 6= x. Thus, as x is a T -element, we have

H\{x} = f(x, e, z) ⊆ f(f(w, e, y), e, z) = f(w, e, f(y, e, z)).
If |f(y, e, z)| = 1, then by assertion (1) we have f(y, e, z) = e and thereforeH\{x} = w.
This implies that H = {x,w}, a contradiction. �

Theorem 3.1. Let (H, f, e) be a ternary hypergroup of type U on the right with
|H| = 2. Then, H = ext(Z2). (See Example 1.1 and 2.1.)
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Proof. Let H = {e, x}. By condition (U1) of Definition 2.1 we have f(x, e, e) = {x}
and f(e, e, e) = {e}. By using Lemma 3.1, we have

f(e, x, e) = f(e, e, x) = {x}, f(x, e, x) = f(x, x, e) = {e}.
We claim that f(e, x, x) = {e}. If not, then we have x ∈ f(e, x, x) which implies that

{x} = f(x, e, e) ⊆ f(f(e, x, x), e, e) = f(e, f(x, x, e), e) = f(e, e, e) = {e},
a contradiction. Also, we claim that f(x, x, x) = {x}. If not, then we have e ∈
f(x, x, x) and so

{e} = f(e, e, e) ⊆ f(e, f(x, x, x), e) = f(e, x, f(x, x, e)) = f(e, x, e) = {x},
a contradiction. Therefore, the desired result holds. �

Theorem 3.2. Let (H, f, e) be a ternary hypergroup of type U on the right with
|H| = 3. Then, either H = ext(Z3) or H = ext(S3/S2) or H = ext(S3\A3). (See
Example 1.1, 1.2, 2.1 and 2.4.)

Proof. Let H = {e, x, y}. It is obvious that f(e, e, x) 6= H and f(e, e, y) 6= H. We
claim that |f(e, e, x)| = |f(e, e, y)|. If this is not the case, then without loss of
generality we can assume that |f(e, e, x)| = 1 and |f(e, e, y)| = 2. Thus, we have
f(e, e, y) = {x, y} and by Lemma 3.2 we have f(e, e, x) = x. By reproduction axiom,
there exists z ∈ H such that y ∈ f(x, e, z). Hence,

x ∈ f(e, e, y) ⊆ f(e, e, f(x, e, z)) = f(f(e, e, x), e, z) = f(x, e, z),
which implies that z = e. From y ∈ f(x, e, z) it follows that x = y, a contradiction.
Thus, we have the following two cases.

Case 1. Let f(e, e, x) = f(e, e, y) = {x, y}. Then, we have
f(x, e, y) = f(x, f(e, e, e), y) = f(x, e, f(e, e, y)) = f(x, e, f(e, e, x))

= f(x, f(e, e, e), x) = f(x, e, x).
So, f(x, e, y) = f(x, e, x). Since x /∈ f(x, e, y) we have f(x, e, y) ⊆ {e, y}. In the case
that f(x, e, y) = f(x, e, x) = {e}, we have

{e, x} = f(x, e, x) ∪ f(x, e, y) ∪ f(x, e, e) = f(x, e,H) = H,

which is a contradiction. In the case that f(x, e, y) = f(x, e, x) = {y}, we have
{y} = f(x, e, y) = f(x, e, f(x, e, y)) = f(f(x, e, x), e, y) = f(y, e, y).

This implies that y = e which is a contradiction. Thus, f(x, e, y) = {e, y}. In a similar
manner we can prove that

f(x, e, x) = f(x, e, y) = f(x, y, e) = f(x, x, e) = {e, y},
f(y, e, x) = f(y, e, y) = f(y, x, e) = f(y, y, e) = {e, x},
f(e, e, x) = f(e, e, y) = f(e, x, e) = f(e, y, e) = {x, y},
f(x, y, y) = f(x, y, x) = f(x, x, x) = f(x, x, y) = f(e, x, x) = f(e, x, y) = H,
f(e, y, x) = f(e, y, y) = f(y, x, x) = f(y, x, y) = f(y, y, x) = f(y, y, y) = H.
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Since (H, f) is a ternary hypergroup of type U on the right, we have

f(x, e, e) = {x}, f(y, e, e) = {y}, f(e, e, e) = {e}.

In this case we have H = ext(S3/S2).
Case 2. Let |f(e, e, x)| = f(e, e, y)| = 1. By Lemma 3.2, we have f(e, e, x) = {x}

and f(e, e, y) = {y}. By Lemma 3.8, we have |f(e, x, e)| = |f(e, y, e)| = 1. By
reproduction axiom we have

f(e, e, e) ∪ f(e, x, e) ∪ f(e, y, e) = H.

So, there exist the following two subcases.
Subcase 2.1. Suppose that f(e, x, e) = {x} and f(e, y, e) = {y}. Since x /∈ f(x, e, x)

we have f(x, e, x) ⊆ {e, y}. We claim that f(x, e, x) = {y}. If f(x, e, x) = {e}, then
as f(e, e, x} ∪ f(x, e, x) ∪ f(y, e, x) = f(H, e, x) = H, we have y ∈ f(y, e, x) which
implies that x = e, a contradiction. If f(x, e, x) = {e, y}, then from the following
equalities we conclude that y /∈ f(x, e, y):

{x} ∪ f(y, e, x) = f(e, e, x) ∪ f(y, e, x) = f({e, y}, e, x) = f(f(x, e, x), e, x)
= f(x, e, f(x, e, x)) = f(x, e, e) ∪ f(x, e, y),

On the other hand, by condition (U2), x /∈ f(x, e, y). Thus, f(x, e, y) = {e}. There-
fore,

y ∈ f(e, e, y) ∪ f(y, e, y) = f({e, y}, e, y) = f(f(x, e, x), e, y)
= f(x, e, f(x, e, y)) = {x},

that it is a contradiction. Hence, f(x, e, x) = {y}. In a similar manner we have that
f(y, e, y) = {x}. By an argument as above, we have

f(y, e, y) = f(e, y, y) = f(y, y, e) = f(x, y, x) = f(x, x, y) = f(y, x, x) = {x},
f(x, x, x) = f(e, y, x) = f(x, y, e) = f(e, x, y) = f(y, e, x) = f(y, y, y)

= f(y, x, e) = f(x, e, y) = {e},
f(x, x, e) = f(x, e, x) = f(x, y, y) = f(y, x, y) = f(y, y, x) = f(e, x, x) = {y}.

So, in this case we have H = ext(Z3).
Subcase 2.2. Suppose that f(e, x, e) = {y} and f(e, y, e) = {x}. By an argument

similar to that in subcase 2.1, we have f(x, e, x) = {y} and f(y, e, y) = {x}. Moreover,
we have

f(e, x, y) = f(y, x, e) = f(x, y, y) = f(x, x, x) = f(y, y, x) = {x},
f(e, y, x) = f(y, x, x) = f(x, y, e) = f(x, x, y) = f(y, y, y) = {y},
f(y, e, x) = f(x, e, y) = f(y, e, x) = f(y, y, e) = f(x, x, e) = f(x, y, x)

= f(y, x, y) = f(e, x, x) = {e}.

So, in this case we have H = ext(S3\A3). �
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Lemma 3.1. Let (H, f) be a ternary hypergroup of type U on the right. Then, for
every x, y ∈ H from x ∈ f(x, y, e) it follows that y = e.
Proof. Let x, y be arbitrary elements of H. Then, we have

x ∈ f(x, y, e) = f(f(x, e, e), y, e) = f(x, e, f(e, y, e)).
By reproduction axiom, there exists z ∈ f(e, y, e) such that x ∈ f(x, e, z). By
condition (U2) of Definition 2.1 we have z = e. Hence,

e ∈ f(e, e, e) ⊆ f(e, f(e, y, e), e) = f(e, e, y).
Again, condition (U2) implies that y = e. �

Lemma 3.2. Let (H, f) be a ternary hypergroup of type U on the right and let x ∈ H.
Then, the following assertions are equivalent:

(1) |f(e, e, x)| = 1,
(2) f(e, e, x) = {x}.

Proof. (1)⇒ (2) Let f(e, e, x) = {y}. Then, we have
f(e, e, y) = f(e, e, f(e, e, x)) = f(f(e, e, e), e, x) = f(e, e, x) = {y}.

By reproduction axiom, there exists z ∈ H such that y ∈ f(x, e, z). Thus,
{y} = f(e, e, y) ⊆ f(e, e, f(x, e, z)) = f(f(e, e, x), e, z) = f(y, e, z).

This follows that z = e. Hence y = x.
(2)⇒ (1) It is trivial. �

Lemma 3.3. Let (H, f, e) be a ternary hypergroup of type U on the right. Then, for
each x ∈ H\{e} the following assertions are equivalent:

(1) x /∈ f(e, e,H\{x}),
(2) f(e, e, x) = {x}.

Proof. (1)⇒ (2) Let x /∈ f(e, e,H\{x}). By reproduction axiom, we have f(e, e,H) =
H. This implies that x ∈ f(e, e, x). Let y ∈ f(e, e, x) be an arbitrary element. We
have to show that y = x. By reproduction axiom, there exists z ∈ H such that
x ∈ f(y, e, z). Whence,

x ∈ f(y, e, z) ⊆ f(f(e, e, x), e, z) = f(e, e, f(x, e, z)).
So, there exists t ∈ f(x, e, z) such that x ∈ f(e, e, t). Since x /∈ f(e, e,H\{x}), we
obtain x = t. Thus, x ∈ f(x, e, z) and by condition (U2) we have z = e. Now, since
x ∈ f(y, e, z) we have y = x.

(2) ⇒ (1) By way of contradiction, we suppose that there exists z ∈ H\{x}
such that x ∈ f(e, e, z). By reproduction axiom, there exists y ∈ H\{e} such that
z ∈ f(x, e, y) and so,

f(e, e, z) ⊆ f(e, e, f(x, e, y)) = f(f(e, e, x), e, y) = f(x, e, y).
Whence, x ∈ f(x, e, y). Now, from condition (U2) it follows that y = e and from
z ∈ f(x, e, y) it follows that z = x, which is a contradiction. �
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Lemma 3.4. Let (H, f, e) be a ternary hypergroup of type U on the right and let e be
a central identity. Then,

(1) f(e, e, x) = f(e, x, e), for all x ∈ H,
(2) f(x, e, y) = f(x, y, e), for all x, y ∈ H.

Proof. (1) Let x be an arbitrary element of H. Then, we have

f(e, x, e) ⊆ f(e, f(e, x, e), e) = f(e, e, f(x, e, e)) = f(e, e, x).

Now, we show the reverse inclusion, i.e.,

f(e, e, x) ⊆ f(e, e, f(e, x, e)) = f(f(e, e, e), x, e) = f(e, x, e).

This completes the proof.
(2) For each x, y ∈ H we have

f(x, y, e) ⊆ f(x, f(e, y, e), e) = f(x, e, f(y, e, e)) = f(x, e, y).

On the other hand, we have

f(x, e, y) ⊆ f(x, e, f(e, y, e)) = f(f(x, e, e), y, e) = f(x, y, e).

This completes the proof. �

Lemma 3.5. Let (H, f, e) be a ternary hypergroup of type U on the right. Then, for
each x ∈ H\{x} the following assertions are equivalent:

(1) x /∈ f(e,H\{x}, e),
(2) f(e, x, e) = {x}.

Proof. By using Lemma 3.4, the proof follows similarly as the proof of Lemma 3.3. �

The next lemma can be proved easily using previously defined notions and thus we
omit its proof.

Lemma 3.6. Let (H, f, e) be a ternary hypergroup of type U on the right. Then, for
every x, y, z, t ∈ H the following assertions hold.

(1) x ∈ f(e, e, y) implies that f(t, z, x) ⊆ f(t, z, y).
(2) x ∈ f(e, y, e) implies that f(t, x, e) ⊆ f(t, e, y).
(3) If f(e, e, x) = {x} and z ∈ f(x, y, t), then f(e, e, z) ⊆ f(x, y, t).
(4) If f(e, x, e) = {x} and z ∈ f(x, e, t), then f(e, z, e) ⊆ f(x, t, e).
(5) If x ∈ f(y, e, t) and y ∈ f(x, e, z), then e ∈ f(z, e, t) ∩ f(t, e, z).
(6) If e is a left identity and x ∈ f(x, y, y), then e ∈ f(e, y, y).
(7) If e is a central identity and x ∈ f(x, y, y), then e ∈ f(y, e, y).

(8) If f(e, e, x) = f(e, e, y), then


f(z, t, x) = f(z, t, y),
f(z, x, t) = f(z, y, t),
f(t, x, z) = f(t, y, z),
f(t, z, x) = f(t, z, y).



186 B. DAVVAZ, F. DEHGHAN, AND M. FARSHI

(9) If f(e, x, e) = f(e, y, e), then


f(z, e, x) = f(z, e, y),
f(z, x, e) = f(z, y, e),
f(e, x, z) = f(e, y, z),
f(e, z, x) = f(e, z, y).

Lemma 3.7. Let (H, f, e) be a ternary hypergroup of type U on the right with at least
two elements. Then, the following assertions hold.

(1) If f(e, e, y) = H\{e}, then f(x, e, y) = H\{x}, for every x, y ∈ H.
(2) If f(e, y, e) = H\{e}, then f(x, e, y) = f(x, y, e) = H\{x}, for every x, y ∈ H.
(3) If there exists y ∈ H\{e} such that f(x, e, y) = H\{x} for some x ∈ H, then

e ∈ f(y, e, z), for every z ∈ H\{e}.

Proof. (1) Let x, y ∈ H be arbitrary elements and f(e, e, y) = H\{e}. Then, we have

f(x, e, y) = f(x, f(e, e, e), y) = f(x, e, f(e, e, y)) = f(x, e,H\{e}).

This implies that x /∈ f(x, e, y). On the other hand, by using reproduction axiom we
have

(H\{x}) ∪ {x} = H = f(x, e,H) = f(x, e, (H\{e}) ∪ {e})
= f(x, e,H\{e}) ∪ f(x, e, e)
= f(x, e,H\{e}) ∪ {x}
= f(x, e, y) ∪ {x}.

This implies that f(x, e, y) = H\{x}.
(2) The proof is similar to the proof of (1) and thus is omitted.
(3) Let f(x, e, y) = H\{x}, where x ∈ H and y ∈ H\{e}. By way of contradiction,

suppose that there exists z ∈ H\{e} such that e /∈ f(y, e, z). Then,

x /∈ f(x, e, f(y, e, z)) = f(f(x, e, y), e, z) = f(H\{x}, e, z).

By reproduction axiom, we have H = f(H\{x}, e, z) ∪ f(x, e, z). This implies that
x ∈ f(x, e, z). So, by (U2) we have z = e, which is a contradiction. �

Lemma 3.8. Let (H, f, e) be a ternary hypergroup of type U on the right. Assume
further that e is also a left scalar identity. Then, |f(e, x, e)| = 1, for all x ∈ H.

Proof. By way of contradiction, suppose that {y, z} ⊆ f(e, x, e) and y 6= z. Then,

{x} = f(x, e, e) = f(f(e, e, x), e, e) = f(e, f(e, x, e), e) = f(e, y, e) ∪ f(e, z, e).

Hence, f(e, y, e) = f(e, z, e) = {x}. On the other hand, we have

{y, z} = f(e, x, e) = f(e, f(e, y, e), e) = f(e, e, f(y, e, e)) = f(e, e, y) = {y},

which is a contradiction. �
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4. Quotient Ternary Hypergroups of Type U on the Right

In the study of finite hypergroup H of type U on the right the family Pε = {ex | x ∈
H}, determined by the right scalar identity ε of H, plays a fundamental role (see
[15,16]). In this section, we prove some results about the families Pe1 = {f(e, e, x) | x ∈
H} and Pe2 = {f(e, x, e) | x ∈ H}, where (H, f, e) is a ternary hypergroup of type
U on the right. We determine necessary and sufficient conditions such that (H, f, e)
is right reversible. Moreover, we define a regular relation R on a ternary hypergroup
such that the quotient set H/R is a right reversible ternary hypergroup.

Definition 4.1. An element x in a ternary hypergroup (H, f) with right identity is
said to be invertible if there exists an element y ∈ H such that

e ∈ f(x, e, y) ∩ f(y, e, x) ∩ f(x, y, e).
The set of all inverses of x will be denoted by x−1. A ternary hypergroup (H, f) is
called regular if it possesses an identity element and x−1 6= ∅, for each x ∈ H. A
regular ternary hypergroup (H, f) is said to be right reversible if for every x, y, z ∈ H
with x ∈ f(y, e, z), there exists t ∈ z−1 such that y ∈ f(x, e, t).

Theorem 4.1. Let (H, f, e) be a ternary hypergroup of type U on the right. Then,
the following assertions are equivalent:

(1) e is a central identity,
(2) (H, f) is right reversible.

Proof. (1) ⇒ (2) By Lemma 3.4, e is an identity element. Let x be an arbitrary
element of H. By reproduction axiom, there exists an element y in H such that
e ∈ f(x, e, y). We show that y ∈ x−1. From

x ∈ f(e, e, x) ⊆ f(f(x, e, y), e, x) = f(x, e, f(y, e, x))
and

x ∈ f(e, x, e) ⊆ f(f(x, e, y), x, e) = f(x, e, f(y, x, e)).
and the fact that (H, f) is a ternary hypergroup of type U on the right, it follows
that f(y, e, x) = f(y, x, e) = e. Thus, (H, f) is regular. In order to show that (H, f)
is right reversible, let x, y, z be arbitrary elements of H and x ∈ f(y, e, z). Then, by
reproduction axiom, there exists t ∈ H such that y ∈ f(x, e, t). It suffices to show
that t ∈ z−1. By Lemma 3.6 (5), we have e ∈ f(t, e, z)∩ f(z, e, t). On the other hand,
we have

t ∈ f(e, t, e) ⊆ f(f(t, e, z), t, e) = f(t, e, f(z, t, e)).
This implies that f(z, t, e) = e which completes the proof.

(2)⇒ (1) It is trivial. �

Let R be a relation on a non-empty set X and A,B ⊆ X. Then, ARB means that
for every a ∈ A, there exists b ∈ B such that aRb and for every b ∈ B, there exists
a ∈ A such that bRa.



188 B. DAVVAZ, F. DEHGHAN, AND M. FARSHI

An equivalence relation R on a ternary hypergroupoid (H, f) is called regular if
x1Ry1, x2Ry2, x3Ry3 =⇒ f(x1, x2, x3)Rf(y1, y2, y3),

for all x3
1, y

3
1 ∈ H.

We describe ternary hypergroups of type U on the right with respect to Pe1 =
{f(e, e, x) | x ∈ H} and Pe2 = {f(e, x, e) | x ∈ H}, where e is a right identity.

Lemma 4.1. Let (H, f, e) be a ternary hypergroup of type U on the right such that
Pe1 is a partition of H. Then, e is a left identity.

Proof. Let x ∈ H be an arbitrary element. By reproduction axiom, there exists y ∈ H
such that x ∈ f(e, e, y) and so we have

f(e, e, x) ⊆ f(e, e, f(e, e, y)) = f(e, f(e, e, e), y) = f(e, e, y).
Since Pe1 is a partition of H, we deduce that f(e, e, x) = f(e, e, y). Hence, x ∈
f(e, e, x). �

Lemma 4.2. Let (H, f, e) be a ternary hypergroup of type U on the right such that
Pe1 is a partition of H. Then, Pe2 is a partition of H.

Proof. It is obvious that ⋃
x∈H

f(e, x, e) = H. Suppose that x ∈ f(e, y, e) ∩ f(e, z, e),
for y, z ∈ H. Then, we have

f(e, x, e) ⊆ f(e, f(e, y, e), e) = f(e, e, f(y, e, e)) = f(e, e, y),
f(e, x, e) ⊆ f(e, f(e, z, e), e) = f(e, e, f(z, e, e)) = f(e, e, z).

Since Pe1 is a partition of H, we have f(e, e, y) = f(e, e, z). Thus,
f(e, y, e) = f(f(e, e, e), y, e) = f(e, f(e, e, y), e) = f(e, f(e, e, z), e) = f(f(e, e, e), z, e)

= f(e, z, e).
This completes the proof. �

Theorem 4.2. Let (H, f, e) be a ternary hypergroup of type U on the right such that
e is a central identity and Pe2 is a partition of H. Then, the following assertions hold.

(1) The relation R ⊆ H2 defined as follows is a regular relation
xRy ⇐⇒ f(e, x, e) = f(e, y, e).

(2) The set H/R endowed with the following ternary hyperoperation is a right
reversible ternary hypergroup f |R(R(x), R(y), R(z)) = {R(t) | t ∈ f(x, y, z)},
where R(x) denotes the equivalence class of x.

(3) Let R(y) = R(u), R(z) = R(v) and R(t) = R(w), for some y, z, t, u, v, w ∈ H.
(a) The following statements are equivalent:

(i) R(x) ∈ f |R(R(y), R(z), R(t)),
(ii) R(x) ∩ f(u, v, w) 6= ∅,
(iii) R(x) ⊆ f(e, f(u, v, w), e).
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(b) If |R(x)| = 1, for some x ∈ H, then the following statements are equivalent:
(i) R(x) ∈ f |R(R(y), R(z), R(t)),
(ii) x ∈ f(u, v, w).

Proof. (1) Obviously, R is an equivalence relation. Let x1Ry1, x2Ry2 and x3Ry3. For
each x ∈ f(x1, x2, x3), by using Lemma 3.4, we have

x ∈ f(e, x, e) ⊆ f(e, f(x1, x2, x3), e) ⊆ f(e, f(x1, f(e, x2, e), x3), e)
= f(e, x1, f(e, x2, f(e, x3, e))) = f(e, x1, f(e, x2, f(e, y3, e)))
= f(e, x1, f(f(e, x2, e), y3, e)) = f(e, x1, f(f(e, y2, e), y3, e))
= f(e, x1, f(f(e, e, y2), y3, e)) = f(e, x1, f(e, f(e, y2, y3), e))
= f(f(e, x1, e), f(e, y2, y3), e)) = f(f(e, y1, e), f(e, y2, y3), e)
= f(e, y1, f(e, f(e, y2, y3), e)) = f(e, y1, f(f(e, e, y2), y3, e))
= f(f(e, y1, f(e, e, y2)), y3, e) = f(f(e, f(y1, e, e), y2), y3, e)
= f(f(e, y1, y2), y3, e) = f(e, f(y1, y2, y3), e).

Thus, there exists y ∈ f(y1, y2, y3) such that x ∈ f(e, y, e) = f(e, e, y). Consequently,
f(e, x, e) ⊆ f(e, f(e, e, y), e) = f(f(e, e, e), y, e) = f(e, y, e).

Since Pe2 is a partition of H, we have f(e, x, e) = f(e, y, e). Hence, xRy and the
desired result follows.

(2) By Theorem 3.1 of [7], H/R is a ternary hypergroup. Let x ∈ H be an arbitrary
element. We claim that R(x) = f(e, x, e) which will imply that R(e) = {e}. For
each y ∈ R(x), we have y ∈ f(e, y, e) = f(e, x, e). So, R(x) ⊆ f(e, x, e). Conversely,
for each y ∈ f(e, x, e) we have f(e, y, e) ⊆ f(e, f(e, x, e), e) = f(e, e, x) = f(e, x, e).
Since Pe2 is a partition of H, we have f(e, y, e) = f(e, x, e) that is y ∈ R(x). So,
f(e, x, e) ⊆ R(x). Therefore, R(x) = f(e, x, e).

By using Lemma 3.4, we have x ∈ f(x, e, e) ∩ f(e, x, e) ∩ f(e, e, x), for all x ∈ H.
Thus, for each R(x) ∈ H/R, we have

R(x) ∈ f |R(R(x), R(e), R(e)) ∩ f |R(R(e), R(x), R(e)) ∩ f |R(R(e), R(e), R(x)).
Thus, R(e) is an identity element of (H/R, f |R).

Let R(x) be an arbitrary element of H/R. By Theorem 4.1, (H, f) is right reversible.
Thus, there exists y ∈ H such that e ∈ f(x, e, y) ∩ f(y, e, x) ∩ f(x, y, e). This implies
that

R(e) ∈ f |R(R(x), R(e), R(y)) ∩ f |R(R(y), R(e), R(x)) ∩ f |R(R(x), R(y), R(e)).
Hence, R(y) ∈ (R(x))−1. So, (H/R, f |R) is a regular ternary hypergroup.

Finally, let R(x), R(y), R(z) ∈ H/R and R(x) ∈ f |R(R(y), R(e), R(z)). Then, there
exists t ∈ f(y, e, z) such that R(x) = R(t). Since (H, f) is right reversible, there exists
w ∈ z−1 such that y ∈ f(t, e, w). So,

R(y) ∈ f |R(R(t), R(e), R(w)) = f |R(R(x), R(e), R(w)).
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Clearly, R(w) ∈ (R(z))−1. This proves that H/R is right reversible.
(3) First, we prove (a).
(i)⇒(ii) Let R(x) ∈ f |R(R(y), R(z), R(t)). As R(y) = R(u), R(z) = R(v) and

R(t) = R(w), we have R(x) ∈ f |R(R(u), R(v), R(w)). Thus, there exists a ∈ f(u, v, w)
such that R(x) = R(a). So, a ∈ R(x) ∩ f(u, v, w).

(ii)⇒(iii) Let a ∈ R(x) ∩ f(u, v, w). Then,

R(x) = R(a) = f(e, a, e) ⊆ f(e, f(u, v, w), e).

(iii)⇒(i) According to hypothesis, we have x ∈ f(e, f(u, v, w), e). Thus, there exists
a ∈ f(u, v, w) such that x ∈ f(e, a, e). Now, from R(a) = f(e, a, e) it follows that
R(x) = R(a). On the other hand, R(a) ∈ f |R(R(u), R(v), R(w)) which implies that
R(x) ∈ f |R(R(y), R(z), R(t)).

Proof of (b) is trivial. �

In what follows, when (H, f) is a finite ternary hypergroup of type U on the right, we
denote by me1 and me2 the maximum size of the elements of Pe1 and Pe2 , respectively.

Proposition 4.1. Let (H, f, e) be a finite ternary hypergroup of type U on the right.
Then, the following assertions hold.

(1) me1 = 1 if and only if e is a left scalar identity.
(2) If me1 ≥ 2 , then there exist two distinct elements x, y ∈ H\{e} such that

f(e, e, x) = f(e, e, y) and |f(e, e, x)| = |f(e, e, y)| = me1.
(3) If me2 ≥ 2 and e is a central identity, then there exist two distinct elements

x, y ∈ H\{e} such that f(e, x, e) = f(e, y, e) and |f(e, x, e)| = |f(e, y, e| = me2.

Proof. (1) By using Lemma 3.2, the proof is trivial.
(2) If me1 ≥ 2, then there exists x ∈ H\{e} such that |f(e, e, x)| = me1 . Thus,

by Lemma 3.3, there exists y ∈ H\{x} such that x ∈ f(e, e, y). Consequently,
f(e, e, x) ⊆ f(e, e, y) and me1 = |f(e, e, x)| ≤ |f(e, e, y)|. Since me1 is maximal, we
obtain |f(e, e, x)| = |f(e, e, y)| and therefore f(e, e, x) = f(e, e, y).

(3) If me2 ≥ 2, then there exists x ∈ H\{e} such that |f(e, x, e)| = me2 . Thus,
by Lemma 3.5, there exists y ∈ H\{x} such that x ∈ f(e, y, e). Since e is a cen-
tral identity, from Lemma 3.4 it follows that f(e, e, y) = f(e, y, e). Consequently,
f(e, x, e) ⊆ f(e, e, y) = f(e, y, e). So, me2 = |f(e, x, e)| ≤ |f(e, y, e)|. Since me2 is
maximal, we obtain |f(e, x, e)| = |f(e, y, e)| and therefore f(e, x, e) = f(e, y, e). �
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