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EXTREMAL VALUES OF MERRIFIELD-SIMMONS INDEX FOR
TREES WITH TWO BRANCHING VERTICES

ROBERTO CRUZ1, CARLOS ALBERTO MARÍN2, AND JUAN RADA3

Abstract. In this paper we find trees with minimal and maximal Merrifield-
Simmons index over the set Ω (n, 2) of all trees with n vertices and 2 branching
vertices, and also over the subset Ωt (n, 2) of all trees in Ω (n, 2) such that the
branching vertices are connected by the path Pt.

1. Introduction

A topological index is a numerical value associated to a molecular graph of a
chemical compound, used for correlation of chemical structure with physical properties,
chemical reactivity or biological activity [2, 9, 10]. Among the numerous topological
indices considered in chemical graph theory, an important example is the Merrifield-
Simmons index, conceived by the chemists Merrifield and Simmons for describing
molecular structure by means of finite-set topology [7]. Given a graph G, denote by
n (G, k) the number of ways in which k mutually independent vertices can be selected
in G. By definition n (G, 0) = 1 for all graphs, and n (G, 1) is the number of vertices
of G. The Merrifield-Simmons index of G is defined as

σ = σ (G) =
∑
k≥0

n (G, k) .

For detailed information on the mathematical properties of σ we refer to [11].
A fundamental problem in chemical graph theory consists in finding the extremal

values of a topological index over a significant set of graphs. For instance, for trees
with exactly one branching vertex (i.e. starlike trees), the problem was solved for the
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Wiener index [3], the Hosoya index [4], the Randić index or more generally, for vertex-
degree-based topological indices [1]. Moreover, the extremal values of the Hosoya
index over trees with exactly 2 branching vertices can be deduced from [6]. See also
[5] for the Wiener index.

Let Ω (n, i) denote the set of all trees with n vertices and i branching vertices. Note
that in Ω (n, 1) (i.e., the set of starlike trees), the star maximizes σ [8] and the starlike
tree T2,2,n−5 (two branches of length 2 and one branch of length n − 5) minimizes
σ [12]. So it is natural to consider the question: which trees in Ω (n, 2) minimize
and maximize σ? Denoting by S (a1, . . . , ar; t; b1, . . . , bs) the tree with two branching
vertices of degrees r+1, s+1 > 2 connected by the path Pt, and in which the lengths of
the pendent paths attached to the two branching vertices are a1, . . . , ar and b1, . . . , bs
respectively (see Figure 1). We show in Theorems 2.1 and 2.5 that among all trees

in Ω (n, 2), the tree S

1, . . . , 1︸ ︷︷ ︸
n−4

;2; 1, 1

 maximizes σ and the tree S (n− 8, 2;2; 2, 2)

minimizes σ.

· · ·Pt

1

b1

Pb1
· · ·

···
Pbs1

bs

···

· · ·

b

bb

b

b

b

b

b

b b b

1

a1

Pa1

1

ar

Par

Figure 1. The tree S(a1, . . . , ar; t; b1, . . . , bs) in Ω (n, 2).

For each integer t ≥ 2, we also consider the set Ωt (n, 2) of all trees in Ω (n, 2) such
that the branching vertices are connected by the path Pt. We show in Theorems 2.6

and 2.7 that among all trees in Ωt (n, 2), the tree S

1, 1; t; 1, . . . , 1︸ ︷︷ ︸
n−t−2

 maximizes σ

and the tree S (2, 2; t; 2, n− t− 6) minimizes σ.

2. Extremal Values of the Merrifield-Simmons Index for Trees With
Two Branching Vertices

The following relations for the Merrifield-Simmons index are fundamental and can
be found in [7]:
a) if G1, . . . , Gr are the connected components of the graph G, then

(2.1) σ (G) =
r∏

i=1

σ (Gi) ;



b) if v is a vertex of G, then

(2.2) σ (G) = σ (G− v) + σ (G−NG[v])

where NG[v] = {v} ∪ {u ∈ V (G) : uv ∈ E(G)}.
Let G and H be two graphs and u ∈ V (G), v ∈ V (H). We denote by G (u, v)H

the coalescence of G and H at the vertices u and v.
Let Pn, Sn and Tn be the path, the star and an arbitrary tree with n vertices

respectively and consider arbitrary connected graphs X and A with at least two
vertices. If {1, 2, . . . , n} are the vertices of Pn, s is the central vertex of Sn and t, x
and a are vertices of Tn, X and A respectively, we define the coalescence graphs
XPn = Pn(1, x)X, XTn = Tn(t, x)X, XSn = Sn(s, x)X, Xn,i = Pn(i, x)X and
AXn,i = A(a, n)Xn,i, where the last two graphs are defined for each i = 1, . . . , n (see
Figure 2).
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Figure 2. Some special graphs

The following results plays a major role in the analysis of treelike graphs and will
be used in the sequel.

Lemma 2.1. [11, Theorem 15] Let X be a connected graph, x ∈ V (X) and Tn any
tree of order n. Then

σ (XPn) ≤ σ (XTn) ≤ σ (XSn) .

Lemma 2.2. [12, Theorem 1] Let X be a connected graph with at least two vertices
and x ∈ V (X): Let n = 4m+ i where i ∈ {1, 2, 3, 4}. Then

σ(Xn,2) >σ(Xn,4) > · · · > σ(Xn,2m+2l)

>σ(Xn,2m+1) > · · · > σ(Xn,5) > σ(Xn,3) > σ(Xn,1),

where l = b i−1
2
c.

Our first auxiliary result is of great importance in our work.

Lemma 2.3. Let A and X be a connected graphs with at least two vertices. Then

σ(AXn,i) > σ(AXn,3),

for all 2 ≤ i ≤ n− 2 and i 6= 3.



Proof. For AXn,i = A (a, n)Xn,i we denote by x the vertex obtained by identifying a
and n. Then for every 2 ≤ i ≤ n− 2 we have

σ (AXn,i)− σ (AXn,3) =σ (A− x) [σ (Xn−1,i)− σ (Xn−1,3)]

+ σ (A−NA[x]) [σ (Xn−2,i)− σ (Xn−2,3)].

The result follows from Lemma 2.2. �

We first consider the problem of finding the tree in Ω(n, 2) with maximal value of
the Merrifield-Simmons index.

Lemma 2.4. Let t, p, q ≥ 2 be integers such that p ≤ q. Then

σ(S(1, . . . , 1︸ ︷︷ ︸
p

; t; 1, . . . , 1︸ ︷︷ ︸
q

)) < σ(S(1, . . . , 1︸ ︷︷ ︸
p−1

; t; 1, . . . , 1︸ ︷︷ ︸
q+1

)).

Proof. Let U = S(1, . . . , 1︸ ︷︷ ︸
p

; t; 1, . . . , 1︸ ︷︷ ︸
q

) and V = S(1, . . . , 1︸ ︷︷ ︸
p−1

; t; 1, . . . , 1︸ ︷︷ ︸
q+1

).

If t = 2, using relations (2.1) and (2.2) we have

σ(U) = σ(S(1, . . . , 1︸ ︷︷ ︸
p−1

;2; 1, . . . , 1︸ ︷︷ ︸
q

)) + 2p−1σ(Sq+1),

σ(V ) = σ(S(1, . . . , 1︸ ︷︷ ︸
p−1

;2; 1, . . . , 1︸ ︷︷ ︸
q

)) + 2qσ(Sp),

where as usual Sn denotes the star graph of order n. Therefore

σ(V )− σ(U) = 2qσ(Sp)− 2p−1σ(Sq+1) = 2q(2p−1 + 1)− 2p−1(2q + 1) = 2q − 2p−1 > 0.

If t ≥ 3, using relations (2.1) and (2.2) we obtain

σ(U) = σ(S(1, . . . , 1︸ ︷︷ ︸
p−1

; t; 1, . . . , 1︸ ︷︷ ︸
q

)) + 2q+p−1σ(Pt−2) + 2p−1σ(Pt−3);

σ(V ) = σ(S(1, . . . , 1︸ ︷︷ ︸
p−1

; t; 1, . . . , 1︸ ︷︷ ︸
q

)) + 2q+p−1σ(Pt−2) + 2qσ(Pt−3).

Therefore, σ(V )− σ(U) = (2q − 2p−1)σ(Pt−3) > 0. �

Theorem 2.1. Let n ≥ 7 and T = S(a1, . . . , ar; t; b1, . . . , bs) ∈ Ω(n, 2) where t ≥ 2.
Then

σ(T ) ≤ σ(S(1, . . . , 1︸ ︷︷ ︸
n−4

;2; 1, 1)).

Proof. By Lemma 2.1 we have that

σ(T ) ≤ σ(S(a1, . . . , ar;2; 1, . . . , 1︸ ︷︷ ︸
s′

)) ≤ σ(S(1, . . . , 1︸ ︷︷ ︸
r′

;2; 1, . . . , 1︸ ︷︷ ︸
s′

)),



where s′ = t− 2 +
∑s

j=1 bj ≥ 2 and r′ =
∑r

i=1 ai ≥ 2. Applying Lemma 2.4 we deduce
that

σ(S(1, . . . , 1︸ ︷︷ ︸
r′

;2; 1, . . . , 1︸ ︷︷ ︸
s′

)) ≤ σ(S(1, . . . , 1︸ ︷︷ ︸
n−4

;2; 1, 1))

and the result follows. �

In what follows we will consider the problem of finding the tree in Ω(n, 2) with
minimal Merrifield-Simmons index.

Let n > 10 and T = S(a1, . . . , ar; t; b1, . . . , bs) in Ω (n, 2). By Lemma 2.1

σ(S(a1, . . . , ar; t; b1, . . . , bs)) ≥ σ(S(a1, . . . , ar; t; s
′′, bs)) ≥ σ(S(r′′, ar; t; s

′′, bs)),

where s′′ =
∑s−1

j=1 bj and r′′ =
∑r−1

i=1 ai. Therefore, in order to find the tree with
minimal Merrifield-Simmons index for the class Ω(n, 2), it is enough to find the tree
with minimal Merrifield-Simmons index for the subclass of Ω(n, 2) consisting of all
trees of the form T = S(w, x; t; y, z), where w, x, y, z ≥ 1 are integers.

Next we find the tree with minimal Merrifield-Simmons index over the sets of trees
of the form S(w, x; t; y, z) with t > 2.

Theorem 2.2. Let n > 10 and T = S(w, x; t; y, z) where t > 2. Then

σ(T ) ≥ σ (S(2, 2;n− 8; 2, 2)) .

Proof. Assume first that w + x ≥ 4. Then by Lemma 2.2 we obtain

σ(T ) ≥ σ(S (w + x− 2, 2; t; y, z)).

Moreover t > 2 implies that w + x− 2 + t > 4 then we can use Lemma 2.3 to obtain

σ(S (w + x− 2, 2; t; y, z)) ≥ σ(S (2, 2; t + w + x− 4; y, z)).

Now if y + z ≥ 4, then a similar argument ends the proof (see Figure 3). Otherwise
y+ z ≤ 3 which implies that S (2, 2; t + w + x− 4; y, z) is the tree S (2, 2;n− 7; 1, 2)
or the tree S (2, 2;n− 6; 1, 1). Since n > 10, we have that n− 6 > n− 7 > 3 and in
both cases the result follows using Lemma 2.3.

The only case left to consider is when w+x ≤ 3 and y+ z ≤ 3, but in this situation
we note that necessarily t > 4 and the result follows using Lemma 2.3. �
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Figure 3. Graphs in the proof of Theorem 2.2



Lemma 2.5. Let t, w ≥ 2 be integers. Then

σ (S(w, 2; t; 2, 2)) < σ (S(w + 1, 2; t; 1, 2)) .

Proof. Let A = S(w, 2; t; 2, 2) and B = S(w + 1, 2; t; 1, 2). Using relations (2.1), (2.2)
and Lemma 2.1 we have

σ(A) = σ (S(w, 2; t; 1, 2)) + σ (Tw,2,t+1)) ,

σ(B) = σ (S(w, 2; t; 1, 2)) + σ (S(w − 1, 2; t; 1, 2))

≥ σ (S(w, 2; t; 1, 2)) + σ (Tw+t+1,2,1)) ,

where Ta,b,c is a starlike tree with branches of length a, b and c respectively and
a+ b+ c+ 1 = n. Hence

σ(B)− σ(A) ≥ σ (Tw+t+1,2,1))− σ (Tw,2,t+1)) > 0

by Lemma 2.2. �

Lemma 2.6. Let t, w, y be integers such that t ≥ 2 and w ≥ y ≥ 2. If y is odd then

σ (S(w, 2; t; y, 2)) > σ (S(w + 1, 2; t; y − 1, 2)) .

If y is even then

σ (S(w, 2; t; y, 2)) < σ (S(w + 1, 2; t; y − 1, 2)) .

Proof. Let A = S(w, 2; t; y, 2) and B = S(w + 1, 2; t; y − 1, 2). Using relations (2.1)
and (2.2) we have

σ(A) = σ (S(w, 2; t; y − 1, 2)) + σ (S(w, 2; t; y − 2, 2))

and
σ(B) = σ (S(w, 2; t; y − 1, 2)) + σ (S(w − 1, 2; t; y − 1, 2)) .

Hence

σ(B)− σ(A) = (−1)[σ (S(w, 2; t; y − 2, 2))− σ (S(w − 1, 2; t; y − 1, 2))].

Repeating this argument y − 2 times we deduce

σ(B)− σ(A) = (−1)y−2[σ (S(w − y + 3, 2; t; 1, 2))− σ (S(w − y + 2, 2; t; 2, 2))].

By Lemma 2.5 we know that σ (S(w − y + 3, 2; t; 1, 2)) > σ (S(w − y + 2, 2; t; 2, 2))
and the result follows. �

Theorem 2.3. Let M = 4k + i, where i ∈ {0, 1, 2, 3}. Then

σ (G (PM−2, P2)) < · · · < σ (G (PM−2k, P2k)) ≤ σ
(
G
(
PM−(2k+1), P2k+1

))
< σ

(
G
(
PM−(2k−1), P2k−1

))
< · · · < σ (G (PM−1, P1)) ,

where G(Pa, Pb) = S(a, 2; t; b, 2), that is G(Pa, Pb) is the tree obtained from the path
Pt+4 = v1v2 · · · vt+4 by joining the path Pa to the vertex v3 and joining the path Pb to
the vertex vt+2 (see Figure 4).
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Figure 4. Trees G(a, b).

Proof. Let A = G(Pa, Pb) and B = G(Pa−2, Pb+2), where 2 ≤ b ≤ a − 4. Using
relations (2.1) and (2.2) we have

σ(A) = σ (G(Pa−1, Pb)) + σ (G(Pa−2, Pb))

and
σ(B) = σ (G(Pa−2, Pb+1)) + σ (G(Pa−2, Pb)) .

Consequently

σ(A)− σ(B) = (−1) [σ (G(Pa−2, Pb+1))− σ (G(Pa−1, Pb))]

and so
σ(A)− σ(B) = (−1)b [σ (G(Pa−b−1, P2))− σ (G(Pa−b, P1))] .

By Lemma 2.5, if b is even then σ(A) < σ(B) and if b is odd then σ(A) > σ(B).
Only remains to prove that σ (G(PM−2k, P2k)) ≤ σ

(
G(PM−(2k+1), P2k+1)

)
, but this is

a direct consequence of Lemma 2.6. �

Lemma 2.7. Let n > 10 and let w, x be positive integers. Then

σ(S (w, x;2; 1, 1)) > σ(S (n− 8, 2;2; 2, 2)).

Proof. Let A = S (w, x;2; 1, 1) and B = S (n− 8, 2;2; 2, 2). Since n > 10 we have that
w+x > 6 and by Lemma 2.2 we can construct a tree A1 = S (n− 6, 2;2; 1, 1) ∈ Ω(n, 2)
such that σ(A) > σ(A1). By a direct computation using relations (2.1) and (2.2) we
obtain

σ(A1) = 8σ(Pn−7) + 15σ(Pn−6),

and
σ(B) = 18σ(Pn−9) + 39σ(Pn−8).

Therefore
σ(A1)− σ(B) = 4σ(Pn−9) + σ(Pn−10) > 0,

and the result follows. �



Next we find the tree with minimal Merrifield-Simmons index over the sets of trees
of the form S(w, x;2; y, z).

Theorem 2.4. Let n > 10 and T = S(w, x;2; y, z). Then

σ(T ) ≤ σ (S(n− 8, 2;2; 2, 2)) .

Proof. Note that w+x+y+z > 8. Therefore we may assume without loosing generality
that w + x ≥ 4. Then by Lemma 2.2 there exists a tree T1 = S (w + x− 2, 2;2; y, z))
such that σ(T ) ≤ σ(T1).

If y+ z ≥ 4, by Lemma 2.2 we construct a tree T2 = S (w + x− 2, 2;2; y + z − 2, 2)
such that σ(T1) > σ(T2) and the result follows from Theorem 2.3.

If y + z ≤ 3 then T1 = S (w + x− 2, 2;2; 1, 2) or T1 = S (w + x− 2, 2;2; 1, 1). If
T1 = S (w + x− 2, 2;2; 1, 2) the result follows from Theorem 2.3. On the other hand,
if T1 = S (w + x− 2, 2;2; 1, 1) the result follows from Lemma 2.7. �

In our next result we find the minimal tree with respect to Merrifield-Simmons
index over Ω(n, 2).

Theorem 2.5. For every n ≥ 11, S(n−8, 2;2; 2, 2) is the tree with minimal Merrifield-
Simmons index in Ω(n, 2).

Proof. Bearing in mind Theorems 2.2 and 2.4 to obtain the result it is enought
to compare the Merrifiel-Simmons index for the trees S(2, 2;n− 8; 2, 2) and S(n −
8, 2;2; 2, 2). Indeed, let A = S(2, 2;n− 8; 2, 2) and let B = S(n− 8, 2;2; 2, 2). By a
direct computation, using relations (2.1) and (2.2), we obtain

σ(A) = 81σ(Pn−10) + 72σ(Pn−11) + 16σ(Pn−12)

= 41σ(Pn−8) + 15σ(Pn−9),

and
σ(B) = 39σ(Pn−8) + 18σ(Pn−9).

Hence
σ(A)− σ(B) = 2σ(Pn−10)− σ(Pn−9) > 0;

and the result follows. �

To end this section we consider the problem of finding extremal values of the
Merrifield-Simmons index for trees with two branching vertices at a fixed distance.
Consider the set Ωt(n, 2) of all trees in Ω(n, 2) such that the two branching vertices
are connected by the path Pt; that is, the distance between the two branching vertices
is t − 1. We next find the extremal trees in Ωt(n, 2) with respect to the Merrifield-
Simmons index.

Theorem 2.6. Let n ≥ t + 4 and T ∈ Ωt(n, 2), T 6= S(1, 1; t; 1, . . . , 1︸ ︷︷ ︸
n−t−2

). Then

σ(T ) < σ(S(1, 1; t; 1, . . . , 1︸ ︷︷ ︸
n−t−2

)).



Proof. By Lemma 2.1 it is sufficient to consider trees in Ωt(n, 2) of the form T =
S(1, . . . , 1︸ ︷︷ ︸

p

; t; 1, . . . , 1︸ ︷︷ ︸
q

). We may assume that p ≤ q. Now, a repeated application of

Lemma 2.4 gives that σ(T ) < σ(S(1, 1; t; 1, . . . , 1︸ ︷︷ ︸
n−t−2

)). �

Theorem 2.7. Let n ≥ t + 7 and T ∈ Ωt(n, 2), T 6= S(2, 2; t; 2, n− t− 6). Then

σ(T ) > σ (S(2, 2; t; 2, n− t− 6)) .

Proof. Bearing in mind Theorem 2.4 and Lemma 2.1, it is clear that in order to obtain
the result it is enough to consider the case t ≥ 3 and trees in Ωt(n, 2) of the form
T = S(w, x; t; y, z).

Note that w+ x+ y+ z ≥ 7. Therefore as in the proof of Theorem 2.2, there exists
a tree T1 ∈ Ωt(n, 2) of the form T1 = S(r, 2, ; t; s, 2) such that σ(T ) > σ(T1), where
r+s = n−t−4. Note that T1 = G(Pr, Ps), therefore the result follows from Theorem
2.3. �
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