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EXTREMAL VALUES OF MERRIFIELD-SIMMONS INDEX FOR
TREES WITH TWO BRANCHING VERTICES

ROBERTO CRUZ!, CARLOS ALBERTO MARIN?, AND JUAN RADA?

ABSTRACT. In this paper we find trees with minimal and maximal Merrifield-
Simmons index over the set Q(n,2) of all trees with n vertices and 2 branching
vertices, and also over the subset Q! (n,2) of all trees in Q(n,2) such that the
branching vertices are connected by the path P;.

1. INTRODUCTION

A topological index is a numerical value associated to a molecular graph of a
chemical compound, used for correlation of chemical structure with physical properties,
chemical reactivity or biological activity [2,9,10]. Among the numerous topological
indices considered in chemical graph theory, an important example is the Merrifield-
Simmons index, conceived by the chemists Merrifield and Simmons for describing
molecular structure by means of finite-set topology [7]. Given a graph G, denote by
n (G, k) the number of ways in which £ mutually independent vertices can be selected
in G. By definition n (G,0) = 1 for all graphs, and n (G, 1) is the number of vertices
of G. The Merrifield-Simmons index of G is defined as

oc=0(G) =) n(G.k).

k>0

For detailed information on the mathematical properties of o we refer to [11].

A fundamental problem in chemical graph theory consists in finding the extremal
values of a topological index over a significant set of graphs. For instance, for trees
with exactly one branching vertex (i.e. starlike trees), the problem was solved for the
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Wiener index [3], the Hosoya index [4], the Randi¢ index or more generally, for vertex-
degree-based topological indices [1]. Moreover, the extremal values of the Hosoya
index over trees with exactly 2 branching vertices can be deduced from [6]. See also
[5] for the Wiener index.

Let € (n,4) denote the set of all trees with n vertices and i branching vertices. Note
that in © (n, 1) (i.e., the set of starlike trees), the star maximizes o [8] and the starlike
tree Th2,-5 (two branches of length 2 and one branch of length n — 5) minimizes
o [12]. So it is natural to consider the question: which trees in € (n,2) minimize
and maximize o? Denoting by S (ai,...,a,;t;b1,...,bs) the tree with two branching
vertices of degrees r+1, s+1 > 2 connected by the path P, and in which the lengths of
the pendent paths attached to the two branching vertices are aq,...,a, and by, ..., by
respectively (see Figure 1). We show in Theorems 2.1 and 2.5 that among all trees

in Q(n,2), the tree S [ 1,...,1;2;1,1 | maximizes o and the tree S (n — 8, 2;2;2,2)
———

n—4
minimizes o.
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FIGURE 1. The tree S(ay,...,a,;t;b1,...,bs) in Q(n,2).

For each integer t > 2, we also consider the set Q (n,2) of all trees in Q2 (n,2) such
that the branching vertices are connected by the path P,. We show in Theorems 2.6

and 2.7 that among all trees in Q' (n,2), the tree S | 1,1;t;1,...,1 | maximizes o
H/—/

n—t—2
and the tree S (2,2;t;2,n — ¢t — 6) minimizes o.

2. EXTREMAL VALUES OF THE MERRIFIELD-SIMMONS INDEX FOR TREES WITH
TwO BRANCHING VERTICES

The following relations for the Merrifield-Simmons index are fundamental and can
be found in |7]:
a) if Gy,..., G, are the connected components of the graph G, then

(2.1) o (G) = HU(GZ‘)§



b) if v is a vertex of G, then
(2.2) 0(G)=0(G—v)+0(G— Ng[v])

where Ng[v] = {v} U{u € V(G) : wv € E(G)}.

Let G and H be two graphs and u € V(G), v € V(H). We denote by G (u,v) H
the coalescence of G and H at the vertices u and v.

Let P,, S, and T,, be the path, the star and an arbitrary tree with n vertices
respectively and consider arbitrary connected graphs X and A with at least two
vertices. If {1,2,...,n} are the vertices of P,, s is the central vertex of S,, and ¢,z
and a are vertices of T,,, X and A respectively, we define the coalescence graphs
XP, = P,(L,z)X, XT,, = T,(t,x)X, XS, = Su(s,2)X, X, = P,(i,2)X and
AX,; = A(a,n)X,,;, where the last two graphs are defined for each i =1,...,n (see
Figure 2).

XP, XTyn

FIGURE 2. Some special graphs

The following results plays a major role in the analysis of treelike graphs and will
be used in the sequel.

Lemma 2.1. |11, Theorem 15| Let X be a connected graph, x € V(X) and T, any
tree of order n. Then

o(XP,) <o(XT,) <o(XS5,).

Lemma 2.2. [12, Theorem 1| Let X be a connected graph with at least two vertices
and x € V(X): Let n = 4m + i where i € {1,2,3,4}. Then

0(Xn2) >0(Xpa) >+ > 0(Xnomia)
> U(Xn,2m+1) > > O'(Xn75) > O'(Xnvg) > U(Xn,1>7

where | = [5*].
Our first auxiliary result is of great importance in our work.
Lemma 2.3. Let A and X be a connected graphs with at least two vertices. Then
0(AX, ;) > 0(AX,3),
forall2 <i<n-—2andi# 3.



Proof. For AX,,; = A(a,n) X, we denote by x the vertex obtained by identifying a
and n. Then for every 2 <1i < n — 2 we have

g (AXTM) — 0 (AXnB) =0 (A — $) [O' (anl,i) — 0 (Xn,1?3>]
+0 (A= Nafz]) [0 (Xn-24) — 0 (Xn-23)].

The result follows from Lemma 2.2. O

We first consider the problem of finding the tree in Q(n,2) with maximal value of
the Merrifield-Simmons index.

Lemma 2.4. Let t,p,q > 2 be integers such that p < q. Then
o(S(,..., Lt 1,...,1) <a(SA,..., 1t 1,...,1)).
P q p— q

Proof. Let U = S(1,...,1;t;1,...,1)and V = S(1,...,1;¢;1,...,1).
— = —

p q p—1 q+1
If ¢t = 2, using relations (2.1) and (2.2) we have
o(U)=0(S(1,...,1:2:1,..., 1)) + 27" Lo(S,11),
(U) = a(5( : ) (S4+1)
p— q
o(V)=0(S(1,...,1;2;1,...,1)) + 2%(S,),
(V) =a(5( : ) (Sp)
p— q

where as usual S,, denotes the star graph of order n. Therefore
o(V)—o(U) =2%0(S,) — 2P o (Sy1) =29(2P " + 1) = 2P71 (274 1) = 27 — 2771 > (.
If t > 3, using relations (2.1) and (2.2) we obtain
oU)=0(S(1,...,1;t;1,...,1)) + 297 (P ) + 2P 1o (Py_3);
(U) = a(5( ) (Pe-2) (Pe-s)

p—1 q
c(V)=0(S(1,...,L;t;1,...,1)) + 29777 1o(Py_y) + 290(Ps_3).
p—1 q
Therefore, o(V) — o(U) = (27 — 27" Yo (P, _3) > 0. 0

Theorem 2.1. Letn > 7 and T = S(ay,...,a,;t;01,...,bs) € Q(n,2) where t > 2.
Then

T)<o(S(1,...,1;2;1,1)).
o(T) < a(S( : )

Proof. By Lemma 2.1 we have that
o(T)<o(S(ay,...,a;2;1,...,1)) <o(S(1,...,1;2;1,...,1)),
(T) < o(S(a ) < o (5( )



where s’ =t —2+3 77 b; > 2and ' =3 | a; > 2. Applying Lemma 2.4 we deduce
that
o(S(1,...,1;2;1,...,1)) <o(S(1,...,1;2;1,1
(S( ) < o(S( )

and the result follows. O

In what follows we will consider the problem of finding the tree in Q(n,2) with

minimal Merrifield-Simmons index.
Let n > 10 and T = S(aq, ..., a,;t;b1,...,bs) in Q(n,2). By Lemma 2.1

o(S(ay,...,am;t;:b1,...,bs)) > 0(S(ar,...,amt;8",bs)) > a(S(r", an;t;8", b)),

where s” = ij b; and " = 3"l a;. Therefore, in order to find the tree with
minimal Merrifield-Simmons index for the class Q(n, 2), it is enough to find the tree
with minimal Merrifield-Simmons index for the subclass of (n,2) consisting of all
trees of the form T' = S(w, z;t;y, z), where w, x,y, z > 1 are integers.

Next we find the tree with minimal Merrifield-Simmons index over the sets of trees
of the form S(w,z;t;y, z) with t > 2.

Theorem 2.2. Let n > 10 and T = S(w,x;t;y, z) where t > 2. Then
o(T) > o (S(2,2:n — 8;2,2)).
Proof. Assume first that w 4+ x > 4. Then by Lemma 2.2 we obtain
o(T) > o(S(w+z—2,2;t;y,2)).
Moreover t > 2 implies that w + z — 2 4+t > 4 then we can use Lemma 2.3 to obtain
o(S(w+z—2,2ty,2) >0(S (2,2t +w+x—45y,2)).

Now if y + z > 4, then a similar argument ends the proof (see Figure 3). Otherwise
y+ z < 3 which implies that S (2,2;t + w + x — 4;y, 2) is the tree S (2,2;n — 7;1,2)
or the tree S (2,2;n —6;1,1). Since n > 10, we have that n —6 >n —7 > 3 and in
both cases the result follows using Lemma 2.3.

The only case left to consider is when w+ 2 < 3 and y+ z < 3, but in this situation
we note that necessarily t > 4 and the result follows using Lemma 2.3. 0J
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F1GURE 3. Graphs in the proof of Theorem 2.2



Lemma 2.5. Let t,w > 2 be integers. Then
o (S(w,2:4;2,2)) <o (S(w+1,2t;1,2)).

Proof. Let A = S(w,2;t;2,2) and B = S(w+ 1,2;t;1,2). Using relations (2.1), (2.2)
and Lemma 2.1 we have

g(A) =0 (S(w,2;t;1,2)) + 0 (Twott1))
o(B) =0 (S(w,2;t;1,2)) + 0 (S(w—1,2;t;1,2))
>0 (S(w,2;t;1,2)) + 0 (Tyre+1.21)) 5

where T, is a starlike tree with branches of length a, b and c respectively and
a+b+c+1=n. Hence

o(B) —o(A) > 0 (Twit+1,21)) — 0 (Twaer1)) >0
by Lemma 2.2. U
Lemma 2.6. Let t,w,y be integers such thatt > 2 and w >y > 2. Ify is odd then
o(S(w,2;t;9,2) >0 (S(w+1,2;t;y — 1,2)).
If y is even then
o(S(w,2;t;9,2) <o (S(w+ 1,2ty — 1,2)).

Proof. Let A = S(w,2;t;y,2) and B = S(w + 1,2;t;y — 1,2). Using relations (2.1)
and (2.2) we have

o(A) =0 (S(w,2;t;y —1,2)) + 0 (S(w, 2;t;y — 2,2))
and
o(B)=0(S(w,2;t;y —1,2)) + o (S(w—1,2;t;y — 1,2)).

Hence

o(B) —o(A) = (=D (S(w, 25ty — 2,2)) — o (S(w — 1,26,y — 1,2))].
Repeating this argument y — 2 times we deduce

o0(B) —a(A) = (=1)" 2o (S(w—y +3,2;t;1,2)) — o (S(w —y + 2,2;t;2,2))].

By Lemma 2.5 we know that o (S(w —y+3,2;t;1,2)) > o (S(w —y + 2,2;t;2,2))
and the result follows. OJ
Theorem 2.3. Let M = 4k + i, where i € {0,1,2,3}. Then

0 (G (Pry—a, P2)) < -+ < 0 (G (Prr—ok, Por)) < 0 (G (Prr—(2rs1), Pors1))

<o (G (PM—(Qk—1)7P2k71)) < <0 (G(Py-1, Pr)),

where G(P,, Py,) = S(a,2;t;b,2), that is G(P,, P,) is the tree obtained from the path
Py = v1vg - - - vgq by joining the path P, to the vertex vs and joining the path P, to
the vertez vyio (see Figure 4).
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FIGURE 4. Trees G(a,b).

Proof. Let A = G(P,,P,) and B = G(P,_2, Py12), where 2 < b < a — 4. Using
relations (2.1) and (2.2) we have

0(A) =0 (G(P,-1,P)) + 0 (G(P,—2, B))

and
0(B)=0(G(Py—2,Pyi1)) + 0 (G(Ps_2, P)) .
Consequently
0(A) —a(B) = (=1) [0 (G(Pa-z, Pot1)) = 0 (G(Pa-r, B))]
and so

0(A) = o(B) = (-1)" [0 (G(Pa-s-1, P2)) — 0 (G(Pacs, P1))].
By Lemma 2.5, if b is even then o(A) < o(B) and if b is odd then ¢(A) > o(B).
Only remains to prove that o (G(Py_ok, Por)) < o (G(PM_(%H), P2k+1)), but this is
a direct consequence of Lemma 2.6. U

Lemma 2.7. Let n > 10 and let w, x be positive integers. Then
o(S(w,z;2;1,1)) > (S (n — 8,2;2;2,2)).

Proof. Let A= S (w,x;2;1,1)and B = S (n — 8,2;2;2,2). Since n > 10 we have that
w4z > 6 and by Lemma 2.2 we can construct a tree A; =S (n —6,2;2;1,1) € Q(n,2)
such that 0(A) > o(A;). By a direct computation using relations (2.1) and (2.2) we
obtain

o(Ay) =80(P,_7) + 150(P, ),
and
o(B) =180 (P,_9) + 390 (P, _3).
Therefore
0(A1) —o(B) =40 (Py—9) + 0(Fy-10) > 0,
and the result follows. O



Next we find the tree with minimal Merrifield-Simmons index over the sets of trees
of the form S(w,z;2;y, 2).

Theorem 2.4. Let n > 10 and T = S(w,x;2;y,z). Then
o(T)<o(S(n—28,2,2;2,2)).

Proof. Note that w+x+y+2 > 8. Therefore we may assume without loosing generality
that w + = > 4. Then by Lemma 2.2 there exists a tree T3 = S (w + z — 2,2;2;y, 2))
such that o(T) < o(T}).

If y+ 2 > 4, by Lemma 2.2 we construct a tree T, = S (w+x —2,2;2;y + 2 — 2,2)
such that o(7}) > o(T3) and the result follows from Theorem 2.3.

Ify4+2<3thenTy =Sw+z-2,2,2;1,2)or T} = S(w+x—2,2;2;1,1). If
T =S (w+x—2,2;2;1,2) the result follows from Theorem 2.3. On the other hand,
if 77 =S (w+x—2,2;2;1,1) the result follows from Lemma 2.7. O

In our next result we find the minimal tree with respect to Merrifield-Simmons
index over (n, 2).

Theorem 2.5. For everyn > 11, S(n—8,2;2;2,2) is the tree with minimal Merrifield-
Simmons index in Q(n,2).

Proof. Bearing in mind Theorems 2.2 and 2.4 to obtain the result it is enought
to compare the Merrifiel-Simmons index for the trees S(2,2;n — 8;2,2) and S(n —
8,2;2;2,2). Indeed, let A =5(2,2;n —§;2,2) and let B = S(n — 8§,2;2;2,2). By a
direct computation, using relations (2.1) and (2.2), we obtain
O'(A) = 810’(Pn_10) + 720'<Pn_11) + 160'<Pn_12)
=410(P,—g) + 150(P,—9),

and
o(B) =390 (P,—s) + 180(P,—9).
Hence
0(A) —o(B) = 20(Pn-10) — 0(Py,—g) > 0;
and the result follows. O

To end this section we consider the problem of finding extremal values of the
Merrifield-Simmons index for trees with two branching vertices at a fixed distance.
Consider the set Qf(n,2) of all trees in (n,2) such that the two branching vertices
are connected by the path P;; that is, the distance between the two branching vertices
is t — 1. We next find the extremal trees in Q%(n,2) with respect to the Merrifield-
Simmons index.

Theorem 2.6. Letn>t+4 and T € Q%(n,2), T # S(1,1;¢;1,...,1). Then
——
n—t—2
o(T) <o(S(1,1;t;1,...,1)).
(T) < o(S( )

n—t—2



Proof. By Lemma 2.1 it is sufficient to consider trees in Q%(n,2) of the form T =

S(1,...,1;t;1,...,1). We may assume that p < ¢q. Now, a repeated application of
—— N —
P q
Lemma 2.4 gives that (7)) < o(S(1,1;t;1,...,1)). O
t—2

Theorem 2.7. Letn >t +7 and T € Q%(n,2), T # S(2,2;t;2,n —t — 6). Then

o(T)>o(S(2,2;t;2,n—t—6)).

Proof. Bearing in mind Theorem 2.4 and Lemma 2.1, it is clear that in order to obtain
the result it is enough to consider the case t > 3 and trees in Q%(n,2) of the form
T = S(w,z;t;y, 2).

Note that w+ x 4+ y + z > 7. Therefore as in the proof of Theorem 2.2, there exists
a tree T) € Q%(n,2) of the form T} = S(r,2,;t;s,2) such that o(T) > o(T}), where
r+s=n—t—4. Note that T} = G(P,, P;), therefore the result follows from Theorem
2.3. O
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