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A REPRESENTATION FOR DERANGEMENT NUMBERS IN
TERMS OF A TRIDIAGONAL DETERMINANT

FENG QI1,2,3, JING-LIN WANG3, AND BAI-NI GUO4

Abstract. In the paper, the authors discover a representation for the derange-
ment numbers in terms of a tridiagonal determinant. From the determinantal
representation, the authors recover several identities and recurrence relations of the
derangement numbers.

1. Introduction

In combinatorial mathematics, a derangement is a permutation of the elements of a
set, such that no element appears in its original position. The number of derangements
of a set of size n is called the derangement number and usually denoted by !n. The
subfactorial function is a map from n to !n. The problem of counting derangements
was first considered in 1708 and solved in 1713 by Pierre Raymond de Montmort, as
did Nicholas Bernoulli at about the same time. The first eleven derangement numbers
!n for 0 ≤ n ≤ 10 are

(1.1) 1, 0, 1, 2, 9, 44, 265, 1854, 14833, 133496, 1334961.

One of several expressions for computing the derangement numbers !n is

(1.2) !n = n!
n∑

`=0

(−1)`

`!
.
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The derangement numbers !n have an exponential generating function

(1.3) D(x) =
e−x

1− x
=
∞∑
n=0

!n
xn

n!
.

The derangement numbers !n arise naturally in many different contexts. More gene-
rally, the number of derangements in various families of transitive permutation groups
has been studied extensively in recent years. For more and detailed information on the
derangement numbers !n, please refer to [1, 2, 12,13] and plenty of references therein.

In [10], by studying the equation

D(−x) = ex

1 + x
=
∞∑
n=0

(−1)n!nx
n

n!
,

the authors corrected and recovered two determinantal representations for derange-
ment numbers !n. For more information, please refer to [5, 8] and closely related
references therein.

The aim of this paper is, by computing the nth derivative of the exponential
generating function D(x), to find a representation for the derangement numbers !n in
terms of a tridiagonal determinant.

Our main result can be summarized up as the following theorem.

Theorem 1.1. For n ∈ {0} ∪ N, the derangement numbers !n can be represented by
a tridiagonal (n+ 1)× (n+ 1) determinant

(1.4)
!n = −

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−1 1 0 0 0 · · · 0 0 0
0 0 1 0 0 · · · 0 0 0
0 −1 1 1 0 · · · 0 0 0
0 0 −2 2 1 · · · 0 0 0
0 0 0 −3 3 · · · 0 0 0
...

...
...

...
... . . . ...

...
...

0 0 0 0 0 · · · n− 3 1 0
0 0 0 0 0 · · · −(n− 2) n− 2 1
0 0 0 0 0 · · · 0 −(n− 1) n− 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= −|eij|(n+1)×(n+1),

where

eij =


1, i− j = −1,
i− 2, i− j = 0,

2− i, i− j = 1,

0, i− j 6= 0,±1.

By virtue of the determinantal representation (1.4), we recover several identities
and recurrence relations of the derangement numbers !n in the form of remarks in the
final section of this paper.
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2. A Lemma

For supplying a concise proof for Theorem 1.1, we need the following lemma which
was concluded in [6, Section 2.2, p. 849], [7, p. 94], [9, Remark 6], and [11, Lemma 2.1]
from [3, p. 40, Exercise 5].

Lemma 2.1. Let u(x) and v(x) 6= 0 be differentiable functions, let U(n+1)×1(x) be an
(n+1)×1 matrix whose elements uk,1(x) = u(k−1)(x) for 1 ≤ k ≤ n+1, let V(n+1)×n(x)
be an (n+ 1)× n matrix whose elements

vi,j(x) =


(
i− 1

j − 1

)
v(i−j)(x), i− j ≥ 0,

0, i− j < 0,

for 1 ≤ i ≤ n+ 1 and 1 ≤ j ≤ n, and let |W(n+1)×(n+1)(x)| denote the determinant of
the (n+ 1)× (n+ 1) matrix

W(n+1)×(n+1)(x) =
[
U(n+1)×1(x) V(n+1)×n(x)

]
.

Then the nth derivative of the ratio u(x)
v(x)

can be computed by

(2.1)
dn

dxn

[
u(x)

v(x)

]
= (−1)n

∣∣W(n+1)×(n+1)(x)
∣∣

vn+1(x)
.

3. Proofs of Theorem 1.1

Now we are in a position to provide a concise proof for Theorem 1.1.
Applying u(x) = e−x and v(x) = 1− x in Lemma 2.1 gives

uk,1 = (e−x)(k−1) = (−1)k−1e−x → (−1)k−1,

for 1 ≤ k ≤ n+ 1 as x→ 0 and

vi,j =

(
i− 1

j − 1

)
(1− x)(i−j) =



(
i− 1

j − 1

)
(1− x), i− j = 0,

−
(
i− 1

j − 1

)
, i− j = 1,

0, i− j 6= 0, 1,

=


1− x, i− j = 0,

1− i, i− j = 1,

0, i− j 6= 0, 1,

→


1, i− j = 0,

1− i, i− j = 1,

0, i− j 6= 0, 1,
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for 1 ≤ i ≤ n + 1 and 1 ≤ j ≤ n as x → 0. Consequently, by virtue of the formula
(2.1), we have

dn D(x)

dxn
=

(−1)n

(1− x)n+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

e−x 1− x 0 · · · 0 0
−e−x −1 1− x · · · 0 0
e−x 0 −2 · · · 0 0
...

...
... . . . ...

...
(−1)n−2e−x 0 0 · · · 1− x 0
(−1)n−1e−x 0 0 · · · −(n− 1) 1− x
(−1)ne−x 0 0 · · · 0 −n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

→ (−1)n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 0 0 · · · 0 0
−1 −1 1 0 · · · 0 0
1 0 −2 1 · · · 0 0
−1 0 0 −3 · · · 0 0
...

...
...

... . . . ...
...

(−1)n−2 0 0 0 · · · 1 0
(−1)n−1 0 0 0 · · · −(n− 1) 1
(−1)n 0 0 0 · · · 0 −n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
as x → 0 for n ≥ 0. Therefore, since D(x) is a generating function of !n, as showed
in (1.3), we obtain

(3.1) !n = lim
x→0

dnD(x)

dxn
= (−1)n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 0 0 · · · 0 0
−1 −1 1 0 · · · 0 0
1 0 −2 1 · · · 0 0
−1 0 0 −3 · · · 0 0
...

...
...

... . . . ...
...

(−1)n−2 0 0 0 · · · 1 0
(−1)n−1 0 0 0 · · · −(n− 1) 1
(−1)n 0 0 0 · · · 0 −n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Adding the nth row to the (n+ 1)th row, then the (n− 1)th row to the nth row, . . . ,
then the 1st row to the 2nd row of the above determinant yield

!n = (−1)n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 0 0 · · · 0 0
0 0 1 0 · · · 0 0
0 −1 −1 1 · · · 0 0
0 0 −2 −2 · · · 0 0
...

...
...

... . . . ...
...

0 0 0 0 · · · 1 0
0 0 0 0 · · · 2− n 1
0 0 0 0 · · · 1− n 1− n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(n+1)×(n+1)

.

Using −1 to multiply all even rows and all odd columns of the above determinant
immediately results in (1.4). The proof of Theorem 1.1 is complete.
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4. Remarks

After supplying a concise proof for Theorem 1.1, we show the significance of the
determinantal representation (1.4) by listing several remarks below.

Remark 4.1. By expanding the determinant in (3.1) according to the first row or the
first column consecutively, we can recover the expression (1.2).

Remark 4.2. By expanding the determinant in (3.1) according to the nth row or
according to the nth column, we can easily recover the recurrence relation

!n = (−1)n + n×!(n− 1), n ∈ N.

Remark 4.3. By expanding the determinant in (1.4) according to the nth row or
according to the nth column, we can recover the recurrence relation

!n = (n− 1)[!(n− 1)+!(n− 2)], n ≥ 2.

Remark 4.4. By expanding the determinant in (1.4) according to the first row or
according to the first column, we can obtain

!n =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 1 0 · · · 0 0
−1 1 1 · · · 0 0
0 −2 2 · · · 0 0
...

...
... . . . ...

...
0 0 0 · · · 1 0
0 0 0 · · · n− 2 1
0 0 0 · · · −(n− 1) n− 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
n×n

, n ∈ N.

Further expanding the above determinant according to the first row or according to
the first column, we can obtain

(4.1) !n =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2 1 0 · · · 0 0 0
−3 3 1 · · · 0 0 0
0 −4 4 · · · 0 0 0
...

...
... . . . ...

...
...

0 0 0 · · · n− 3 1 0
0 0 0 · · · −(n− 2) n− 2 1
0 0 0 · · · 0 −(n− 1) n− 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(n−2)×(n−2)

, n ≥ 3.
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Remark 4.5. In general, for all integers k with k ≤ n − 1, define the tridiagonal
determinant

Dn(k) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

k 1 0 · · · 0 0 0
−(k + 1) k + 1 1 · · · 0 0 0

0 −(k + 1) k + 2 · · · 0 0 0
...

...
... . . . ...

...
...

0 0 0 · · · n− 3 1 0
0 0 0 · · · −(n− 2) n− 2 1
0 0 0 · · · 0 −(n− 1) n− 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

It is clear that Dn(−1) = −!n for n ≥ 0, Dn(0) =!n for n ≥ 1, and Dn(2) =!n for
n ≥ 3. Moreover, the determinant Dn(k) satisfies

Dn(n− 1) = n− 1,

Dn(n− 2) =

∣∣∣∣ n− 2 1
−(n− 1) n− 1

∣∣∣∣ = (n− 1)2,

Dn(n− 3) =

∣∣∣∣∣∣
n− 3 1 0
−(n− 2) n− 2 1

0 −(n− 1) n− 1

∣∣∣∣∣∣ = (n− 1)
(
n2 − 3n+ 1

)
,

Dn(n− 4) =

∣∣∣∣∣∣∣∣
n− 4 1 0 0
3− n n− 3 1 0
0 2− n n− 2 1
0 0 1− n n− 1

∣∣∣∣∣∣∣∣ = (n− 1)
(
n3 − 6n2 + 9n− 1

)
,

and the recurrence relation

Dn(k) = kDn(k + 1) + (k + 1)Dn(k + 2), k ≤ n− 1.

Remark 4.6. Directly combining (1.2) with (4.1) arrives at∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2 1 0 · · · 0 0 0
−3 3 1 · · · 0 0 0
0 −4 4 · · · 0 0 0
...

...
... . . . ...

...
...

0 0 0 · · · n− 3 1 0
0 0 0 · · · −(n− 2) n− 2 1
0 0 0 · · · 0 −(n− 1) n− 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(n−2)×(n−2)

= n!
n∑

`=0

(−1)`

`!
,

for n ≥ 3.
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Remark 4.7. From the first proof of Theorem 1.1, we can conclude that the nth
derivative of the generating function D(x) can be computed by

dn D(x)

dxn
=

(−1)ne−x

(1− x)n+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−x 1− x 0 · · · 0 0
−1 −1− x 1− x · · · 0 0
0 −2 −2− x · · · 0 0
...

...
... . . . ...

...
0 0 0 · · · 1− x 0
0 0 0 · · · 2− n− x 1− x
0 0 0 · · · 1− n 1− n− x

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

(−1)ne−x

(1− x)n+1
|eij(x)|n×n,

where n ∈ N and

eij(x) =


1− x, i− j = −1,
1− i− x, i− j = 0,

1− i, i− j = 1,

0, i− j 6= 0,±1.

Remark 4.8. In [4], it was deduced that

(4.2) !(r + 1) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 0 0 · · · 0 0
−1 1 2 0 · · · 0 0
0 −1 2 3 · · · 0 0
0 0 −1 3 · · · 0 0
...

...
...

... . . . ...
...

0 0 0 0 · · · r − 1 r
0 0 0 0 · · · −1 r

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

for r ∈ N. By this determinantal expression for the derangement numbers !(r + 1),
we figure out that !2 = 1, !3 = 2, !4 = 6, and !5 = 24. But, the latter two values do
not coincide with their corresponding ones in (1.1). This means that the expression
(4.2) is wrong.
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