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PERIODIC SOLUTIONS FOR IMPULSIVE NEUTRAL DYNAMIC
EQUATIONS WITH INFINITE DELAY ON TIME SCALES

A. ARDJOUNI1 AND A. DJOUDI2

Abstract. Let T be a periodic time scale. We use the Krasnoselskii’s fixed point
theorem to show that the impulsive neutral dynamic equations with infinite delay

x∆(t) = −A(t)xσ(t) + g∆(t, x(t− h(t))) +

∫ t

−∞
D (t, u) f(x(u))4u, t 6= tj , t ∈ T,

x(t+j ) = x(t−j ) + Ij(x(tj)), j ∈ Z+

have a periodic solution. Under a slightly more stringent conditions we show that
the periodic solution is unique using the contraction mapping principle.

1. Introduction

In 1988, Stephan Hilger [9] introduced the theory of time scales (measure chains)
as a means of unifying discrete and continuum calculi. Since Hilger’s initial work
there has been significant growth in the theory of dynamic equations on time scales,
covering a variety of different problems; see [7,8,17] and references therein. The study
of impulsive initial and boundary value problems is extensive. For the theory and
classical results, we direct the reader to the monographs [6, 16,18].

Recently Althubiti, Makhzoum and Raffoul [2] investigated the existence and uni-
queness of periodic solutions for the neutral differential equation with infinite delay

x′(t) = −a(t)x(t) +
d

dt
g(t, x(t− h(t))) +

∫ t

−∞
D (t, u) f(x(u))du.

By employing the Krasnoselskii’s fixed point theorem and the contraction mapping
principle, the authors obtained existence and uniqueness results for periodic solutions.
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fixed point, infinite delay, time scales.
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The nonlinear impulsive dynamic equation

x∆(t) = −a(t)xσ(t) + f(t, x(t)), t 6= tj, t ∈ T,
x(t+j ) = x(t−j ) + Ij(tj, x(tj)), j = 1, 2, . . . , n,

has been investigated in [10]. By using Schaeffer’s theorem, the existence of periodic
solutions has been established.

In this article, we are interested in the analysis of qualitative theory of periodic
solutions of impulsive neutral dynamic equations. Inspired and motivated by the
works mentioned above and the papers [1–5,10–15,20–22] and the references therein,
we are concerned with the system

x∆(t) = − A(t)xσ(t) + g∆(t, x(t− h(t)))(1.1)

+

∫ t

−∞
D (t, u) f(x(u))4u, t 6= tj, t ∈ T,

x(t+j ) =x(t−j ) + Ij(x(tj)), j ∈ Z+,

where T is an ω-periodic time scale, 0 ∈ T and xσ = x◦σ. For each interval U of R, we
denote by UT = U ∩T, x(t+j ) and x(t−j ) represent the right and the left limit of x(tj) in
the sense of time scales, in addition, if tj is left-scattered, then x(t−j ) = x(tj), A(t) =
diag(ai(t))n×n(ai ∈ R+) and D (t, u) = diag(Di(t, u))n×n(Di ∈ C(T,R)) are diagonal
matrices with continuous real-valued functions as its elements, R+ = {a ∈ C(T,R) : 1+
µ(t)a(t) > 0} where µ(t) = σ(t)− t, h ∈ C(T,T), g = (g1, g2, . . . , gn) ∈ C(T×Rn,Rn),
f = (f1, f2, . . . , fn) ∈ C(Rn,Rn), Ij = (I

(1)
j , I

(2)
j , . . . , I

(n)
j ) ∈ C(Rn,Rn) and A(t), h(t),

g(t, x(t − h(t))) are all ω-periodic functions with respect to t, D (t+ ω, u+ ω) =
D (t, u), ω > 0 is a constant. There exists a positive integer p such that tj+p = tj + ω,
Ij+p = Ij, j ∈ Z+, without loss of generality, we also assume that [0, ω)T ∩ {tj, j ∈
Z+} = {t1, t2, . . . , tp}.

To reach our desired end we have to transform the system (1.1) into an integral
system and then use Krasnoselskii’s fixed point theorem to show the existence of
periodic solutions. The obtained integral system is the sum of two mappings, one is a
contraction and the other is a compact. Also, transforming system (1.1) to an integral
system enables us to show the uniqueness of the periodic solution by appealing to the
contraction mapping principle.

The organization of this paper is as follows. In Section 2, we introduce some
notations and definitions, and state some preliminary results needed in later sections,
then we give the Green’s function of (1.1), which plays an important role in this
paper. In Section 3, we establish our main results for periodic solutions by applying
the Krasnoselskii’s fixed point theorem and the contraction mapping principle.

2. Preliminaries

In this section, we shall recall some basic definitions and lemmas which are used in
what follows.
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Let T be a nonempty closed subset (time scale) of R. The forward and backward
jump operators σ, ρ : T→ T and the graininess µ : T→ R+ are defined, respectively,
by

σ(t) = inf{s ∈ T : s > t}, ρ(t) = sup{s ∈ T : s < t}, µ(t) = σ(t)− t.

A point t ∈ T is called left-dense if t > inf T and ρ(t) = t, left-scattered if ρ(t) < t,
right-dense if t < supT and σ(t) = t, and right-scattered if σ(t) > t. If T has a
left-scattered maximum m, then Tk = T\{m}; otherwise Tk = T.

A function f : T → R is right-dense continuous (rd-continuous) provided it is
continuous at right-dense point in T and its left-side limits exist at left-dense points
in T. If f is continuous at each right-dense points and each left-dense point, then f
is said to be a continuous function on T. The set of continuous functions f : T→ R
will be denoted by C(T).

For x : T → R and t ∈ Tk, we define the delta derivative of x(t), x∆(t), to be
the number (if it exists) with the property that for a given ε > 0, there exists a
neighborhood UT of t such that

|[x(σ(t))− x(s)]− x∆(t)[σ(t)− s]| < ε|σ(t)− s|,

for all s ∈ UT.
If x is continuous, then x is right-dense continuous, and if x is delta differentiable

at t, then x is continuous at t.

Remark 2.1. x : T→ Rn is delta derivable or right-dense continuous or continuous if
each entry of x is delta derivable or right-dense continuous or continuous.

Let x be right-dense continuous. If X∆(t) = x(t), then we define the delta integral
by ∫ t

a

x(s)∆s = X(t)−X(a).

Definition 2.1 ([12]). We say that a time scale T is periodic if there exists p > 0
such that if t ∈ T, then t ± p ∈ T. For T 6= R, the smallest positive p is called the
period of the time scale.

Let T 6= R be a periodic time scale with period p. We say that the function
f : T → R is periodic with period ω if there exists a natural number n such that
ω = np, f(t+ ω) = f(t) for all t ∈ T and ω is the smallest positive number such that
f(t+ ω) = f(t).

If T = R, we say that f is periodic with period ω > 0 if ω is the smallest positive
number such that f(t+ ω) = f(t) for all t ∈ T.

Remark 2.2. According to [12], if T is a periodic time scale with period p, then
σ(t+ np) = σ(t) + np and the graininess function µ is a periodic function with period
p.
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Definition 2.2 ([8]). An n × n-matrix-valued function A on time scale T is called
regressive (respect to T) provided

I + µ(t)A(t),

is invertible for all t ∈ Tk.

Let A,B : T → Rn×n be two n × n-matrix-valued regressive functions on T , we
define

(A⊕B)(t) := A(t) +B(t) + µ(t)A(t)B(t),

(	A)(t) := −[I + µ(t)A(t)]−1A(t) = −A(t)[I + µ(t)A(t)]−1,

(A(t))	 (B(t)) := (A(t))⊕ (	(B(t))),

for all t ∈ Tk.

Theorem 2.1 ([8]). Let A be an regressive and rd-continuous n × n-matrix-valued
function on T and suppose that f : T→ Rn is rd-continuous. Let t0 ∈ T and y0 ∈ Rn.
Then the initial value problem

y∆ = A(t)y + f(t), y(t0) = y0,

has a unique solution y : T→ Rn.

Definition 2.3 ([8]). Let t0 ∈ T and assume that A is an regressive and rd-continuous
n× n-matrix-valued function. The unique matrix-valued solution of the initial value
problem

x∆(t) = A(t)x(t), x(t0) = I,

where I denotes as usual the n× n-identity matrix, is called the matrix exponential
function (at t0), and it is denoted by eA(·, t0).

Remark 2.3. Assume that A is a constant n× n-matrix. If T = R, then
eA(t, t0) = eA(t−t0),

while if T = Z and I + A is invertible, then

eA(t, t0) = (I + A)t−t0 .

In the following lemma, we give some properties of the matrix exponential function.

Lemma 2.1 ([8]). Assume that A,B : T → Rn×n are regressive and rd-continuous
matrix-valued functions on T. Then

(i) e0(t, s) ≡ I and eA(t, t) ≡ I;
(ii) eA(σ(t), s) = (I + µ(t)A(t))eA(t, s);
(iii) e−1

A (t, s) = e∗	A∗(t, s);
(iv) eA(t, s) = e−1

A (s, t) = e∗	A∗(s, t);
(v) eA(t, s)eA(s, r) = eA(t, r);
(vi) eA(t, s)eB(t, s) = eA⊕B(t, s), if A(t) and B(t) commute,

where A∗ denotes the conjugate transpose of A.
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Lemma 2.2 ([8]). Suppose A and B are regressive matrix-valued functions, then
(i) A∗ is regressive;
(ii) 	A∗ = (	A)∗;
(iii) (A∗)∆ = (A∆)∗ holds for any differential matrix-valued function A.

Next, we state Krasnoselskii’s fixed point theorem which enables us to prove the
existence of a periodic solution of (1.1). For its proof we refer the reader to [19].

Theorem 2.2 (Krasnoselskii). Let M be a closed convex nonempty subset of Banach
space (B, ‖ · ‖). Suppose that Φ and Ψ map M into B such that

(i) x, y ∈M imply Φx+ Ψy ∈M ;
(ii) Ψ is compact and continuous;
(iii) Φ is a contraction mapping.
Then there exists z ∈M with z = Φz + Ψz.

Lemma 2.3. A function x is an ω-periodic solution of (1.1) if and only if x is an
ω-periodic solution of the equation

x(t) = g(t, x(t− h(t))) +

∫ t+ω

t

G(t, s)

[∫ s

−∞
D (s, u) f(x(u))4u

− A(s)gσ(s, x(s− h(s)))

]
∆s+

∑
j:tj∈[t,t+ω)

G(t, tj)Ij(x(tj)),

where

G(t, s) = diag(Gi(t, s))n×n, Gi(t, s) = (1− e	ai(ω, 0))−1 e	ai(t+ ω, s),

A(t) = diag(ai(t))n×n, e	ai(t, s) =
1

eai(t, s)
,

	ai (t) = − ai (t)

1 + µ (t) ai (t)
, gσ(t, x(t− h(t))) = g(σ (t) , xσ(t− h(t))).

Proof. If x is an ω-periodic solution of (1.1). For any t ∈ T, there exists j ∈ Z such
that tj is the first impulsive point after t. Then for i = 1, 2, . . . , n, xi is an ω-periodic
solution of the equation

(2.1) x∆
i (t) + ai(t)x

σ
i (t) = g∆

i (t, xi(t− h(t))) +

∫ t

−∞
Di (t, u) fi(x(u))4u.

Multiply both sides of (2.1) by eai(t, 0) and then integrate from t to s ∈ [t, tj]T, we
obtain ∫ s

t

[eai(τ, 0)xi(τ)]∆∆τ

=

∫ s

t

eai(τ, 0)

[
g∆
i (τ, xi(τ − h(τ))) +

∫ τ

−∞
Di (τ, u) fi(xi(u))4u

]
∆τ,
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or

eai(s, 0)xi(s) = eai(t, 0)xi(t) +

∫ s

t

eai(τ, 0)

[
g∆
i (τ, xi(τ − h(τ)))

+

∫ τ

−∞
Di (τ, u) fi(xi(u))4u

]
∆τ,

then

xi(s) = e	ai(s, t)xi(t) +

∫ s

t

e	ai(s, τ)

[
g∆
i (τ, xi(τ − h(τ)))

+

∫ τ

−∞
Di (τ, u) fi(xi(u))4u

]
∆τ, i = 1, 2, . . . , n,

hence

xi(tj) = e	ai(tj, t)xi(t) +

∫ tj

t

e	ai(tj, τ)

[
g∆
i (τ, xi(τ − h(τ)))(2.2)

+

∫ τ

−∞
Di (τ, u) fi(xi(u))4u

]
∆τ, i = 1, 2, . . . , n.

Similarly, for s ∈ (tj, tj+1], we have

xi(s) = e	ai(s, tj)xi(t
+
j ) +

∫ s

tj

e	ai(s, τ)

[
g∆
i (τ, xi(τ − h(τ)))

+

∫ τ

−∞
Di (τ, u) fi(xi(u))4u

]
∆τ

= e	ai(s, tj)xi(t
−
j ) +

∫ s

tj

e	ai(s, τ)

[
g∆
i (τ, xi(τ − h(τ)))

+

∫ τ

−∞
Di (τ, u) fi(xi(u))4u

]
∆τ + e	ai(s, tj)I

(i)
j (xi(tj))

= e	ai(s, tj)xi(tj) +

∫ s

tj

e	ai(s, τ)

[
g∆
i (τ, xi(τ − h(τ)))

+

∫ τ

−∞
Di (τ, u) fi(xi(u))4u

]
∆τ + e	ai(s, tj)I

(i)
j (xi(tj)),

for i = 1, 2, . . . , n. Substituting (2.2) in the above equality, we obtain

xi(s) = e	ai(s, t)xi(t) +

∫ s

t

e	ai(s, τ)

[
g∆
i (τ, xi(τ − h(τ)))

+

∫ τ

−∞
Di (τ, u) fi(xi(u))4u

]
∆τ + e	ai(s, tj)I

(i)
j (xi(tj)).

Repeating the above process for s ∈ [t, t+ ω]T, we have

xi(s) = e	ai(s, t)xi(t) +

∫ s

t

e	ai(s, τ)

[
g∆
i (τ, xi(τ − h(τ)))
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+

∫ τ

−∞
Di (τ, u) fi(xi(u))4u

]
∆τ +

∑
j:tj∈[t,t+ω)

e	ai(s, tj)I
(i)
j (xi(tj)),

for i = 1, 2, . . . , n. Let s = t+ ω in the above equality, we have

xi(t+ ω) = e	ai(t+ ω, t)xi(t) +

∫ t+ω

t

e	ai(t+ ω, τ)

[
g∆
i (τ, xi(τ − h(τ)))

+

∫ τ

−∞
Di (τ, u) fi(xi(u))4u

]
∆τ +

∑
j:tj∈[t,t+ω)

e	ai(t+ ω, tj)I
(i)
j (xi(tj)),

i = 1, 2, . . . , n. Noticing that xi(t + ω) = xi(t) and e	ai(t + ω, t) = e	ai(ω, 0), we
obtain

(1− e	ai(ω, 0))xi(t) =

∫ t+ω

t

e	ai(t+ ω, τ)

[
g∆
i (τ, xi(τ − h(τ)))(2.3)

+

∫ τ

−∞
Di (τ, u) fi(xi(u))4u

]
∆τ

+
∑

j:tj∈[t,t+ω)

e	ai(t+ ω, tj)I
(i)
j (xi(tj)),

for i = 1, 2, . . . , n. Notice that∫ t+ω

t

e	ai(t+ ω, τ)g∆
i (τ, xi(τ − h(τ)))∆τ(2.4)

= e	ai(t+ ω, t+ ω)gi(t+ ω, xi(t+ ω − h(t+ ω)))

− e	ai(t+ ω, t)gi(t, xi(t− h(t)))

−
∫ t+ω

t

e	ai(t+ ω, τ)ai(τ)gσi (τ, xi(τ − h(τ)))∆τ

= [1− e	ai(ω, 0)]gi(t, xi(t− h(t)))

−
∫ t+ω

t

e	ai(t+ ω, τ)ai(τ)gσi (τ, xi(τ − h(τ)))∆τ, i = 1, 2, . . . , n.

It follows from (2.3) and (2.4) that

xi(t) = gi(t, xi(t− h(t))) +

∫ t+ω

t

[1− e	ai(ω, 0)]−1e	ai(t+ ω, τ)

×
[∫ τ

−∞
Di (τ, u) fi(xi(u))4u− ai(τ)gσi (τ, xi(τ − h(τ)))

]
∆τ

+
∑

j:tj∈[t,t+ω)

[1− e	ai(ω, 0)]−1e	ai(t+ ω, tj)I
(i)
j (xi(tj))

= gi(t, xi(t− h(t))) +

∫ t+ω

t

Gi(t, τ)

[∫ τ

−∞
Di (τ, u) fi(xi(u))4u
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− ai(τ)gσi (τ, xi(τ − h(τ)))

]
∆τ +

∑
j:tj∈[t,t+ω)

Gi(t, tj)I
(i)
j (xi(tj)),

for i = 1, 2, . . . , n. Next, we prove the converse. Let

xi(t) = gi(t, xi(t− h(t))) +

∫ t+ω

t

Gi(t, s)

[∫ s

−∞
Di (s, u) fi(xi(u))4u

− ai(s)gσi (s, xi(s− h(s)))

]
∆s+

∑
j:tj∈[t,t+ω)

Gi(t, tj)I
(i)
j (xi(tj)),

where
Gi(t, s) = (1− e	ai(ω, 0))−1e	ai(t+ ω, s), i = 1, 2, . . . , n.

Then if t 6= ti, i ∈ Z+, we have

x∆
i (t)

= g∆
i (t, xi(t− h(t)))

+

∫ t+ω

t

{
Gi(t, s)

[∫ s

−∞
Di (s, u) fi(xi(u))4u− ai(s)gσi (s, xi(s− h(s)))

]}∆

∆s

+Gi(t, t+ ω)

[∫ t+ω

−∞
Di (t+ ω, u) fi(xi(u))4u

− ai(t+ ω)gσi (t+ ω, xi(t+ ω − h(t+ ω)))

]
−Gi(t, t)

[∫ t

−∞
Di (t, u) fi(xi(u))4u− ai(t)gσi (t, xi(t− h(t)))

]
= g∆

i (t, xi(t− h(t))) +

∫ t

−∞
Di (t, u) fi(xi(u))4u− ai(t)gσi (t, xi(t− h(t)))

+

∫ t+ω

t

{
Gi(t, s)

[∫ s

−∞
Di (s, u) fi(xi(u))4u− ai(s)gσi (s, xi(s− h(s)))

]}∆

∆s

= g∆
i (t, xi(t− h(t))) +

∫ t

−∞
Di (t, u) fi(xi(u))4u− ai(t)xσi (t)

= − ai(t)xσi (t) + g∆
i (t, xi(t− h(t))) +

∫ t

−∞
Di (t, u) fi(xi(u))4u, i = 1, 2, . . . , n.

If t = ti, i ∈ Z+, we obtain

xi(t
+
i )− xi(t−i ) =

∑
j:tj∈[t+i ,t

+
i +ω)

Gi(ti, tj)I
(i)
j (xi(tj))−

∑
j:tj∈[t−i ,t

−
i +ω)

Gi(ti, tj)I
(i)
j (xi(tj))

=Gi(ti, ti + ω)I
(i)
i (xi(ti + ω))−Gi(ti, ti)I

(i)
i (xi(ti))

= I
(i)
i (xi(ti)), i = 1, 2, . . . , n.



PERIODIC SOLUTIONS 77

So we know that, x is also an ω-periodic solution of (1.1). This completes the
proof. �

Throughout this paper, we make the following assumptions.
(H1) The function g = (g1, g2, . . . , gn) satisfies a Lipschitz condition in x. That is,

for i ∈ {1, 2, . . . , n}, there exists a positive constant Li such that

|gi(t, x)− gi(t, y)| ≤ Li‖x− y‖, for all t ∈ T, x, y ∈ Rn.

(H2) The function f = (f1, f2, . . . , fn) satisfies a Lipschitz condition in x. That is,
for i ∈ {1, 2, . . . , n}, there exists a positive constants Mi such that

|fi(x)− fi(y)| ≤Mi‖x− y‖, for all t ∈ T, x, y ∈ Rn.

(H3) For j ∈ Z, Ij = (I
(1)
j , I

(2)
j , . . . , I

(n)
j ) satisfies Lipschitz condition. That is, for

i ∈ {1, 2, . . . , n} there exists a positive constant P (i)
j such that∣∣∣I(i)

j (x)− I(i)
j (y)

∣∣∣ ≤ P
(i)
j ‖x− y‖, for all x, y ∈ Rn.

(H4) There exists a positive constant Ni such that∫ t

−∞
|Di (t, u)|4u ≤ Ni.

To apply Theorem 2.2 to (1.1), we define

PC(T) = {x : T→ Rn : x|(tj ,tj+1)T ∈ C(tj, tj+1)T, ∃x(t−j ) = x(tj), x(t+j ), j ∈ Z+}.
Consider the Banach space

X = {x ∈ PC(T) : x(t+ ω) = x(t)},
with the norm ‖x‖ = maxt∈[0,ω]T |x(t)|0, where |x(t)|0 = max1≤i≤n |xi(t)|.

Lemma 2.4 ([12]). Let x ∈ X. Then there exists ‖xσ‖, and ‖xσ‖ = ‖x‖.

Noticing that
Gi(t, s) ≤ (1− e	ai(ω, 0))−1 := ηi,

for convenience, we introduce the notation

η̄ := max
1≤i≤n

ηi, γ := max
1≤i≤n

max
t∈[0,ω]T

|ai(t)|, L := max
1≤i≤n

Li, M := max
1≤i≤n

Mi,

N := max
1≤i≤n

Ni, Pj := max
1≤i≤n

P
(i)
j , P := max

1≤j≤p
Pj.

Define the mapping H : X → X by

(Hϕ)(t) = g(t, ϕ(t− h(t))) +

∫ t+ω

t

G(t, s)

[∫ s

−∞
D (s, u) f(ϕ(u))4u(2.5)

− A(s)gσ(s, ϕ(s− h(s)))

]
∆s+

∑
j:tj∈[t,t+ω)

G(t, tj)Ij(x(tj)).
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To apply Theorem 2.2, we need to construct two mappings: one is a contraction
and the other is continuous and compact. We express (2.5) as

(Hϕ)(t) = (Φϕ)(t) + (Ψϕ)(t),

where

(2.6) (Φϕ)(t) = g(t, ϕ(t− h(t))),

and

(Ψϕ) (t)(2.7)

=

∫ t+ω

t

G(t, s)

[∫ s

−∞
D (s, u) f(ϕ(u))4u− A(s)gσ(s, ϕ(s− h(s)))

]
∆s

+
∑

j:tj∈[t,t+ω)

G(t, tj)Ij(ϕ(tj)).

Lemma 2.5. Suppose (H1) holds and L < 1, then Φ : X → X, as defined by (2.6),
is a contraction.

Proof. Trivially, Φ : X → X. For ϕ, ψ ∈ X, we have

‖Φ(ϕ)− Φ(ψ)‖ = max
t∈[0,ω]T

max
1≤i≤n

|gi(t, ϕi(t− h(t)))− gi(t, ψi(t− h(t)))|(2.8)

≤ L‖ϕ− ψ‖.
Hence Φ defines a contraction mapping with contraction constant L. �

Lemma 2.6. Suppose (H1)–(H4) hold, then Ψ : X → X, as defined by (2.7), is
continuous and compact.

Proof. Evaluating (2.7) at t+ ω gives

(Ψϕ)(t+ ω)

=

∫ t+2ω

t+ω

G(t+ ω, s)

[∫ s

−∞
D (s, u) f(ϕ(u))4u− A(s)gσ(s, ϕ(s− h(s)))

]
∆s

+
∑

j:tj∈[t+ω,t+2ω)

G(t+ ω, tj)Ij(ϕ(tj)).

=

∫ t+ω

t

G(t+ ω, v + ω)

[∫ v+ω

−∞
D (v+ω, u) f(ϕ(u))4u

− A(v + ω)gσ(v + ω, ϕ(v + ω − h(v + ω)))

]
∆v +

∑
k:tk∈[t,t+ω)

G(t, tk)Ij(ϕ(tk))

=

∫ t+ω

t

G(t, v)

[∫ v

−∞
D (v, u) f(ϕ(u))4u

− A(v)gσ(v, ϕ(v − h(v)))

]
∆v +

∑
k:tk∈[t,t+ω)

G(t, tk)Ij(ϕ(tk))
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= (Ψϕ)(t).

That is, Ψ : X → X.
Now, we show that Ψ is continuous. Let ϕ, ψ ∈ X, given ε > 0, take

δ =
ε

η[ω(MN + Lγ) + P ]
,

such that for ‖ϕ− ψ‖ ≤ δ. By using the Lipschitz condition, we obtain

‖Ψϕ−Ψψ‖

≤ max
t∈[0,ω]T

∣∣∣∣∫ t+ω

t

G(t, s)

[∫ s

−∞
D (s, u) f(ϕ(u))4u−

∫ s

−∞
D (s, u) f(ψ(u))4u

]
∆s

∣∣∣∣
0

+ max
t∈[0,ω]T

∣∣∣∣∫ t+ω

t

G(t, s)A(s)[gσ(s, ϕ(s− h(s)))− gσ(s, ψ(s− h(s)))]∆s

∣∣∣∣
0

+ max
t∈[0,ω]T

∑
j:tj∈[t,t+ω)

|G(t, tj)[Ij(ϕ(tj))− Ij(ψ(tj))]|0

≤ η
∫ ω

0

∫ s

−∞
|D (s, u) [f(ϕ(u))− f(ψ(u))] |04u∆s

+ ηγ

∫ ω

0

|gσ(s, ϕ(s− h(s)))− gσ(s, ψ(s− h(s)))|0∆s

+ η max
1≤j≤p

|Ij(ϕ(tj))− Ij(ψ(tj))|0

≤ η[ω(MN + Lγ) + P ]‖ϕ− ψ‖ < ε.

This proves Ψ is continuous. Next, we need to show that Ψ is compact. Consider the
sequence of periodic functions {ϕn} ⊂ X and assume that the sequence is uniformly
bounded. Let Θ > 0 be such that ‖ϕn‖ ≤ Θ, for all n ∈ N . In view of (H1)–(H3), we
arrive at

‖gσ(t, x)‖ ≤ ‖gσ(t, x)− gσ(t, 0)‖+ ‖gσ(t, 0)‖(2.9)
= max

t∈[0,ω]T
max
1≤i≤n

|gσi (t, x)− gσi (t, 0)|+ αg

≤ L‖x‖+ αg,

‖f(x)‖ ≤ ‖f(x)− f(0)‖+ ‖f(0)‖(2.10)
= max

1≤i≤n
|fi(x)− fi(0)|+ αf

≤M‖x‖+ αf ,

‖Ij(x)‖ ≤ ‖Ij(x)− Ij(0)‖+ ‖Ij(0)‖(2.11)

= max
1≤i≤n

n|I(i)
j (x)− I(i)

j (0)|+ αIj

≤ Pj‖x‖+ αIj , for j ∈ Z+,

where αg = ‖gσ(t, 0)‖, αf = ‖f(0)‖ and αIj = ‖Ij(0)‖. Hence,
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‖Ψϕn‖(2.12)

≤ max
t∈[0,ω]T

∣∣∣∣∫ t+ω

t

G(t, s)

[∫ s

−∞
D (s, u) f(ϕn(u))4u

− A(s)gσ(s, ϕn(s− h(s)))

]
∆s

∣∣∣∣
0

+ max
t∈[0,ω]T

∑
j:tj∈[t,t+ω)

|G(t, tj)Ij(ϕn(tj))|0

≤ η
∫ ω

0

∫ s

−∞
|D (s, u) f(ϕn(u))|04u∆s+ ηγ

∫ ω

0

|gσ(s, ϕn(s− h(s)))|0∆s

+ η

p∑
j=1

|Ij(ϕn(tj))|0

≤ ηωN(M‖ϕn‖+ αf ) + ηγω(L‖ϕn‖+ αg) + η( max
1≤j≤p

(Pj‖ϕn‖+ αIj))

≤ ηωΘ(MN + γL) + η(ωNαf + γωαg + PΘ + α) := D,

where α = max1≤j≤p αIj . Thus the sequence {Ψϕn} is uniformly bounded. Now, it
can be easily checked that

(Ψϕn)∆(t) = − A(t)(Ψϕn)σ(t) +

∫ t

−∞
D (t, u) f(ϕn(u))4u

− A(t)gσ(t, ϕn(t− h(t))).

Consequently, it follows from (2.10), (2.11), (2.12) and Lemma 2.4 that

|(Ψϕn)∆(t)|0 ≤‖A‖‖(Ψϕn)σ‖+

∥∥∥∥∫ t

−∞
D (t, u) f(ϕn(u))4u

∥∥∥∥
+ |A(t)gσ(t, ϕn(t− h(t)))|0
≤‖A‖‖(Ψϕn)‖+N (M‖ϕn‖+ αf ) + ‖A‖ (L‖ϕn‖+ αg)

≤‖A‖ (D + LΘ + αg) +N (MΘ + αf ) ,

for all n. That is, ‖(Ψϕn)∆‖ ≤ ‖A‖ (D + LΘ + αg)+N (MΘ + αf ), thus the sequence
{Ψϕn} is uniformly bounded and equi-continuous. The Arzela-Ascoli theorem implies
that Ψ is compact. �

3. Main Results

Our main results reads as follows.

Theorem 3.1. Assume that (H1)–(H4) hold and L < 1. Suppose that there is a
positive constant G such that all solutions x of (1.1), x ∈ X, satisfy ‖x‖ ≤ G, and
the inequality

γωαg + ωNαf + α

1/η − ω(γL+MN)− L/η − P
≤ G,

holds. Then (1.1) has an ω-periodic solution.
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Proof. Define M = {ϕ ∈ X : ‖ϕ‖ ≤ G}. Then Lemma 2.6 implies Ψ : X → X and Ψ
is compact and continuous. Also, from Lemma 2.5, the mapping Φ is a contraction
and Φ : X → X. We need to show that if ϕ, ψ ∈ M , then ‖Φϕ + Ψψ‖ ≤ G. Let
ϕ, ψ ∈M with ‖ϕ‖, ‖ψ‖ ≤ G, from (2.9)–(2.11), we have

‖Φϕ+ Ψψ‖ ≤ ‖Φϕ‖+ ‖Ψψ‖
≤ LG+ ηωG(γL+MN) + η(γωαg + ωNαf +GP + α) ≤ G.

Thus Φϕ + Ψψ ∈ M . We see that all the conditions of Krasnoselskii theorem are
satisfied on the set M . Hence there exists a fixed point z in M such that z = Φz+ Ψz.
By Lemma 2.3, this fixed point is a solution of (1.1). �

Theorem 3.2. Suppose that (H1)–(H4) hold. If

Υ := η[ω(γL+MN) + P ] < 1,

then (1.1) has an unique ω-periodic solution.

Proof. For ϕ, ψ ∈ X, we have

‖Hϕ−Hψ‖ ≤ η
∫ ω

0

∫ s

−∞
|D (s, u) f(ϕ(u))− f(ψ(u))|04u∆s

+ ηγ

∫ ω

0

|gσ(s, ϕ(s− h(s)))− gσ(s, ψ(s− h(s)))|0∆s

+ η

p∑
j=1

|Ij(ϕ(tj))− Ij(ψ(tj))|0

≤ ηωMN‖ϕ− ψ‖+ ηγωL‖ϕ− ψ‖+ ηP‖ϕ− ψ‖
<η[ω(γL+MN) + P ]‖ϕ− ψ‖
= Υ‖ϕ− ψ‖.

This completes the proof. �
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