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A NOTION OF αβ-STATISTICAL CONVERGENCE OF ORDER γ
IN PROBABILITY

PRATULANANDA DAS1, SUMIT SOM1∗, SANJOY GHOSAL2, AND VATAN KARAKAYA3

Abstract. A sequence of real numbers {xn}n∈N is said to be αβ-statistically con-
vergent of order γ (where 0 < γ ≤ 1) to a real number x [1] if for every δ > 0,

lim
n→∞

1

(βn − αn + 1)γ
|{k ∈ [αn, βn] : |xk − x| ≥ δ}| = 0,

where {αn}n∈N and {βn}n∈N are two sequences of positive real numbers such that
{αn}n∈N and {βn}n∈N are both non-decreasing, βn ≥ αn for all n ∈ N, (βn−αn)→
∞ as n → ∞. In this paper we study a related concept of convergences in which
the value xk is replaced by P (|Xk −X| ≥ ε) and E(|Xk −X|r) respectively (where
X,Xk are random variables for each k ∈ N, ε > 0, P denotes the probability, and E
denotes the expectation) and we call them αβ-statistical convergence of order γ in
probability and αβ-statistical convergence of order γ in rth expectation respectively.
The results are applied to build the probability distribution for αβ-strong p-Cesàro
summability of order γ in probability and αβ-statistical convergence of order γ in
distribution. So our main objective is to interpret a relational behaviour of above
mentioned four convergences. We give a condition under which a sequence of random
variables will converge to a unique limit under two different (α, β) sequences and
this is also use to prove that if this condition violates then the limit value of αβ-
statistical convergence of order γ in probability of a sequence of random variables
for two different (α, β) sequences may not be equal.

1. Introduction

The idea of convergence of a real sequence has been extended to statistical con-
vergence by Fast [9] and Steinhaus [19] and later on reintroduced by Schoenberg
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bility, αβ-strong p-Cesàro summability of order γ in probability, αβ-statistical convergence of order
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[17] independently and is based on the notion of asymptotic density of the subset of
natural numbers. However, the first idea of statistical convergence (by different name)
was given by Zygmund [20] in the first edition of his monograph published in Warsaw
in 1935. Later on it was further investigated from the sequence space point of view
and linked with summability theorem by Fridy [11], Connor [4], Šalát [16], Das et al.
[6], Fridy and Orhan [12].

In [2,3] a different direction was given to the study of statistical convergence where
the notion of statistical convergence of order γ (0 < γ < 1) was introduced by using
the notion of natural density of order γ (where n is replaced by nγ in the denominator
in the definition of natural density). It was observed in [2], that the behavior of this
new convergence was not exactly parallel to that of statistical convergence and some
basic properties were obtained. More results on this convergence can be seen from
[18].

In this context it should be noted that the history of strong p-Cesàro summability is
not so clear. Connor in [4], observed that if a sequence is strongly p-Cesàro summable
of order γ (for 0 < p <∞) to x, then the sequence must be statistically convergent of
order γ to the same limit. Both Fast [9] and Schoenberg [17] noted that if a bounded
sequence is statistically convergent to x, then it is strongly Cesàro summable to x.
But in the more general case of order γ the result may not be true, as was established
in [3]. In [10], the relation between strongly Cesàro summable and Nθ-convergence
was established among other things.

Recently the idea of statistical convergence of order γ was further extended to
αβ-statistical convergence of order γ in [1] as follows: let α = {αn}n∈N, β = {βn}n∈N
be two non-decreasing sequences of positive real numbers satisfying the conditions
αn ≤ βn for all n ∈ N and (βn−αn)→∞ as n→∞. This pair of sequence we denoted
by (α, β). Then a sequence {xn}n∈N of real numbers is said to be αβ-statistically
convergent of order γ (where 0 < γ ≤ 1) to a real number x if for each ε > 0, the set
K = {n ∈ N : |xn − x| ≥ ε} has αβ-natural density zero, i.e.

lim
n→∞

1

(βn − αn + 1)γ
|{k ∈ [αn, βn] : |xk − x| ≥ ε}| = 0

and we write Sγαβ − limxn = x or xn
Sγαβ−−→ x. αβ-statistical convergence of order γ is

more general than statistical convergence of order γ, lacunary statistical convergence
of order γ and λ statistical convergence of order γ if we take (i) αn = 1 and βn = n,
for all n ∈ N, (ii) αr = (kr−1 + 1) and βr = kr for all r ∈ N where {kr}r∈N∪{0} is a
lacunary sequence, and (iii) αn = (n− λn + 1) and βn = n, for all n ∈ N respectively.

On the other hand in probability theory, a new type of convergence called statistical
convergence in probability was introduced in [14] as follows: let {Xn}n∈N be a sequence
of random variables where each Xn is defined on the same sample space S (for each n)
with respect to a given class of events 4 and a given probability function P : 4→ R.
Then the sequence {Xn}n∈N is said to be statistically convergent in probability to a
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random variable X (where X : S → R) if for any ε, δ > 0

lim
n→∞

1

n
|{k ≤ n : P (|Xk −X| ≥ ε) ≥ δ}| = 0.

In this case we write Xn
PS−−→ X. The class of all sequences of random variables which

are statistically convergent in probability is denoted by PS. One can also see [7,8,15]
for related works.

In a natural way, in this paper we combine the approaches of the above mentioned pa-
pers and introduce new and more general methods, namely, αβ-statistical convergence
of order γ in probability, αβ-strong p-Cesàro summability of order γ in probability,
αβ-statistical convergence of order γ in rth expectation and αβ-statistical convergence
of order γ in distribution. We mainly investigate their relationship and also make
some observations about these classes. In the way we show that αβ-statistical limit
of order γ (0 < γ < 1) of a sequence of random variables for two different (α, β)
sequences may not be equal. It is important to note that the method of proofs and
in particular examples are not analogous to the real case.

2. αβ-Statistical Convergence of Order γ in Probability

We first introduce the definition of αβ-statistical convergence of order γ in proba-
bility for a sequence of random variables as follows.

Definition 2.1. Let (S,4, P ) be a probability space and {Xn}n∈N be a sequence of
random variables where each Xn is defined on the same sample space S (for each n)
with respect to a given class of events 4 and a given probability function P : 4→ R.
Then the sequence {Xn}n∈N is said to be αβ-statistically convergent of order γ (where
0 < γ ≤ 1) in probability to a random variable X (where X : S → R) if for any
ε, δ > 0

lim
n→∞

1

(βn − αn + 1)γ
|{k ∈ [αn, βn] : P (|Xk −X| ≥ ε) ≥ δ}| = 0,

or equivalently

lim
n→∞

1

(βn − αn + 1)γ
|{k ∈ [αn, βn] : 1− P (|Xk −X| < ε) ≥ δ}| = 0.

In this case we write Sγαβ− limP (|Xn−X| ≥ ε) = 0 or Sγαβ− limP (|Xn−X| < ε) = 1

or just Xn

PSγαβ−−−→ X. The class of all sequences of random variables which are αβ-
statistically convergent of order γ in probability is denoted simply by PSγαβ.

In Definition 2.1 if we take αn = 1 and βn = n, then {Xn}n∈N is said to be
statistically convergent of order γ (where 0 < γ ≤ 1) in probability to a random
variable X. So αβ-statistical convergence of order γ in probability is a generalization
of statistical convergence of order γ in probability for a sequence of random variables.
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To show that this is indeed more general we will now give an example of a sequence
of random variables which is αβ-statistically convergent of order 1

2
in probability but

is not statistically convergent of order 1
2
in probability.

Example 2.1. Let a sequence of random variables {Xn}n∈N be defined by

Xn ∈


{−1, 1} with probability 1

2
, if n = m2 for some m ∈ N,

{0, 1} with probability P (Xn = 0) = (1− 1
n
) and P (Xn = 1) = 1

n
,

if n 6= m2, for any m ∈ N.

Let 0 < ε, δ < 1. Then we have

P (|Xn − 0| ≥ ε) = 1, if n = m2 for some m ∈ N

and

P (|Xn − 0| ≥ ε) =
1

n
, if n 6= m2 for any m ∈ N.

Let γ = 1
2
, αn = ((n− 1)2 + 1), βn = n2 for all n ∈ N. Then we have the inequality,

1√
2n− 1

|{k ∈ [(n−1)2+1, n2] : P (|Xn−0| ≥ ε) ≥ δ}|=
(

1√
2n− 1

+
d√

2n− 1

)
→ 0,

as n→∞ and where d is a finite positive integer. So Xn

PS
1
2
αβ−−−→ 0.

But √
n− 1√
n
≤ 1√

n
|{k ≤ n : P (|Xn − 0| ≥ ε) ≥ δ}|.

So the right hand side does not tend to 0. This shows that {Xn}n∈N is not statistically
convergent of order 1

2
in probability to 0.

Theorem 2.1. If a sequence of constants xn
Sγαβ−−→ x then regarding a constant as

a random variable having one point distribution at that point, we may also write

xn
PSγαβ−−−→ x.

Proof. Let ε > 0 be any arbitrarily small positive real number. Then

lim
n→∞

1

(βn − αn + 1)γ
|{k ∈ [αn, βn] : |xk − x| ≥ ε}| = 0.

Now let δ > 0. So the set K1 = {k ∈ N : P (|xk − x| ≥ ε) ≥ δ} ⊆ K where

K = {k ∈ N : |xk − x| ≥ ε}. This shows that xn
PSγαβ−−−→ x. �

The following example shows that in general the converse of Theorem 2.1 is not
true and also shows that there is a sequence {Xn}n∈N of random variables which
is αβ-statistically convergent in probability to a random variable X but it is not
αβ-statistically convergent of order γ in probability for 0 < γ < 1.
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Example 2.2. Let c be a rational number between γ1 and γ2. Let the probability
density function of Xn be given by

fn(x) =

{
1, where 0 < x < 1,

0, otherwise,

if n = [m
1
c ] for any m ∈ N, and

fn(x) =

{
nxn−1

2n
, where 0 < x < 2,

0, otherwise,

if n 6= [m
1
c ] for any m ∈ N. Now let 0 < ε and δ < 1. Then

P (|Xn − 2| ≥ ε) = 1, if n = [m
1
c ] for some m ∈ N,

and
P (|Xn − 2| ≥ ε) =

(
1− ε

2

)n
, if n 6= [m

1
c ] for any m ∈ N.

Now let αn = 1 and βn = n2. Consequently we have the inequality

lim
n→∞

n2c − 1

n2γ1
≤ lim

n→∞

1

n2γ1
|{k ∈ [1, n2] : P (|Xk − 2| ≥ ε) ≥ δ}|

and

lim
n→∞

1

n2γ2
|{k ∈ [1, n2] : P (|Xk − 2| ≥ ε) ≥ δ}| ≤ lim

n→∞

(
n2c + 1

n2γ2
+

d

n2γ2

)
,

where d is a fixed finite positive integer. This shows that {Xn}n∈N is αβ-statistically
convergent of order γ2 in probability to 2 but is not αβ-statistically convergent of
order γ1 in probability to 2 whenever γ1 < γ2 and this is not the usual αβ-statistical
convergence of order γ of real numbers. So the converse of Theorem 2.1 is not true.
Also by taking γ2 = 1, we see that Xn

PSαβ−−−→ 2 but {Xn}n∈N is not αβ-statistically
convergent of order γ in probability to 2 for 0 < γ < 1.

Theorem 2.2 (Elementary properties). We have the following.

(i) If Xn

PS
γ1
αβ−−−→ X and Xn

PS
γ2
αβ−−−→ Y , then P{X = Y } = 1 for any γ1, γ2 where

0 < γ1, γ2 ≤ 1.

(ii) If Xn

PS
γ1
αβ−−−→ X and Yn

PS
γ2
αβ−−−→ Y then (cXn + dYn)

PS
max{γ1,γ2}
αβ−−−−−−−−→ (cX + dY ) where c,

d are constants and 0 < γ1, γ2 ≤ 1.
(iii) Let 0 < γ1 ≤ γ2 ≤ 1. Then PSγ1αβ ⊆ PSγ2αβ and this inclusion is strict whenever
γ1 < γ2.

(iv) Let g : R → R be a continuous function and 0 < γ1 ≤ γ2 ≤ 1. If Xn

PS
γ1
αβ−−−→ X

then g(Xn)
PS

γ2
αβ−−−→ g(X).

Proof.
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(i) Without loss of generality we assume γ2 ≤ γ1. If possible let P{X = Y } 6= 1.
Then there exists two positive real numbers ε and δ such that P (|X−Y | ≥ ε) = δ > 0.
Then we have

lim
n→∞

βn − αn + 1

(βn − αn + 1)γ1

≤ lim
n→∞

1

(βn − αn + 1)γ1

∣∣∣∣{k ∈ [αn, βn] : P
(
|Xk −X| ≥

ε

2

)
≥ δ

2

}∣∣∣∣
+ lim

n→∞

1

(βn − αn + 1)γ2

∣∣∣∣{k ∈ [αn, βn] : P
(
|Xk − Y | ≥

ε

2

)
≥ δ

2

}∣∣∣∣ ,
which is impossible because the left hand limit is not 0 whereas the right hand limit
is 0. So P{X = Y } = 1.
(ii) Proof is straightforward and so is omitted.
(iii) The first part is obvious. The inclusion is proper as can be seen from Example
2.2.
(iv) Proof is straightforward and so is omitted. �

Remark 2.1. In Theorem 2 [2] it was observed that mγ1
0 ⊂ mγ2

0 and this inclusion
was shown to be strict for at least those γ1, γ2 for which there is a k ∈ N such that
γ1 <

1
k
< γ2. But Example 2.2 shows that the inequality is strict whenever γ1 < γ2.

Theorem 2.3. Let 0 < γ ≤ 1, (α, β) and (α′, β′) are two pairs of sequences of
positive real numbers such that [α′n, β′n] ⊆ [αn, βn] for all n ∈ N and (βn − αn + 1)γ ≤
ε(β′n − α′n + 1)γ for some ε > 0. Then we have PSγαβ ⊆ PSγα′β′.

Proof. Proof is straightforward and so is omitted. �

But if the condition of the Theorem 2.3 is violated then limit may not be unique
for two different (α, β)’s. We now give an example to show this.

Example 2.3. Let α = {(2n)!}, β = {(2n+1)!} and α′ = {(2n+1)!}, β′ = {(2n+2)!}.
Let us define a sequence of random variables {Xn}n∈N by

Xk ∈



{−1, 1} with probability P (Xk = −1) = 1
k
, P (Xk = 1) = (1− 1

k
),

if (2n)! < k < (2n+ 1)!,

{−2, 2} with probability P (Xk = −2) = 1
k
, P (Xn = 2) = (1− 1

k
),

if (2n+ 1)! < k < (2n+ 2)!,

{−3, 3} with probability P (Xk = −3) = P (Xk = 3),

if k = (2n)! and k = (2n+ 1)!.

Let 0 < ε, δ < 1 and 0 < γ < 1. Then for the sequence (α, β)

P (|Xk − 1| ≥ ε) =
1

k
, if (2n)! < k < (2n+ 1)!,

and
P (|Xk − 1| ≥ ε) = 1, if (2n+ 1)! < k < (2n+ 2)!,
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and
P (|Xk − 1| ≥ ε) = 1, if k = (2n)! and k = (2n+ 1)!.

Therefore,

lim
n→∞

1

((2n+ 1)!− (2n)! + 1)γ
|{k ∈ [(2n)!, (2n+ 1)!] : P (|Xk − 1| ≥ ε) ≥ δ}| = 0.

So Xn

PSγαβ−−−→ 1. Similarly it can be shown that for the sequence α′ = {(2n + 1)!},

β′ = {(2n+ 2)!}, and Xn

PSγ
α′β′−−−−→ 2.

Definition 2.2. Let (S,4, P ) be a probability space and {Xn}n∈N be a sequence of
random variables where each Xn is defined on the same sample space S (for each n)
with respect to a given class of events 4 and a given probability function P : 4→ R.
A sequence of random variables {Xn}n∈N is said to be αβ-strong p-Cesàro summable
of order γ (where 0 < γ ≤ 1 and p > 0 is any fixed positive real number) in probability
to a random variable X if for any ε > 0

lim
n→∞

1

(βn − αn + 1)γ

∑
k∈[αn,βn]

{P (|Xk −X| ≥ ε)}p = 0.

In this case we write Xn

PW γ,p
αβ−−−−→ X. The class of all sequences of random variables

which are αβ-strong p-Cesàro summable of order γ in probability is denoted simply
by PW γ,p

αβ .

Theorem 2.4.
(i) Let 0 < γ1 ≤ γ2 ≤ 1, then PW γ1,p

αβ ⊆ PW γ2,p
αβ . This inclusion is strict whenever

γ1 < γ2.
(ii) Let 0 < γ ≤ 1 and 0 < p < q <∞, then PW γ,q

αβ ⊂ PW γ,p
αβ .

Proof.
(i) The first part of this theorem is straightforward and so is omitted. For the second
part we will give an example to show that there is a sequence of random variables
{Xn}n∈N which is αβ-strong p-Cesàro summable of order γ2 in probability to a random
variableX but is not αβ-strong p-Cesàro summable of order γ1 in probability whenever
γ1 < γ2.

Let c be a rational number between γ1 and γ2. We consider a sequence of random
variables:

Xn ∈


{−1, 1} with probability 1

2
, if n = [m

1
c ] for some m ∈ N,

{0, 1} with probability P (Xn = 0) = 1− 1
p√
n2

and P (Xn = 1) = 1
p√
n2
,

if n 6= [m
1
c ] for any m ∈ N.

Then we have, for 0 < ε < 1

P (|Xn − 0| ≥ ε) = 1, if n = [m
1
c ] for some m ∈ N,
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and

P (|Xn − 0| ≥ ε) =
1
p
√
n2
, if n 6= [m

1
c ] for any m ∈ N.

Let αn = 1 and βn = n2. So we have the inequality

lim
n→∞

n2c − 1

n2γ1
≤ lim

n→∞

1

n2γ1

∑
k∈[1,n2]

{P (|Xk − 0| ≥ ε)}p

and

lim
n→∞

1

n2γ2

∑
k∈[1,n2]

{P (|Xk − 0| ≥ ε)}p ≤ lim
n→∞

[
n2c + 1

n2γ2
+

1

n2γ2

(
1

12
+

1

22
+ · · ·+ 1

n4

)]
.

This shows that Xn

PW
γ2,p
αβ−−−−→ 0 but {Xn}n∈N is not αβ-strong p-Cesàro summable of

order γ1 in probability to 0.
(ii) Proof is straightforward and so is omitted. �

Theorem 2.5. Let 0 < γ1 ≤ γ2 ≤ 1. Then PW γ1,p
αβ ⊂ PSγ2αβ.

Proof. Proof is straightforward and so is omitted. �

So we can say that if a sequence of random variables {Xn}n∈N is αβ-strong p-Cesàro
summable of order γ in probability to X then it is αβ-statistically convergent of order
γ in probability to X i.e. PW γ,p

αβ ⊂ PSγαβ.
But the converse of Theorem 2.5 is not generally true as can be seen from the

following example.

Example 2.4. Let a sequence of random variables {Xn}n∈N be defined by,

Xn ∈


{−1, 1} with probability 1

2
, if n = mm for some m ∈ N,

{0, 1} with probability P (Xn = 0) = 1− 1
2p√n and P (Xn = 1) = 1

2p√n ,

if n 6= mm for any m ∈ N.

Let 0 < ε < 1 be given. Then

P (|Xn − 0| ≥ ε) = 1, if n = mm for some m ∈ N

and

P (|Xn − 0| ≥ ε) =
1

2p
√
n
, if n 6= mm for any m ∈ N.
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Let αn = 1 and βn = n2. This implies Xn

PSγαβ−−−→ 0 for each 0 < γ ≤ 1. Next let
H = {n ∈ N : n 6= mm for any m ∈ N}. Then

1

n2γ

∑
k∈[1,n2]

{P (|Xk − 0| ≥ ε)}p

=
1

n2γ

∑
k∈[1,n2]

k∈H

{P (|Xk − 0| ≥ ε)}p + 1

n2γ

∑
k∈[1,n2]

k/∈H

{P (|Xk − 0| ≥ ε)}p

=
1

n2γ

∑
k∈[1,n2]

k∈H

1√
k
+

1

n2γ

∑
k∈[1,n2]

k/∈H

1

>
1

n2γ

n2∑
k=1

1√
k

>
1

n2γ−1 ,

since
∑n

k=1
1√
k
>
√
n, for n ≥ 2.

So Xn is not αβ-strong p-Cesàro summable of order γ in probability to 0 for
0 < γ ≤ 1

2
.

Theorem 2.6.
(i) For γ = 1, PW 1,p

αβ = PSαβ.

(ii) Let g : R → R be a continuous function and 0 < γ1 ≤ γ2 ≤ 1. If Xn

PW
γ1
αβ−−−→ X,

then g(Xn)
PW

γ2
αβ−−−→ g(X).

Proof. For (i) and (ii) the proof is straightforward and so is omitted. �

Theorem 2.7. Let {αn}n∈N, {βn}n∈N be two non-decreasing sequences of positive
numbers such that αn ≤ βn ≤ αn+1 ≤ βn+1 and 0 < γ1 ≤ γ2 ≤ 1. Then PSγ1 ⊂ PSγ2αβ
iff lim inf( βn

αn
) > 1. (Such a pair of sequence exists: take αn = n! and βn = (n+ 1)!.)

Proof. First of all suppose that lim inf( βn
αn
) > 1 and let Xn

PSγ1−−−→ X. As lim inf( βn
αn
) >

1, for each δ > 0 we can find sufficiently large r such that

βr
αr
≥ (1 + δ)

therefore (
βr − αr
βr

)γ1
≥
(

δ

1 + δ

)γ1
.
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Now for each ε, δ > 0 we have
1

[βn]γ1
|{k ≤ [βn] : P (|Xk −X| ≥ ε) ≥ δ}|

=
1

[βn]γ1
|{k ≤ βn : P (|Xk −X| ≥ ε) ≥ δ}|

≥ 1

βγ1n
|{k ≤ βn : P (|Xk −X| ≥ ε) ≥ δ}|

≥
(

δ

1 + δ

)γ1 1

(βn − αn + 1)γ2
|{k ∈ [αn, βn] : P (|Xk −X| ≥ ε) ≥ δ}|.

Hence the result follows.
Now if possible, suppose that lim inf

(
βn
αn

)
= 1. So for each j ∈ N we can choose a

subsequence such that βr(j)
αr(j)

< 1 + 1
j
and βr(j)−1

βr(j−1)
≥ j. Let Ir(j) = [αr(j), βr(j)].

We define a sequence of random variables by

Xn ∈


{−1, 1} with probability 1

2
, if n ∈ Ir(j) where j ∈ N,

{0, 1} with probability P (Xn = 0) = 1− 1
n2 and P (Xn = 1) = 1

n2 ,

if n /∈ Ir(j) for any j ∈ N.
Let 0 < ε, δ < 1. Now

P (|Xn − 0| ≥ ε) = 1, if n ∈ Ir(j) where j ∈ N,
and

P (|Xn − 0| ≥ ε) =
1

n2
, if n /∈ Ir(j) for any j ∈ N.

Now 1
(βr(j)−αr(j)+1)γ

|{k ∈ [αr(j), βr(j)] : P (|Xn − 0| ≥ ε) ≥ δ}| = (βr(j)−αr(j)+1)

(βr(j)−αr(j)+1)γ
→∞

as j → ∞. But as 1
(βr(j)−αr(j)+1)γ

|{k ∈ [αr(j), βr(j)] : P (|Xn − 0| ≥ ε) ≥ δ}| is a
subsequence of the sequence 1

(βr−αr+1)γ
|{k ∈ [αr, βr] : P (|Xn − 0| ≥ ε) ≥ δ}|, this

shows that Xn is not αβ-statistically convergent of order γ(where 0 < γ ≤ 1) in
probability to 0.

Finally let γ = 1. If we take t sufficiently large such that αr(j) < t ≤ βr(j) then we
observe that

1

t

t∑
k=1

P (|Xk − 0| ≥ ε) ≤
βr(j−1) + βr(j) − αr(j)

αr(j)
+

1

t

{
1 +

1

22
+ · · ·+ 1

t2

}
≤
βr(j−1)
βr(j)−1

+
βr(j) − αr(j)

αr(j)
+

1

t

{
1 +

1

22
+ · · ·+ 1

t2

}
≤ 2

j
+

1

t

{
1 +

1

22
+ · · ·+ 1

t2

}
→ 0, if j, t→∞.

This shows that Xn
PS−−→ 0. But this is a contradiction as PSγ1 ⊂ PSγ2αβ where

(0 < γ1 ≤ γ2 ≤ 1). We conclude that lim inf( βn
αn
) must be > 1. �
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Theorem 2.8. Let α = {αn}n∈N, β = {βn}n∈N be two non-decreasing sequences

of positive numbers. Let Xn
PSγ1−−−→ X and Xn

PS
γ2
αβ−−−→ Y for 0 < γ2 ≤ γ1 ≤ 1. If

lim inf( βn
αn
) > 1 then P{X = Y } = 1.

Proof. Let ε > 0 be any small positive real number and if possible let P (|X − Y | ≥
ε) = δ > 0. Now we have the inequality

P (|X − Y | ≥ ε) ≤
{
P
(
|Xn −X| ≥

ε

2

)}
+
{
P
(
|Xn − Y | ≥

ε

2

)}
⇒ {k ∈ [αn, βn] : P (|X − Y | ≥ ε) ≥ δ} ⊆

{
k ∈ [αn, βn] : P

(
|Xk −X| ≥

ε

2

)
≥ δ

2

}
∪
{
k ∈ [αn, βn] : P

(
|Xk − Y | ≥

ε

2

)
≥ δ

2

}
⇒ |{k ∈ [αn, βn] :P (|X − Y | ≥ ε) ≥ δ}| ≤

∣∣∣∣{k ∈ [αn, βn] : P
(
|Xk −X| ≥

ε

2

)
≥ δ

2

}∣∣∣∣
+

∣∣∣∣{k ∈ [αn, βn] : P
(
|Xk − Y | ≥

ε

2

)
≥ δ

2

}∣∣∣∣
⇒ |{k ∈ [αn, βn] :P (|X − Y | ≥ ε) ≥ δ}| ≤

∣∣∣∣{k ≤ [βn] : P
(
|Xk −X| ≥

ε

2

)
≥ δ

2

}∣∣∣∣
+

∣∣∣∣{k ∈ [αn, βn] : P
(
|Xk − Y | ≥

ε

2

)
≥ δ

2

}∣∣∣∣
⇒ (βn − αn) ≤

∣∣∣∣{k ≤ [βn] : P
(
|Xk −X| ≥

ε

2

)
≥ δ

2

}∣∣∣∣
+

∣∣∣∣{k ∈ [αn, βn] : P
(
|Xk − Y | ≥

ε

2

)
≥ δ

2

}∣∣∣∣
⇒
(
βn − αn
βn

)γ1
≤ 1

[βn]γ1

∣∣∣∣{k ≤ [βn] : P
(
|Xk −X| ≥

ε

2

)
≥ δ

2

}∣∣∣∣
+

1

βγ1n

∣∣∣∣{k ∈ [αn, βn] : P
(
|Xk − Y | ≥

ε

2

)
≥ δ

2

}∣∣∣∣
⇒
(
βn − αn
βn

)γ1
≤ 1

[βn]γ1

∣∣∣∣{k ≤ [βn] : P
(
|Xk −X| ≥

ε

2

)
≥ δ

2

}∣∣∣∣+ (βn − αn + 1

βn

)γ2
× 1

(βn − αn + 1)γ2

∣∣∣∣{k ∈ [αn, βn] : P
(
|Xk − Y | ≥

ε

2

)
≥ δ

2

}∣∣∣∣
⇒
(
1− αn

βn

)γ1
≤ 1

[βn]γ1

∣∣∣∣{k ≤ [βn] : P
(
|Xk −X| ≥

ε

2

)
≥ δ

2

}∣∣∣∣+ (1− αn
βn

+
1

βn

)γ2
× 1

(βn − αn + 1)γ2

∣∣∣∣{k ∈ [αn, βn] : P
(
|Xk − Y | ≥

ε

2

)
≥ δ

2

}∣∣∣∣ .
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Taking n → ∞ on both sides we see that the left hand side does not tend to zero
since lim inf

(
βn
αn

)
> 1 but the right hand side tends to zero. This is a contradiction.

So we must have P{X = Y } = 1. �

3. αβ-Statistical Convergence of Order γ in rth Expectation

Definition 3.1. Let (S,4, P ) be a probability space and {Xn}n∈N be a sequence of
random variables where each Xn is defined on the same sample space S (for each n)
with respect to a given class of events 4 and a given probability function P : 4→ R.
Then the sequence {Xn}n∈N is said to be αβ-statistically convergent of order γ (where
0 < γ ≤ 1) in rth expectation to a random variable X (where X : S → R) if for any
ε > 0

lim
n→∞

1

(βn − αn + 1)γ
|{k ∈ [αn, βn] : E(|Xk −X|r) ≥ ε}| = 0,

provided E(|Xn|r) and E(|X|r) exists for all n ∈ N. In this case we write Sγαβ −

limE(|Xn − X|r) = 0 or by Xn

ESγ,rαβ−−−→ X. The class of all sequences of random
variables which are αβ-statistically convergent of order γ in rth expectation is denoted
simply by ESγ,rαβ .

Theorem 3.1. Let Xn

ESγ,rαβ−−−→ X (for any r > 0 and 0 < γ ≤ 1). Then Xn

PSγαβ−−−→
X, i.e. αβ-statistical convergence of order γ in rth expectation implies αβ-statistical
convergence of order γ in probability.

Proof. The proof can be easily obtained by using Bienayme-Tchebycheff’s inequality.
�

The following example shows that in general the converse of Theorem 3.1 is not
true.

Example 3.1. We consider the sequence of random variables {Xn}n∈N defined by

Xn ∈


{0, 1} with probability P (Xn = 0) = P (Xn = 1),

if n = m2 for some m ∈ N,
{0, n} with probability P (Xn = 0) = (1− 1

nr
) and P (Xn = 1) = 1

nr
,

if n 6= m2 for any m ∈ N,

where r > 0. Now let 0 < ε, δ < 1. Then we have

P (|Xn − 0| ≥ ε) =
1

2
, if n = m2 for some m ∈ N,

and

P (|Xn − 0| ≥ ε) =
1

nr
, if n 6= m2 for any m ∈ N.
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Let γ = 1
2
, αn = ((n− 1)2 + 1), and βn = n2. Then we have the inequality

1√
2n− 1

|{k ∈ [(n−1)2+1, n2] : P (|Xn−0| ≥ ε) ≥ δ}| =
(

1√
2n− 1

+
d√

2n− 1

)
→ 0

as n→∞, where d is a finite positive integer. So Xn

PS
1
2
αβ−−−→ 0.

But

E(|Xn − 0|r) =

{
1
2
, if n = m2 for some m ∈ N,

1, if n 6= m2 for any m ∈ N.

This shows that S
1
2
αβ-limE(|Xn − 0|r) 6= 0, i.e. Xn is not αβ-statistically convergent

of order 1
2
in rth expectation to 0.

Theorem 3.2. Let {Xn}n∈N be a sequence of random variables such that

P (|Xn| ≤ M) = 1 for all n and some constant M > 0. Suppose that Xn

PSγαβ−−−→ X.

Then Xn

ESγ,rαβ−−−→ X for any r > 0.

Theorem 3.3.
(i) Let Xn

ESγ,rαβ−−−→ X and Xn

ESγ,rαβ−−−→ Y (for all r > 0 and 0 < γ ≤ 1). Then
P (X = Y ) = 1 provided (X −Xn) ≥ 0 and (Yn − Y ) ≥ 0.

(ii) Let Xn

ESγ,rαβ−−−→ X and Yn
ESγ,rαβ−−−→ Y (for all r > 0 and 0 < γ ≤ 1). Then

(Xn + Yn)
ESγαβ−−−→ (X + Y ) provided (X −Xn) ≥ 0 and (Yn − Y ) ≥ 0.

4. αβ-Statistical Convergence of Order γ in Distribution

Definition 4.1. Let (S,4, P ) be a probability space and {Xn}n∈N be a sequence of
random variables where each Xn is defined on the same sample space S (for each n)
with respect to a given class of events 4 and a given probability function P : 4→ R.
Let Fn(x) be the distribution function of Xn for all n ∈ N. If there exist a random
variable X whose distribution function is F (x) such that the sequence {Fn(x)}n∈N is
αβ-statistically convergent of order γ to F (x) at every point of continuity x of F (x)
then {Xn}n∈N is said to be αβ-statistically convergent of order γ in distribution to X

and we write Xn

DSγαβ−−−→ X.

Theorem 4.1. Let {Xn}n∈N be a sequence of random variables. Also let fn(x) =
P (Xn = x) be the probability mass function of Xn for all n ∈ N and f(x) = P (X = x)

be the probability mass function of X. If fn(x)
Sγαβ−−→ f(x) for all x then Xn

DSγαβ−−−→ X.

Proof. Proof is straightforward, so omitted. �
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Proposition 4.1. Let {an}n∈N, {bn}n∈N be two sequences of real numbers such that
an ≤ bn for all n ∈ N. Then

Sγαβ − liman ≤ Sγαβ − limbn and Sγαβ − liman ≤ Sγαβ − limbn.

Here Sγαβ − lim and Sγαβ − lim denotes αβ-statistical limit inferior of order γ and
αβ-statistical limit superior of order γ of the respective real sequences and here we use
the same definition as in [13] but here natural density is replaced by the αβ density
of order γ.

Proof. Proof is straightforward, so omitted. �

Theorem 4.2. Let {Xn}n∈N be a sequence of random variables. If Xn

PSγαβ−−−→ X then

Xn

DSγαβ−−−→ X. That is, αβ-statistical convergence of order γ in probability implies
αβ-statistical convergence of order γ in distribution.

Proof. Let Fn(x) and F (x) be the probability distribution functions of Xn and X
respectively. Let x < y. Now

(X ≤ x) ⊆ (Xn ≤ y,X ≤ x) + (Xn > y,X ≤ x)

⇒ (X ≤ x) ⊆ (Xn ≤ y) + (Xn > y,X ≤ x)

⇒P (X ≤ x) ≤ P (Xn ≤ y) + P (Xn > y,X ≤ x)

⇒P (X ≤ x) ≤ P (Xn ≤ y) + P (|Xn −X| > y − x)
⇒F (x) ≤ Fn(y) + P (|Xn −X| > y − x)
⇒Sγαβ − limF (x) ≤ Sγαβ − limFn(y)

⇒F (x) ≤ Sγαβ − limFn(y),

similarly following same kind of steps and by taking y < z we get

Sγαβ − limFn(y) ≤ F (z).

Let y be a point of continuity of the function F (x). Then

lim
x→y−

F (x) = lim
z→y+

F (z) = F (y).

Hence we get Sγαβ − limFn(y) = F (y). Hence the result follows. �

Now we will show that the converse of the Theorem 4.2 is not necessarily true i.e.
αβ-statistical convergence of order γ in distribution may not implies αβ-statistical
convergence of order γ in probability. For this we will construct an example as follows.

Example 4.1. Let αn = ((n−1)2+1) and βn = n2 and consider random variablesX, Xn

(where n is the first [hrc] integers in the interval Ir = [αr, βr] where hr = (βr −αr +1)
and 0 < c < 1) having identical distribution. Let γ be a real number in (0, 1] such
that γ > c. Let the spectrum of the two dimensional random variables (Xn, X) be
(−1, 0), (−1, 1), (1, 0), (1, 1) with probability

P (Xn = 1, X = 1) = 0 = P (Xn = −1, X = 0)
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and
P (Xn = −1, X = 1) =

1

2
= P (Xn = 1, X = 0).

Hence, the marginal distribution of Xn is given by Xn = i(i = −1, 1) with p.m.f.
fXn(−1) = fXn(1) =

1
2
and the marginal distribution of X is given by X = i(i = 0, 1)

with p.m.f. fX(0) = fX(1) =
1
2
.

Next, we consider random variables X, Xn (where n is other than the first [hr
c]

integers in the interval Ir = [αr, βr]) having identical distribution and the spectrum
of the two dimensional random variables (Xn, X) be (0, 0), (0, 1), (1, 0), (1, 1) with
probability

P (Xn = 0, X = 0) = 0 = P (Xn = 1, X = 1)

and
P (Xn = 1, X = 0) =

1

2
= P (Xn = 0, X = 1).

Hence, the marginal distribution of Xn is given by Xn = i (i = 0, 1) with p.m.f.
fXn(0) = fXn(1) =

1
2
and the marginal distribution of X is given by X = i (i = 0, 1)

with p.m.f. fX(0) = fX(1) =
1
2
.

Let n is the first [hr
c] integers in the interval Ir and Fn(x) be the probability

distribution function of Xn then

Fn(x) =


0, if x < −1,
1
2
, if − 1 ≤ x < 1,

1, if x ≥ 1.

Next let, n is other than the first [hr
c] integers in the interval Ir and Fn(x) and

F (x) be the probability distribution function of Xn and X respectively, then

Fn(x) = F (x) =


0, if x < 0,
1
2
, if 0 ≤ x < 1,

1, if x ≥ 1.

We consider the interval [−1, 0). It is sufficient to prove that the sequence {yn}n∈N
define below is αβ-statistically convergent of order γ to 0. Now we define a sequence
{yn}n∈N by

yn =

{
1
2
, if n is the first [hrc] integers in the interval Ir,

0, if n is other than the first [hrc] integers in the interval Ir.

It is quite clearly that {yn}n∈N is αβ-statistically convergent of order γ to 0, this

implies Fn(x)
Sγαβ−−→ F (x) for all x ∈ R (but lim

n→∞
Fn(x) 6= F (x) for all x ∈ [−1, 0) in

ordinary sense). This shows that Xn

DSγαβ−−−→ X.
For any 0 < ε < 1, we have P (|Xn −X| ≥ ε) = 1, for all, n ∈ Ir, r ∈ Z+. But this

shows that Sγαβ − limP (|Xn −X| ≥ ε) 6= 0. This shows that the sequence {Xn}n∈N is
not αβ-statistically convergent of order γ in probability to X.
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The statement of Theorem 4.2 does not depend on the limit infimum of the sequence
qr =

βr
αr

of the sequence αn and βn. Even if lim inf qr = 1, Theorem 4.2 will hold.

Theorem 4.3. Let {αn}n∈N and {βn}n∈N be two increasing sequences of positive
real numbers such that αn ≤ βn ≤ αn+1 ≤ βn+1, (βn − αn) → ∞ as n → ∞ and

0 < γ1 ≤ γ2 ≤ 1. If lim inf( βn
αn
) > 1 then Xn

PSγ1−−−→ X implies Xn

DS
γ2
αβ−−−→ X.

Proof. The proof is straightforward, so omitted. �
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