Kragujevac Journal of Mathematics Volume 42(1) (2018), Pages 41–50.

ON GAMMA-RINGS WITH (σ, τ) -SKEW-COMMUTING AND (σ, τ) -SKEW-CENTRALIZING MAPPINGS

KALYAN KUMAR DEY¹, AKHIL CHANDRA PAUL¹, AND BIJAN DAVVAZ²

ABSTRACT. Let M be a 2-torsion free Γ -ring with left identity e. Let $D: M \times M \to M$ be a symmetric bi-additive mapping and d(x) = D(x, x). Let σ and τ be an endomorphism and an epimorphism of M, respectively. We prove the following:

- (i) if d is (σ, τ) -skew-commuting on M, then D = 0;
- (ii) if d is (τ, τ) -skew-centralizing on M, then d is (τ, τ) -commuting on M;
- (iii) if M is a 3-torsion free Γ -ring satisfying $x\alpha y\beta z=x\beta y\alpha z$ for all $x,y,z\in M$ and $\alpha,\beta\in\Gamma$, then 2- (σ,τ) -commutingness of d on M implies its (σ,τ) -commutingness.

1. Introduction

Yong-Soo Jung and Ick-Soon Chang [4] worked on (σ, τ) -skew commuting and (σ, τ) -skew centralizing maps of rings with left identity. Many authors (see, e.g. Bresar [3], Vukman [10] and references there in) investigated and studied skew-centralizing and skew-commuting mappings in classical ring theories. Bell and Lucier [2] studied skew-commuting and skew-centralizing additive maps by the existence of a left identity element instead of the condition of primeness of a ring and obtained some fruitful results concerning these. The study of permuting tri-derivations in prime and semiprime Γ -rings has been investigated by Duran Ozden and M. Ali Ozturk [5]. Symmetric bi-derivations and generalized symmetric bi-derivations have been studied in [6] and [7] by the authors Ozturk et al. and Ozturk and Sapanci, respectively. In [8], Ozturk worked on permuting tri-derivations in prime and semi-prime rings and developed some fruitful results in ring theories. M. A. Ozturk et al. [9] worked on symmetric

 $Key\ words\ and\ phrases.$ Γ-ring, (σ, τ) -skew-commuting mappings, (σ, τ) -skew-centralizing mappings, (σ, τ) -commuting mappings.

²⁰¹⁰ Mathematics Subject Classification. Primary: 16W20. Secondary: 16Y99.

Received: June 28, 2016.

Accepted: January 12, 2017.

bi-derivations on prime Γ -rings. They obtained some remarkable results on prime Γ -rings. In this paper, we study symmetric bi-additive maps with the generalized skew-commuting and skew-centralizing mappings of the trace, that is (σ, τ) -skew-commuting and (σ, τ) -skew-centralizing ones, in Γ -rings with left identity.

2. Preliminaries

Let M and Γ be additive abelian groups. Then, M is called a Γ -ring in the sense of Barnes [1] if there is a mapping $M \times \Gamma \times M \to M$ for all $a, b, c \in M$, $\alpha, \beta \in \Gamma$, such that the following conditions are satisfied:

(i)
$$(a+b)\alpha c = a\alpha c + b\alpha c$$
, $a(\alpha+\beta)b = a\alpha b + a\beta b$, $a\alpha(b+c) = a\alpha b + a\alpha c$,

(ii)
$$(a\alpha b)\beta c = a\alpha(b\beta c)$$
.

Every ring is a Γ -ring and many notions on the ring theory are generalized to Γ -rings. Let M be a Γ -ring. A subring I of M is an additive subgroup which is also a Γ -ring. A right ideal of M is a subring I such that $I\Gamma M \subseteq I$. Similarly, a left ideal can be defined. If I is both a right and a left ideal then we say that I is an ideal. In this paper, we shall take the following assumption

$$(2.1) x\alpha y\beta z = x\beta y\alpha z,$$

for all $x, y, z \in M$ and $\alpha, \beta \in \Gamma$. Throughout this paper, M will represent a Γ -ring, and Z(M) will be its center. Let $x, y \in M$ and $\alpha \in \Gamma$, the commutator $x\alpha y - y\alpha x$ will be denoted by [x, y]. It is easy to see that

$$[x\beta y, z]_{\alpha} = x\beta[y, z]_{\alpha} + [x, z]_{\alpha}\beta y + x[\beta, \alpha]_{z}y$$

and

$$[x,y\beta z]_{\alpha} = y\beta[x,z]_{\alpha} + [x,y]_{\alpha}\beta z + y[\beta,\alpha]_{x}z,$$

for all $x, y, z \in M$ and $\alpha, \beta \in \Gamma$. The assumption (2.1) reduces the above identities respectively to

$$[x\beta y, z]_{\alpha} = x\beta[y, z]_{\alpha} + [x, z]_{\alpha}\beta y$$

and

$$[x, y\beta z]_{\alpha} = y\beta[x, z]_{\alpha} + [x, y]_{\alpha}\beta z,$$

for all $x, y, z \in M$ and $\alpha, \beta \in \Gamma$.

Let σ , τ be additive mappings from M into M and let $x, y \in M$. For convenience, the products $y\alpha x + x\alpha y$, $y\alpha \sigma(x) + \tau(x)\alpha y$ and $y\alpha \sigma(x) - \tau(x)\alpha y$ are denoted by $\langle y, x \rangle_{\alpha}$, $\langle y, x \rangle_{\alpha}^{(\sigma,\tau)}$ and $[y, x]_{\alpha}^{(\sigma,\tau)}$, respectively.

3. Main Results

We begin with the following results.

Theorem 3.1. Let M be a 2-torsion-free Γ -ring with left identity e. Let $\sigma: M \to M$ be an endomorphism and $\tau: M \to M$ be an epimorphism. Let $D: M \times M \to M$ be a symmetric bi-additive mapping and d the trace of D. If d is (σ, τ) -skew-commuting on M, then we have D = 0.

Proof. We are given that

(3.1)
$$\langle d(x), x \rangle_{\alpha}^{(\sigma, \tau)} = d(x)\alpha\sigma(x) + \tau(x)\alpha d(x) = 0,$$

for all $x \in M$ and $\alpha \in \Gamma$. First, observe that if τ is onto, then $\tau(e)$ is also a left identity of M. This along with (3.1) gives

$$(3.2) \qquad \langle d(e), e \rangle_{\alpha}^{(\sigma, \tau)} = d(e)\alpha\sigma(e) + \tau(e)\alpha d(e) = d(e)\alpha\sigma(e) + d(e) = 0,$$

for all $x \in M$ and $\alpha \in \Gamma$. Then multiplying (3.2) from right-hand side by $\alpha \sigma(e)$ we obtain $2d(e)\alpha\sigma(e) = 0$, and it implies that $d(e)\alpha\sigma(e) = 0$. Hence, from (3.2) we get d(e) = 0. Let us replace x by x + e in (3.1). Then we have

$$\langle d(x+e), x+e \rangle_{\alpha}^{(\sigma,\tau)} = d(x+e)\alpha\sigma(x+e) + \tau(x+e)\alpha d(x+e) = 0,$$

for all $x \in M$ and $\alpha \in \Gamma$. We obtain

(3.3)
$$\langle d(x), e \rangle_{\alpha}^{(\sigma,\tau)} + 2 \langle D(x,e), x \rangle_{\alpha}^{(\sigma,\tau)} + 2 \langle D(x,e), e \rangle_{\alpha}^{(\sigma,\tau)} = 0,$$

for all $x \in M$ and $\alpha \in \Gamma$. Substituting -x for x in (3.3) and comparing (3.3) with the result, we get

$$\langle d(-x), e \rangle_{\alpha}^{(\sigma,\tau)} + 2 \langle D(-x, e), -x \rangle_{\alpha}^{(\sigma,\tau)} + 2 \langle D(-x, e), e \rangle_{\alpha}^{(\sigma,\tau)} = 0,$$

for all $x \in M$ and $\alpha \in \Gamma$. Then

(3.4)
$$\langle d(x), e \rangle_{\alpha}^{(\sigma,\tau)} = D(x, e)\alpha\sigma(e) + D(x, e) = 0,$$

for all $x \in M$ and $\alpha \in \Gamma$, since d is an even function and M is 2-torsion free. Right multiplication (3.4) by $\alpha \sigma(e)$ gives

$$2D(x,e)\alpha\sigma(e) = 0 = D(x,e)\alpha\sigma(e),$$

and so, by (3.4), we have D(x,e)=0, for all $x\in M$. Therefore we arrive at

$$d(x + e) = d(x) + d(e) + 2D(x, e) = d(x),$$

for all $x \in M$. Since d is (σ, τ) -skew-commuting on M, the relation

$$d(x+e)\alpha\sigma(x+e) + \tau(x+e)\alpha d(x+e) = 0$$

becomes

$$d(x)\alpha\sigma(x) + d(x)\alpha\sigma(e) + \tau(x)\alpha d(x) + \tau(e)\alpha d(x) = 0,$$

and thus we obtain

$$(3.5) d(x)\alpha\sigma(e) + d(x) = 0,$$

for all $x \in M$ and $\alpha \in \Gamma$. Right-multiplying by $\alpha \sigma(e)$ in (3.5), we get $2d(x)\alpha \sigma(e) = 0 = d(x)\alpha \sigma(e)$, and hence the relation (3.5) implies that d(x) = 0 for all $x \in M$, which gives the conclusion.

The next result is to improve the above result.

Corollary 3.1. Let M be a 2-torsion-free Γ -ring with left identity e. Let $\sigma: M \to M$ be endomorphisms and $\tau: M \to M$ be epimorphisms. If f is an additive map on M such that the mapping $x \mapsto \langle f(x), x \rangle_{\alpha}^{(\sigma,\tau)}$ is (σ, τ) -skew-commuting on M, then f = 0.

Proof. Define a mapping $D: M \times M \to M$ by

$$D(x,y) = \langle f(x), y \rangle_{\alpha}^{(\sigma,\tau)} + \langle f(y), x \rangle_{\alpha}^{(\sigma,\tau)},$$

for all $x,y\in M$ and $\alpha\in\Gamma$, and a mapping $d:M\to M$ by d(x)=D(x,x), for all $x\in M$, it is obvious that D is symmetric and bi-additive, and that d is the trace of D. The hypothesis that the mapping $x\mapsto \langle f(x),x\rangle_{\alpha}^{(\sigma,\tau)}$ is (σ,τ) -skew-commuting on M is equivalent to the fact that d is (σ,τ) -skew-commuting on M, and so the theorem asserts us that d=0, that is, f is (σ,τ) -skew-commuting on M, from which it follows that

(3.6)
$$f(e)\alpha\sigma(e) + \tau(e)\alpha f(e) = f(e)\alpha\sigma(e) + f(e) = 0,$$

for all $\alpha \in \Gamma$, and right-multiplying by $\alpha \sigma(e)$ gives $2f(e)\alpha \sigma(e) = 0 = f(e)\alpha \sigma(e)$. By (3.6), since M is a 2-torsion free Γ -ring we get f(e) = 0 and so f(x+e) = f(x) for all $x \in M$. The condition that $f(x+e)\alpha \sigma(x+e) + \tau(x+e)\alpha f(x+e) = 0$ now makes $f(x)\alpha \sigma(x) + f(x)\alpha \sigma(e) + \tau(x)\alpha f(x) + f(x) = 0$, and it follows that

$$(3.7) f(x)\alpha\sigma(e) + f(x) = 0,$$

for all $x, y \in M$ and $\alpha \in \Gamma$. Right-multiplying by $\alpha \sigma(e)$, we get $2f(x)\alpha \sigma(e) = 0 = f(x)\alpha \sigma(e)$, so by (3.7) we have f(x) = 0, for all $x \in M$.

We continue our investigation with the next result.

Theorem 3.2. Let M be a 2-torsion-free Γ -ring with left identity e. Let $\tau: M \to M$ be an epimorphism. Let $D: M \times M \to M$ be a symmetric bi-additive mapping and d the trace of D. If d is (τ, τ) -skew-centralizing on M, then d is (τ, τ) -commuting on M.

Proof. Suppose that

(3.8)
$$\langle d(x), x \rangle_{\alpha}^{(\tau,\tau)} = d(x)\alpha\tau(x) + \tau(x)\alpha d(x) \in Z(M),$$

for all $x \in M$ and $\alpha \in \Gamma$. Since $\tau(e)$ is a left identity of M by the ontoness of τ , the supposition implies

(3.9)
$$d(e)\alpha\tau(e) + \tau(e)\alpha d(e) = d(e)\alpha\tau(e) + d(e) \in Z(M).$$

Commuting with $\tau(e)$ we get $d(e) = d(e)\alpha\tau(e)$, and it along with (3.9) gives $2d(e) \in Z(M)$, hence $d(e) \in Z(M)$. Let us replace x by x + e in (3.8). Then we have

(3.10)
$$d(x)\alpha\tau(e) + 2\tau(x)\alpha d(e) + 2D(x,e)\alpha\tau(x) + 2D(x,e)\alpha\tau(e) + d(x) + 2\tau(x)\alpha D(x,e) + 2D(x,e) \in Z(M),$$

for all $x \in M$ and $\alpha \in \Gamma$. Substituting -x for x in (3.10) and comparing (3.10) with the result, we obtain

$$d(-x)\alpha\tau(e) + 2\tau(-x)\alpha d(e) + 2D(-x, e)\alpha\tau(-x) + 2D(-x, e)\alpha\tau(e) + d(-x) + 2\tau(-x)\alpha D(-x, e) + 2D(-x, e) \in Z(M).$$

We get

for all $x \in M$ and $\alpha \in \Gamma$, because of d is even and M is 2-torsion free.

Since $d(e) \in Z(M)$ and e is a left identity of M, commuting with $\tau(e)$ in (3.11) gives

$$[D(x, e), \tau(e)]_{\alpha} = 0,$$

for all $x \in M$ and $\alpha \in \Gamma$. Thus, from (3.12) we conclude that $D(x, e) = D(x, e)\alpha\tau(e)$, for all $x \in M$ and $\alpha \in \Gamma$. Now, we can rewrite (3.11) as follows

(3.13)
$$\tau(x)\alpha d(e) + 2D(x,e) \in Z(M),$$

and commuting with $\tau(x)$ in (3.13) gives

$$2[D(x,e),\tau(x)]_{\alpha} = 0 = [D(x,e),\tau(x)]_{\alpha},$$

for all $x \in M$ and $\alpha \in \Gamma$. Due to the ontoness of τ we obtain $D(x, e) \in Z(M)$, for all $x \in M$ and $\alpha \in \Gamma$.

In view of $D(x, e) = D(x, e)\alpha\tau(e)$ and $D(x, e) \in Z(M)$, the relation (3.10) can be rewritten in the form

$$(3.14) d(x)\alpha\tau(e) + d(x) + 2\tau(x)\alpha d(e) + 4\tau(x)\alpha D(x, e) \in Z(M),$$

for all $x \in M$ and $\alpha \in \Gamma$. Commuting with $\tau(e)$ in (3.14) and then using the fact that $[y, \tau(e)]_{\alpha}\beta z = 0$, for all $y, z \in M$ and $\alpha, \beta \in \Gamma$, yields

$$[d(x), \tau(e)]_{\alpha} \beta \tau(e) + [d(x), \tau(e)]_{\alpha} = 0,$$

for all $x \in M$ and $\alpha, \beta \in \Gamma$, and right-multiplying by $\beta \tau(e)$ gives

$$2[d(x), \tau(e)]_{\alpha}\beta\tau(e) = 0 = [d(x, \tau(e))]_{\alpha}\beta\tau(e)$$

and so it follows from (3.15) that $d(x) = d(x)\alpha\tau(e)$, for all $x \in M$ and $\alpha \in \Gamma$. Consequently, we see that the relation (3.14) becomes

(3.16)
$$d(x) + \tau(x)\alpha d(e) + 2\tau(x)\alpha D(x, e) \in Z(M),$$

since M is 2-torsion free. Commuting with $\tau(x)$ in (3.16), we have $[d(x), \tau(x)]_{\alpha} = 0$, for all $x \in M$ and $\alpha \in \Gamma$, which completes the proof.

Let $\sigma, \tau: M \to M$ be endomorphisms. We define a mapping $f: M \to M$ to be $2\text{-}(\sigma,\tau)$ -skew-commuting (respectively, $2\text{-}(\sigma,\tau)$ -skew-centralizing) on the subset S if $\langle f(x), x\beta x \rangle_{\alpha}^{(\sigma,\tau)} = 0$ (respectively, $\langle f(x), x\beta x \rangle_{\alpha}^{(\sigma,\tau)} \in Z(M)$), for all $x \in S$ and $\alpha, \beta \in \Gamma$, and f is said to be $2\text{-}(\sigma,\tau)$ -commuting on S if $[f(x), x\beta x]_{\alpha}^{(\sigma,\tau)} = 0$, for all $x \in S$ and $\alpha, \beta \in \Gamma$. Of course, when $\sigma = \tau = 1$ (the identity map on M), f is simply called 2-skew-commuting, 2-skew-centralizing and 2-commuting on S, respectively. Here we extend the results on (σ,τ) -skew-commuting maps to $2\text{-}(\sigma,\tau)$ -skew-commuting ones.

Theorem 3.3. Let M be a 2,3-torsion-free Γ -ring with left identity e. Let $\sigma: M \to M$ be an endomorphism and $\tau: M \to M$ be an epimorphism. Let $D: M \times M \to M$ be a symmetric bi-additive mapping and d the trace of D. If d is 2- (σ, τ) -skew-commuting on M, then we have D=0.

Proof. Assume that

$$(3.17) \qquad \langle d(x), x\beta x \rangle_{\alpha}^{(\sigma,\tau)} = 0,$$

for all $x \in M$ and $\alpha, \beta \in \Gamma$. Note that d(e) = 0 by the same argument used in the proof of Theorem 3.1. Let t be any positive integer. Replacing x by x + te in (3.17) and using $d(x + te) = d(x) + t^2d(e) + 2tD(x, e)$, for all $x \in M$ and $\alpha \in \Gamma$, we obtain

$$\langle d(x+te), (x+te)\beta(x+te)\rangle_{\alpha}^{(\sigma,\tau)} = 0,$$

for all $x \in M$ and $\alpha \in \Gamma$. Then

$$\langle d(x) + 2tD(x,e), x\beta x + te\beta x + tx\beta e + t^2e\beta e \rangle_{\alpha}^{(\sigma,\tau)} = 0,$$

for all $x \in M$ and $\alpha \in \Gamma$. Hence

$$\langle d(x), x\beta x \rangle_{\alpha}^{(\sigma,\tau)} + t \langle d(x), e\beta x \rangle_{\alpha}^{(\sigma,\tau)} + t \langle d(x), x\beta e \rangle_{\alpha}^{(\sigma,\tau)}$$

$$+ t^{2} \langle d(x), e\beta e \rangle_{\alpha}^{(\sigma,\tau)}$$

$$+ 2t \langle D(x,e), x\beta x \rangle_{\alpha}^{(\sigma,\tau)} + 2t^{2} \langle D(x,e), e\beta x \rangle_{\alpha}^{(\sigma,\tau)}$$

$$+ 2t^{2} \langle D(x,e), x\beta e \rangle_{\alpha}^{(\sigma,\tau)} + 2t^{3} \langle D(x,e), e\beta e \rangle_{\alpha}^{(\sigma,\tau)} = 0,$$

for all $x \in M$ and $\alpha \in \Gamma$. Since t is arbitrary and the coefficient determinant $\neq 0$, and also M is 2,3 torsion free,we have

$$\langle D(x,e), x\beta x \rangle_{\alpha}^{(\sigma,\tau)} + \langle d(x), e\beta x \rangle_{\alpha}^{(\sigma,\tau)} + \langle d(x), x\beta e_{\alpha}^{(\sigma,\tau)} = 0,$$

$$\langle D(x,e), e\beta x \rangle_{\alpha}^{(\sigma,\tau)} + \langle D(x,e), x\beta e \rangle_{\alpha}^{(\sigma,\tau)} = 0,$$

$$\langle D(x,e), e\beta x \rangle_{\alpha}^{(\sigma,\tau)} = 0.$$

In particular, for all $x \in M$ and $\alpha, \beta \in \Gamma$, we have

(3.18)
$$\langle D(x,e), e\beta e \rangle_{\alpha}^{(\sigma,\tau)} = 0.$$

By (3.18), we obtain that

(3.19)
$$2\{D(x,e)\alpha\sigma(e) + \tau(e)\alpha D(x,e)\} = 0 = D(x,e)\alpha\sigma(e) + D(x,e),$$

for all $x \in M$ and $\alpha \in \Gamma$; and right-multiplying by $\alpha \sigma(e)$ and using (3.19), we get D(x, e) = 0, for all $x \in M$. Hence this forces (3.19) to

$$(3.20) \qquad \langle d(x), e\beta e \rangle_{\alpha}^{(\sigma,\tau)} = d(x)\alpha\sigma(e) + \tau(e)\alpha d(x) = d(x)\alpha\sigma(e) + d(x) = 0,$$

for all $x \in M$ and $\alpha \in \Gamma$. Multiplying by $\alpha \sigma(e)$ on the right and utilizing (3.20), we conclude that d(x) = 0 for all $x \in M$. This completes the proof.

Corollary 3.2. Let M be a 2,3-torsion-free Γ -ring with left identity e. Let $\sigma: M \to M$ be an endomorphism and $\tau: M \to M$ be an epimorphism such that σ is (τ, τ) -commuting on M. If f is an additive map on M which is 2- (σ, τ) -skew-centralizing on M, then f is (τ, τ) -commuting on M.

Proof. Since $f(x)\alpha\sigma(x)\beta\sigma(x) + \tau(x)\beta\tau(x)\alpha f(x) \in Z(M)$, for all for all $x \in M$ and $\alpha, \beta \in \Gamma$, we have

$$[f(x)\alpha\sigma(x)\beta\sigma(x) + \tau(x)\beta\tau(x)\alpha f(x), \tau(x)]_{\gamma} = 0,$$

for all $x \in M$ and $\alpha, \beta, \gamma \in \Gamma$, hence

$$[f(x), \tau(x)]_{\gamma} \alpha \sigma(x) \beta \sigma(x) + f(x) \alpha [\sigma(x) \beta \sigma(x), \tau(x)]_{\gamma} + \tau(x) \beta \tau(x) \alpha [f(x), \tau(x)]_{\gamma} = 0,$$

which reduces to

$$[f(x), \tau(x)]_{\gamma} \alpha \beta \sigma(x) \beta \sigma(x) + \tau(x) \beta \tau(x) \alpha [f(x), \tau(x)]_{\gamma} = 0,$$

for all $x \in M$ and $\alpha, \beta, \gamma \in \Gamma$, because σ is (τ, τ) -commuting on M, i.e., $[\sigma(x), \tau(x)]_{\gamma} = 0$, for all $x \in M$ and $\alpha, \beta, \gamma \in \Gamma$. We introduce the mapping $D: M \times M \to M$ by

$$D(x, y) = [f(x), \tau(y)]_{\gamma} + [f(y), \tau(x)]_{\gamma},$$

for all $x, y \in M$ and $\gamma \in \Gamma$; and the mapping $d : M \to M$ by d(x) = D(x, x), for all $x \in M$, it is obvious that D is symmetric and bi-additive, and that d is the trace of D. Now the relation (3.21) is equivalent to the fact that d is $2-(\sigma, \tau)$ -skew-commuting, and so it follows from Theorem 3.3 that $d(x) = 2[f(x), \tau(x)]_{\gamma} = 0$, for all $x \in M$ and $\gamma \in \Gamma$. Since M is 2-torsion-free, we obtain the conclusion of the theorem.

Theorem 3.4. Let M be a 2,3-torsion-free Γ -ring satisfying the condition (3.1) with left identity e. Let $\sigma: M \to M$ be an endomorphism and $\tau: M \to M$ be an epimorphism. Let $D: M \times M \to M$ be a symmetric bi-additive mapping and d the trace of D. If d is 2- (σ, τ) -commuting on M, then d is (σ, τ) -commuting on M.

Proof. Let us define a mapping $h: M \to M$ by $h(x) = [d(x), x]_{\alpha}^{(\sigma, \tau)}$ for all $x \in M$ and $\alpha \in \Gamma$. Our assumption can now be written in the form

(3.22)
$$\langle h(x), x \rangle_{\alpha}^{(\sigma, \tau)} = [d(x), x\beta x]_{\alpha}^{(\sigma, \tau)} = 0, \text{ for all } x \in M, \ \alpha, \beta \in \Gamma.$$

Since $\tau(e)$ is also a left identity of M by the ontoness of τ , it follows that

$$(3.23) h(e)\alpha\sigma(e) + \tau(e)\alpha h(e) = h(e)\alpha\sigma(e) + h(e) = 0, \text{for all } x \in M, \ \alpha \in \Gamma,$$

and right-multiplying by $\alpha\sigma(e)$ gives $2h(e)\alpha\sigma(e)=0=h(e)\alpha\sigma(e)$. Hence, by (3.23), we get $h(e)=[d(e),e]_{\alpha}^{(\sigma,\tau)}=0$. Note that h is odd and for all $x\in M$ and $\alpha\in\Gamma$,

$$(3.24) \ h(x+e) = h(x) + [d(e), x]_{\alpha}^{(\sigma,\tau)} + 2[D(x,e), e]_{\alpha}^{(\sigma,\tau)} + [d(x), e]_{\alpha}^{(\sigma,\tau)} + 2[D(x,e), x]_{\alpha}^{(\sigma,\tau)}.$$

We claim that h(x+e) = h(x) $x \in M$ and $\alpha \in \Gamma$. Replacing x by x+e in (3.22) and using (3.24), we have, $x \in M$ and $\alpha \in \Gamma$

$$(3.25) \qquad 0 = \langle h(x+e), x+e \rangle_{\beta}^{(\sigma,\tau)}$$

$$= h(x)\alpha\sigma(e) + [d(e), x]_{\alpha}^{(\sigma,\tau)}\beta\sigma(x) + [d(e), x]_{\alpha}^{(\sigma,\tau)}\beta\sigma(e)$$

$$+ 2[D(x,e), e]_{\alpha}^{(\sigma,\tau)}\beta\sigma(x) + 2[D(x,e), e]_{\alpha}^{(\sigma,\tau)}\beta\sigma(e)$$

$$+ [d(x), e]_{\alpha}^{(\sigma,\tau)}\beta\sigma(x) + [d(x), e]_{\alpha}^{(\sigma,\tau)}\beta\sigma(e)$$

$$+ 2[D(x,e), x]_{\alpha}^{(\sigma,\tau)}\beta\sigma(x) + 2[D(x,e), x]_{\alpha}^{(\sigma,\tau)}\beta\sigma(e) + h(x)$$

$$+ \tau(x)\beta[d(e), x]_{\alpha}^{(\sigma,\tau)} + [d(e), x]_{\alpha}^{(\sigma,\tau)} + 2\tau(x)\beta[D(x,e), e]_{\alpha}^{(\sigma,\tau)}$$

$$+ 2[D(x,e), e]_{\alpha}^{(\sigma,\tau)} + \tau(x)\beta[d(x), e]_{\alpha}^{(\sigma,\tau)} + [d(x), e]_{\alpha}^{(\sigma,\tau)}$$

$$+ 2\tau(x)\beta[D(x,e), x]_{\alpha}^{(\sigma,\tau)} + 2[D(x,e), x]_{\alpha}^{(\sigma,\tau)}.$$

Substituting -x for x in (3.25) and comparing (3.25) with the result, we get, $x \in M$ and $\alpha \in \Gamma$

$$(3.26) [d(e), x]_{\alpha}^{(\sigma,\tau)} \beta \sigma(x)$$

$$+ 2[D(x, e), e]_{\alpha}^{(\sigma,\tau)} \beta \sigma(x) + [d(x), e]_{\alpha}^{(\sigma,\tau)} \beta \sigma(e)$$

$$+ 2[D(x, e), x]_{\alpha}^{(\sigma,\tau)} \beta \sigma(e) + \tau(x) \beta [d(e), x]_{\alpha}^{(\sigma,\tau)}$$

$$+ 2\tau(x) \beta [D(x, e), e]_{\alpha}^{(\sigma,\tau)} + [d(x), e]_{\alpha}^{(\sigma,\tau)} + 2[D(x, e), x]_{\alpha}^{(\sigma,\tau)} = 0;$$

and right multiplication of (3.26) by $\beta\sigma(e)$ gives,

$$(3.27) 0 = [d(e), x]_{\alpha}^{(\sigma,\tau)} \beta \sigma(x) \beta \sigma(e) + 2[D(x, e), e]_{\alpha}^{(\sigma,\tau)} \beta \sigma(x) \beta \sigma(e)$$

$$+ 2[d(x), e]_{\alpha}^{(\sigma,\tau)} \beta \sigma(e) + 4[D(x, e), x]_{\alpha}^{(\sigma,\tau)} \beta \sigma(e)$$

$$+ \tau(x) \beta [d(e), x]_{\alpha}^{(\sigma,\tau)} \beta \sigma(e) + 2\tau(x) \beta [D(x, e), e]_{\alpha}^{(\sigma,\tau)} \beta \sigma(e).$$

Let us put x + e instead of x in (3.27) and utilize (3.27). Then we obtain

$$6[d(e), x]_{\alpha}^{(\sigma, \tau)} \beta \sigma(e) + 12[D(x, e), e]_{\alpha}^{(\sigma, \tau)} \beta \sigma(e) = 0;$$

and so

$$[d(e), x]_{\alpha}^{(\sigma,\tau)}\beta\sigma(e) + 2[D(x, e), e]_{\alpha}^{(\sigma,\tau)}\beta\sigma(e) = 0;$$

and the relation (3.28) yields

$$(3.29) [d(e), x]_{\alpha}^{(\sigma,\tau)} \beta \sigma(x) + 2[D(x, e), e]_{\alpha}^{(\sigma,\tau)} \beta \sigma(x)$$

$$= [d(e), x]_{\alpha}^{(\sigma,\tau)} \beta \sigma(e\gamma x) + 2[D(x, e), e]_{\alpha}^{(\sigma,\tau)} \beta \sigma(e\gamma x)$$

$$= \{ [d(e), x]_{\alpha}^{(\sigma,\tau)} \beta \sigma(e) + 2[D(x, e), e]_{\alpha}^{(\sigma,\tau)} \beta \sigma(e) \} \gamma \sigma(x) = 0.$$

Hence the relation (3.27) becomes

$$2[d(x), e]_{\alpha}^{(\sigma,\tau)}\beta\sigma(e) + 4[D(x, e), x]_{\alpha}^{(\sigma,\tau)}\beta\sigma(e) = 0;$$

which gives

$$[d(x), e]_{\alpha}^{(\sigma,\tau)}\beta\sigma(e) + 2[D(x, e), x]_{\alpha}^{(\sigma,\tau)}\beta\sigma(e) = 0,$$

for all $x \in M$ and $\alpha, \beta \in \Gamma$. According to (3.29) and (3.30), we therefore can be written (3.26) in the form

$$(3.31) \ \tau(x)\beta[d(e),x]_{\alpha}^{(\sigma,\tau)} + 2\tau(x)\beta[D(x,e),e]_{\alpha}^{(\sigma,\tau)} + [d(x),e]_{\alpha}^{(\sigma,\tau)} + 2[D(x,e),x]_{\alpha}^{(\sigma,\tau)} = 0,$$

for all $x \in M$ and $\alpha, \beta \in \Gamma$. Finally, replacing x by x + e in (3.31) and applying (3.31) to the result, we obtain

$$3[d(e), x]_{\alpha}^{(\sigma,\tau)} + 6[D(x, e), e]_{\alpha}^{(\sigma,\tau)} = 0;$$

which implies that

$$[d(e), x]_{\alpha}^{(\sigma,\tau)} + 2[D(x, e), e]_{\alpha}^{(\sigma,\tau)} = 0,$$

for all $x \in M$ and $\alpha \in \Gamma$; and the relation (3.31) with (3.32) yields

$$[d(x), e]_{\alpha}^{(\sigma, \tau)} + 2[D(x, e), x]_{\alpha}^{(\sigma, \tau)} = 0,$$

for all $x \in M$ and $\alpha \in \Gamma$. By applying (3.33) and (3.24), we now obtain that h(x+e) = h(x), for all $x \in M$ and $\alpha \in \Gamma$, as claimed. Since $\langle h(x), x \rangle_{\alpha}^{(\sigma,\tau)} = 0$ for all $x \in M$ and $\alpha \in \Gamma$, the relation $h(x+e)\alpha\sigma(x+e) + \tau(x+e)\alpha h(x+e) = 0$ becomes $h(x)\alpha(\sigma(x) + \sigma(e)) + (\tau(x) + \tau(e))\alpha h(x) = 0$, and it follows that

(3.34)
$$h(x)\alpha\sigma(e) + h(x) = 0,$$

for all $x \in M$ and $\alpha \in \Gamma$. Right-multiplying by $\alpha \sigma(e)$ in (3.34), we get $2h(x)\alpha \sigma(e) = 0 = h(x)\alpha \sigma(e)$, and hence the relation (3.34) yields h(x) = 0, for all $x \in M$ and $\alpha \in \Gamma$ which gives the conclusion.

REFERENCES

- [1] W. E. Barnes, On the Γ -rings of Nabusawa, Pacific J. Math. 18 (1966), 411–422.
- [2] H. E. Bell and J. Lucier, On additive maps and commutativity in rings, Results Math. 36 (1999),
- [3] M. Bresar, Commuting maps: a survey, Taiwanese J. Math. 8(3) (2004), 361–397.
- [4] Y.-S. Jung and I.-S. Chang, On (α, β) -skew-commuting and (α, β) -skew centralizing maps in rings with left identity, Commun. Korean Math. Soc. **20**(1) (2005), 23–34.
- [5] D. Ozden and M. A. Ozturk, *Permuting tri-derivations in prime and semiprime* Γ-rings, Kyung-pook Math. J. **46** (2006), 153–167.
- [6] M. A. Ozturk, M. Sapanci and Y. B. Jun, Symmetric bi-derivation on prime rings, East Asian Math. J. 15(1) (1999), 105–109.
- [7] M. A. Ozturk and M. Sapanci, On generalized symmetric bi-derivation in prime rings, East Asian Math. J. 15(2) (1999), 165–176.
- [8] M. A. Ozturk, Permuting tri-derivations in prime and semiprime rings, East Asian Math. J. 15(2) (1999), 177–190.
- [9] M. A. Ozturk, M. Sapanci, M. Soyturk and K. H. Kim, Symmetric bi-derivation on prime Γ-rings, Sci. Math. Jpn. **53**(3) (2001), 491–501.
- [10] J. Vukman, Commuting and centralizing mappings in prime rings, Proc. Amer. Math. Soc. 109 (1990), 47–52.

¹Department of Mathematics Rajshahi University

Rajshahi-6205, Bangladesh

 $E{-}mail~address: \verb|kkdmath@yahoo.com| \\ E{-}mail~address: \verb|acpaulrubd_math@yahoo.com| \\$

²DEPARTMENT MATHEMATICS

YAZD UNIVERSITY Yazd, Iran

E-mail address: davvaz@yazd.ac.ir