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STEINER HARARY INDEX

YAPING MAO

Abstract. The Harary index H(G) of a connected graphs G is defined as H(G) =∑
u,v∈V (G)

1
dG(u,v) where dG(u, v) is the distance between vertices u and v of G. The

Steiner distance in a graph, introduced by Chartrand et al. in 1989, is a natural
generalization of the concept of classical graph distance. For a connected graph G
of order at least 2 and S ⊆ V (G), the Steiner distance dG(S) of the vertices of S is
the minimum size of all connected subgraphs whose vertex set contain S. Recently,
Furtula, Gutman, and Katanić introduced the concept of Steiner Harary index and
give its chemical applications. The k-center Steiner Harary index SHk(G) of G is
defined by SHk(G) =

∑
S⊆V (G), |S|=k

1
dG(S) . Expressions for SHk for some special

graphs are obtained. We also give sharp upper and lower bounds of SHk of a
connected graph, and establish some of its properties in the case of trees.

1. Introduction

All graphs in this paper are undirected, finite, and simple. We refer to [3] for
graph theoretical notation and terminology not described here. For a graph G, let
V (G), E(G), and e(G) denote the set of vertices, the set of edges, and the size of
G, respectively. Distance is one of the basic concepts of graph theory [4]. If G is
a connected graph and u, v ∈ V (G), then the distance d(u, v) = dG(u, v) between u
and v is the length of a shortest path connecting u and v. If v is a vertex of a con-
nected graph G, then the eccentricity ε(v) of v is defined by ε(v) = max{d(u, v) |u ∈
V (G)}. Furthermore, the radius rad(G) and diameter diam(G) of G are defined by
rad(G) = min{ε(v) | v ∈ V (G)} and diam(G) = max{ε(v) | v ∈ V (G)}. These latter
two concepts are related by the inequalities rad(G) ≤ diam(G) ≤ 2 rad(G). Goddard
and Oellermann gave a survey paper on this subject [13].
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The Wiener index W (G) of G is defined by

W (G) =
∑

u,v∈V (G)

dG(u, v).

The first investigations of this distance–based graph invariant were done by Harold
Wiener in 1947, who realized that there exist correlations between the boiling points
of paraffins and their molecular structure, see [26–28]. Mathematicians study the
Wiener index since the 1970s [10].

The Wiener index obtained wide attention and numerous results have been worked
out, see the surveys [9, 15, 16,30]. The Harary index H(G) of G is defined by

H(G) =
∑

u,v∈V (G)

1

dG(u, v)
.

For more details on the Harary index, we refer to [2, 17, 20,29].
The Steiner distance of a graph, introduced by Chartrand et al. in 1989, is a natural

and nice generalization of the concept of classical graph distance. For a graph G(V,E)
and a set S ⊆ V (G) of at least two vertices, an S-Steiner tree or a Steiner tree
connecting S (or simply, an S-tree) is a subgraph T (V ′, E ′) of G that is a tree with
S ⊆ V ′. Let G be a connected graph of order at least 2 and let S be a nonempty
set of vertices of G. Then the Steiner distance dG(S) among the vertices of S (or
simply the distance of S) is the minimum size of connected subgraphs whose vertex
set contain S. Note that if H is a connected subgraph of G such that S ⊆ V (H) and
|E(H)| = dG(S), then H is a tree. Clearly, dG(S) = min{|E(T )|, S ⊆ V (T )}, where
T is subtree of G. Furthermore, if S = {u, v}, then dG(S) = dG(u, v) is nothing new,
but the classical distance between u and v.

Let n and k be integers such that 2 ≤ k ≤ n. The Steiner k-eccentricity εk(v) of
a vertex v of G is defined by εk(v) = max{dG(S) |S ⊆ V (G), |S| = k, and v ∈ S}.
The Steiner k-radius of G is s radk(G) = min{εk(v) | v ∈ V (G)}, while the Steiner k-
diameter of G is s diamk(G) = max{εk(v) | v ∈ V (G)}. Note that for every connected
graph G, ε2(v) = ε(v) for all vertices v of G, s rad2(G) = rad(G) and s diam2(G) =
diam(G). For more details on Steiner distance, we refer to [1, 5, 6, 8, 13,25].

The following observation is easily seen.

Proposition 1.1. Let k be an integer such that 2 ≤ k ≤ n. If H is a spanning
subgraph of G, then s diamk(G) ≤ s diamk(H).

Li et al. [18] generalized the concept of Wiener index by Steiner distance. The
Steiner Wiener k-index or k-center Steiner Wiener index SWk(G) of G is defined by

SWk(G) =
∑

S⊆V (G)

|S|=k

dG(S).

For k = 2, the above defined Steiner Wiener index coincides with the ordinary
Wiener index. It is usual to consider SWk for 2 ≤ k ≤ n− 1, but the above definition
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implies SW1(G) = 0 and SWn(G) = n− 1. We refer to [18,19,21–24] for more details
on Steiner Wiener index.

Furtula et al. [11] introduced the concept of Steiner Harary index. The Steiner
Harary k-index or k-center Steiner Harary index SHk(G) of G is defined as

SHk(G) =
∑

S⊆V (G)

|S|=k

1

dG(S)
.

For k = 2, the above defined Steiner Harary index coincides with the ordinary
Harary index. It is usual to consider SHk for 2 ≤ k ≤ n− 1, but the above definition
implies SH1(G) = 0 and SHn(G) = 1

n−1 .
In Section 2, we obtain the exact values of the Steiner Harary k-index of the path,

complete graph, and complete bipartite graph. In Section 3, we obtain sharp lower and
upper bounds for SHk for connected graphs and for trees. In Section 4 we establish
some relations for SHk of trees. Our basic idea is from [18,19].

2. Results for Some Special Graphs

Beginning this section, we note that the special case for k = 2 of all formulas derived
here for the Steiner Harary index, thus pertaining to the ordinary Harary index, are
well known and mentioned many times in the earlier literature.

Proposition 2.1. Let Kn be the complete graph of order n, and let k be an integer
such that 2 ≤ k ≤ n. Then SHk(Kn) = 1

k−1

(
n
k

)
.

Proof. For any S ⊆ V (Kn) and |S| = k, without loss of generality, we let S =
{u1, u2, . . . , uk}. Since Kn is the complete graph of order n, it follows that the tree
T induced by the edges in {u1u2, u1u3, . . . , u1uk} is an S-Steiner tree, and hence
dKn(S) ≤ k − 1. Since |S| = k, it follows that dKn(S) ≥ k − 1. Therefore, dKn(S) =
k − 1. From the arbitrariness of S and the symmetry of Kn, we have

SHk(Kn) =
∑

S⊆V (Kn)

|S|=k

1

dKn(S)
=

1

k − 1

(
n

k

)
,

as desired. �

Proposition 2.2. Let Ka,b be the complete bipartite graph of order a+ b (1 ≤ a ≤ b),
and let k be an integer such that 2 ≤ k ≤ a + b. Then

SHk(Ka,b) =


1

k−1

(
a+b
k

)
− 1

k(k−1)

(
a
k

)
− 1

k(k−1)

(
b
k

)
, if 1 ≤ k ≤ a;

1
k−1

(
a+b
k

)
− 1

k(k−1)

(
b
k

)
, if a < k ≤ b;

1
k−1

(
a+b
k

)
, if b < k ≤ a + b.

Proof. Let G = Ka,b, and let U = {u1, u2, . . . , ua} and W = {w1, w2, . . . , wb} be the
two parts of G = Ka,b.
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First, we consider the case 1 ≤ k ≤ a. For any S ⊆ V (G) and |S| = k, we
have S ∩ U = ∅, or S ∩W = ∅, or S ∩ U 6= ∅ and S ∩W 6= ∅. If S ∩ U = ∅,
then S ⊆ W . Without loss of generality, let S = {w1, w2, . . . , wk}. Then the tree
T induced by the edges in {u1w1, u1w2, . . . , u1wk} is an S-Steiner tree, and hence
dG(S) ≤ k. Since G = Ka,b is a complete bipartite graph, it follows that any tree
connecting S must use at least k edges, and hence dG(S) ≥ k. Therefore, dG(S) = k.
If S ∩ W = ∅, then S ⊆ U . Without loss of generality, let S = {u1, u2, . . . , uk}.
Then the tree T induced by the edges in {w1u1, w1w2, . . . , w1uk} is a Steiner tree
connecting S, and hence dG(S) ≤ k. Since G = Ka,b is a complete bipartite graph, it
follows that any tree connecting S must use at least k edges, and hence dG(S) ≥ k.
Therefore, dG(S) = k. Suppose S∩U 6= ∅ and S∩W 6= ∅. Without loss of generality,
let S = {u1, u2, . . . , ux, w1, w2, . . . , wk−x}. Then the tree T induced by the edges in
{u1w1, w1u2, w1u3, . . . , w1ux, u1w2, u1w3, . . . , u1wk−x} is an S-Steiner tree, and hence
dG(S) ≤ k − 1. Since |S| = k, it follows that any tree connecting S must use at least
k − 1 edges, and hence dG(S) = k − 1. Thus,

SHk(G) =
∑

S⊆V (G)

S∩U=∅

1

dG(S)
+
∑

S⊆V (G)

S∩U=∅

1

dG(S)
+

∑
S⊆V (G)

S∩U 6=∅,S∩U 6=∅

1

dG(S)

=
1

k

(
a

k

)
+

1

k

(
b

k

)
+

1

k − 1

[
a∑

x=1

(
a

x

)(
b

k − x

)]

=
1

k

(
a

k

)
+

1

k

(
b

k

)
+

1

k − 1

[(
a + b

k

)
−
(
b

k

)
−
(
a

k

)]
=

1

k − 1

(
a + b

k

)
− 1

k(k − 1)

(
a

k

)
− 1

k(k − 1)

(
b

k

)
.

Next, we consider the case a < k ≤ b. For any S ⊆ V (G) and |S| = k, we have
S ∩ U = ∅ or S ∩ U 6= ∅. If S ∩ U = ∅, then S ⊆ W and dG(S) = k. Suppose
S ∩ U 6= ∅. Then dG(S) = k − 1, and hence

SHk(G) =
∑

S⊆V (G)

S∩U=∅

1

dG(S)
+
∑

S⊆V (G)

S∩U 6=∅

1

dG(S)

=
1

k

(
b

k

)
+

1

k − 1

[
a∑

x=1

(
a

x

)(
b

k − x

)]

=
1

k

(
b

k

)
+

1

k − 1

[
∞∑
x=1

(
a

x

)(
b

k − x

)]

=
1

k

(
b

k

)
+

1

k − 1

[(
a + b

k

)
−
(
b

k

)]
=

1

k − 1

(
a + b

k

)
− 1

k(k − 1)

(
b

k

)
.
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In this end, we consider the remaining case b < k ≤ a + b. For any S ⊆ V (G) and
|S| = k, we have S ∩ U 6= ∅ and S ∩ U 6= ∅. Then dG(S) = k − 1, and hence

SHk(G) =
∑

S⊆V (G)

S∩U=∅

1

dG(S)
=

1

k − 1

(
a + b

k

)
.

The proof is now complete. �

From the above proposition, we can derive the following corollary.

Corollary 2.1. Let Sn be the star of order n (n ≥ 3), and let k be an integer such
that 2 ≤ k ≤ n. Then

SHk(Sn) =
kn− n + k

k2(k − 1)

(
n− 1

k − 1

)
.

Proof. From Proposition 2.2, we have that SHk(Sn) = SHk(K1,n−1) =
(
n
n

)
1

n−1 = 1
n−1

for k = n and SHk(Sn) = SHk(K1,n−1) = 1
k

(
n−1
k

)
+ 1

k−1

(
n−1
k−1

)
for 2 ≤ k ≤ n− 1. We

conclude that

SHk(Sn) =
1

k

(
n− 1

k

)
+

1

k − 1

(
n− 1

k − 1

)
=

kn− n + k

k2(k − 1)

(
n− 1

k − 1

)
.

�

Proposition 2.3. Let Pn be the path of order n (n ≥ 3), and let k be an integer such
that 2 ≤ k ≤ n. Then

SHk(Pn) = n
∑

k−1≤t≤n−1

1

t

(
t− 1

k − 2

)
−
(
n− 1

k − 1

)
.

Proof. Let V (Pn) = {u1, u2, . . . , un}. Choose S ⊆ V (Pn) and |S| = k. Without loss
of generality, let S = {ui1 , ui2 , . . . , uik} where i1 ≤ i2 ≤ · · · ≤ uik . Clearly, k − 1 ≤
d(S) ≤ n− 1. Observe that d(S) = dPn(ui1 , uik). Then k − 1 ≤ dPn(ui1 , uik) ≤ n− 1.
Let dPn(ui1 , uik) = t. Thus, k − 1 ≤ t ≤ n − 1 and 1 ≤ i1 ≤ n − t. Therefore, we
have (n − t) ways to choose ui1 . Once the vertex ui1 is chosen, then uik = ui1+t is
determined. Since dPn(ui1 , uik) = t, we have

(
t−1
k−2

)
ways to choose ui2 , ui3 , . . . , uik−1.

So there are (n− t)
(
t−1
k−2

)
ways to determine S. Thus,

SHk(Pn) =
∑

k−1≤t≤n−1

(n− t)
1

t

(
t− 1

k − 2

)
= n

∑
k−1≤t≤n−1

1

t

(
t− 1

k − 2

)
−

∑
k−1≤t≤n−1

(
t− 1

k − 2

)
= n

∑
k−1≤t≤n−1

1

t

(
t− 1

k − 2

)
−
(
n− 1

k − 1

)
,

as desired. �
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3. Lower and Upper Bounds for General Graphs

The following proposition is immediate.

Proposition 3.1. Let G be a connected graph of order n, e ∈ E(G), and let k be
an integer such that 2 ≤ k ≤ n. Furthermore, let F be the graph with vertex set
V (F ) = V (G) and edge set E(G) \ e. Then

SHk(F ) ≤ SHk(G).

This straightforwardly leads to the following theorem.

Proposition 3.2. Let G be a connected graph of order n, and T a spanning tree of
G. Let k be an integer such that 2 ≤ k ≤ n. Then

SHk(T ) ≤ SHk(G)

with equality if and only if G is a tree.

A lower bound for the Steiner Harary index of an arbitrary tree is given by the
next theorem.

Theorem 3.1. Let T be a tree of order n, and let k be an integer such that 2 ≤ k ≤ n.
Then

n
∑

k−1≤t≤n−1

1

t

(
t− 1

k − 2

)
−
(
n− 1

k − 1

)
≤ SHk(T ) ≤ kn− n + k

k2(k − 1)

(
n− 1

k − 1

)
.

Moreover, among all trees of order n, the star Sn maximizes the Steiner Harary
k-index whereas the path Pn minimizes the Steiner Harary k-index.

Proof. The validity of the second inequality is verified by induction on n. For n = k,
we have dT (S) = k − 1 = n − 1 for S ⊆ V (T ), where T is a tree of order n. Then
SHk(T ) = SHn(T ) = 1

n−1 = 1
dT (S)

= n2−n+n
n2(n−1)

(
n−1
n−1

)
, as desired. Assume now that the

second inequality holds for all trees of order n. Let T be a tree on n + 1 vertices and
v its pendent vertex. Let u be the vertex adjacent to v in T . Furthermore, let T ′

be the subtree of T induced by V (T ) \ v. Then the inequality holds for T ′. By the
induction hypothesis,

SHk(T ′) ≤ kn− n + k

k2(k − 1)

(
n− 1

k − 1

)
.

If v ∈ S but u /∈ S, then dT (S) ≥ k for S ⊆ V (T ), |S| = k. If both v ∈ S and u ∈ S,
then dT (S) ≥ k − 1 for S ⊆ V (T ), |S| = k. Therefore, we have

SHk(T ) = SHk(T ′) +
∑

S⊆V (T ),|S|=k

v∈S,u/∈S

1

dT (S)
+

∑
S⊆V (T ),|S|=k

u,v∈S

1

dT (S)

≤ kn− n + k

k2(k − 1)

(
n− 1

k − 1

)
+

1

k

(
n− 1

k − 1

)
+

1

k − 1

(
n− 1

k − 2

)
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=
(k − 1)(n + 1) + k

k2(k − 1)

(
n

k − 1

)
.

The first inequality is also verified by induction on n. For n = k, we have dT (S) =
k− 1 = n− 1 for S ⊆ V (T ), where T is a tree of order n. Then SHk(T ) = SHn(T ) =

1
dT (S)

= 1
n−1 = n · 1

n−1

(
n−2
n−2

)
−
(
n−1
n−1

)
, as desired. Assume now that the second inequality

holds for all trees of order n. Let T be a tree on n+1 vertices and v its pendent vertex.
Furthermore, let T ′ be the subtree of T induced by V (T ) \ v. Then the inequality
holds for T ′ and we obtain

SHk(T ) = SHk(T ′) +
∑

S⊆V (T ),|S|=k

v∈S

1

dT (S)
.

By the induction hypothesis,

SHk(T ′) ≥ n
∑

k−1≤t≤n−1

1

t

(
t− 1

k − 2

)
−
(
n− 1

k − 1

)
.

Let V (T ′) = {v1, v2, . . . , vn}. For the vertex v ∈ V (T ), we can find a subtree T1

such that v ∈ V (T1) and d(V (T1)) = k − 1. Without loss of generality, let V (T1) =
{v, v1, v2, . . . , vk−1}. Clearly, there is only one subset of V (T1) containing v and hence∑

S⊆V (T ),|S|=k

v,v1,v2,...,vk−1∈S

1

dT (S)
=

1

d(V (T1))
=

1

k − 1
.

Pick up a vertex from V (T ) \ {v, v1, v2, . . . , vk−1} = {vk, vk+1, . . . , vn}, say vk, such
that vk is adjacent to one element of {v1, v2, . . . , vk−1}. Clearly, the tree T2 induced
by the edges in E(T1)∪{vkvj} is of order k+ 1, where 1 ≤ j ≤ k−1 and vkvj ∈ E(T ).
Then dT (V (T2)) = dT ({v, v1, v2, . . . , vk−1, vk}) = k. It is clear that there are at most(
k−1
k−2

)
subsets of V (T2) containing both v and vk. For each such subset S ⊆ V (T2)

with |S| = k, dT (S) ≤ dT (V (T2)) ≤ k. Thus, we have∑
S⊆V (T ),|S|=k

v,vk∈S

1

dT (S)
≥
(
k − 1

k − 2

)
1

dT (V (T2))
≥ 1

k

(
k − 1

k − 2

)
.

Pick up a vertex from V (T ) \ {v, v1, v2, . . . , vk−1, vk} = {vk+1, vk+2, . . . , vn}, say vk+1,
such that vk+1 is adjacent to one element of {v1, v2, . . . , vk}. Clearly, the tree T3

induced by the edges in E(T2) ∪ {vk+1vj} is of order k + 2, where 1 ≤ j ≤ k and
vk+1vj ∈ E(T ). Then dT (V (T3)) = dT ({v, v1, v2, . . . , vk+1}) = k + 1. Obviously, we
can find

(
k

k−2

)
subsets of V (T3) containing both v and vk+1. Thus,∑

S⊆V (T ),|S|=k

v,vk+1∈S

1

dT (S)
≥
(

k

k − 2

)
1

dT (V (T3))
≥ 1

k + 1

(
k

k − 2

)
.
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Continue the above procedure, we get

SHk(T ) =SHk(T ′) +
∑

S⊆V (T ),|S|=k

v∈S

1

dT (S)

≥SHk(T ′) +
∑

S⊆V (T ),|S|=k

v,v1,v2,...,vk−1∈S

1

dT (S)
+

∑
S⊆V (T ),|S|=k

v,vk∈S

1

dT (S)

+
∑

S⊆V (T ),|S|=k

v,vk+1∈S

1

dT (S)
+ · · ·+

∑
S⊆V (T ),|S|=k

v,vn∈S

1

dT (S)

≥SHk(T ′) +
1

k − 1

(
k − 2

k − 2

)
+

1

k

(
k

k − 2

)
+ · · ·+ 1

n

(
n− 1

k − 2

)
=n

∑
k−1≤t≤n−1

1

t

(
t− 1

k − 2

)
−
(
n− 1

k − 1

)
+

∑
k−1≤t≤n−1

1

t

(
t− 1

k − 2

)
+

1

n

(
n− 1

k − 2

)
= (n + 1)

∑
k−1≤t≤n−1

1

t

(
t− 1

k − 2

)
−
(
n− 1

k − 1

)
+

1

n

(
n− 1

k − 2

)
= (n + 1)

∑
k−1≤t≤n

1

t

(
t− 1

k − 2

)
−
(
n− 1

k − 2

)
−
(
n− 1

k − 1

)
= (n + 1)

∑
k−1≤t≤n

1

t

(
t− 1

k − 2

)
−
(

n

k − 1

)
. �

We recall that Theorem 3.1 provides a generalization of the much older results
known for the Harary index, i.e., it yields this previous result by setting k = 2.

Theorem 3.2. Let G be a connected graph of order n, and let k be an integer such
that 2 ≤ k ≤ n. Then

n
∑

k−1≤t≤n−1

1

t

(
t− 1

k − 2

)
−
(
n− 1

k − 1

)
≤ SHk(G) ≤ 1

k − 1

(
n

k

)
.

Moreover, the lower bound is sharp.

Proof. From Proposition 2.1, we have SHk(Kn) = 1
k−1

(
n
k

)
. According to Proposition

3.1, each subgraph G of Kn with E(G) ⊆ E(Kn) has Steiner Harary index less than
the Steiner Harary of Kn. Since each graph of order n is a subgraph of the complete
graph, the inequality holds. From Proposition 3.2, we know that SHk(T ) ≤ SHk(G),
where T is a spanning tree of G. Combining this with Theorem 3.1, we have SHk(G) ≥
SHk(T ) ≥ SHk(Pn) = n

∑
k−1≤t≤n−1

1
t

(
t−1
k−2

)
−
(
n−1
k−1

)
, as desired. �

4. On Steiner Harary Indices of Trees

For k = n, n− 1, we have the following results for trees.
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Theorem 4.1. Let T be a tree of order n, possessing p pendent vertices. Then

(4.1) SHn−1(T ) =
n2 − 2n− p

(n− 1)(n− 2)
,

irrespective of any other structural detail of T .

Proof. Since k = n− 1, the respective subsets S contain all except one vertices of T .
If the vertex missing from S is pendent, then the vertices contained in S form a tree
of order n− 1. Therefore dG(S) = n− 2. There are p such subsets, contributing to
SHn−1 by p× 1

n−2 .
If the vertex of T , not present in S, is non-pendent, then the vertices contained in

S cannot form a tree, and the respective Steiner tree must contain all the n vertices
of T . Therefore, dG(S) = n− 1. There are n− p such subsets, contributing to SHn−1
by (n− p)× 1

n−1 .
Thus, SHn−1(T ) = p

n−2 + n−p
n−1 , which straightforwardly leads to (4.1). �

Theorem 4.2. Let T be a tree of order n, possessing p pendent vertices. Let q be the
number of vertices of degree 2 in T such that each of them is adjacent to a pendant
vertex. Then

(4.2) SHn−2(T ) =

[(
p

2

)
+ q

]
1

n− 3
+

(
n− p

2

)
1

n− 1
+

pn− p2 − q

n− 2
.

Proof. For any S ⊆ V (G) and |S| = n− 2, we let S̄ = {u, v}. If dT (u) = dT (v) = 1,
then dT (S) = n− 3 and this case contributes SHn−2 by∑

u,v∈S̄
dT (u)=dT (v)=1

1

dT (S)
=

(
p

2

)
1

n− 3
.

If dT (u) ≥ 2 and dT (v) ≥ 2, then dT (S) = n− 1 and this case contributes SHn−2
by ∑

u,v∈S̄
dT (u)≥2, dT (v)≥2

1

dT (S)
=

(
n− p

2

)
1

n− 1
.

Suppose that dT (u) = 1 and dT (v) ≥ 2. If dT (u) = 1, dT (v) = 2 and uv ∈ E(T ),
then dT (S) = n − 3. If dT (u) = 1, dT (v) ≥ 3 and uv ∈ E(T ), then dT (S) = n − 2.
If dT (u) = 1, dT (v) ≥ 2 and uv /∈ E(T ), then dT (S) = n − 2. Therefore, this case
contributes SHn−2 by

SHn−2(T ) =
∑
u,v∈S̄

dT (u)=1, dT (v)≥2

1

dT (S)

=
∑

u,v∈S̄,uv∈E(T )

dT (u)=1, dT (v)=2

1

dT (S)
+

∑
u,v∈S̄,uv∈E(T )

dT (u)=1, dT (v)≥3

1

dT (S)
+

∑
u,v∈S̄,uv/∈E(T )

dT (u)=1, dT (v)≥2

1

dT (S)
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=
q

n− 3
+

p− q

n− 2
+

p(n− p− 1)

n− 2
.

From the above argument, we have

SHn−2(T ) =

(
p

2

)
1

n− 3
+

(
n− p

2

)
1

n− 1
+

q

n− 3
+

p− q

n− 2
+

p(n− p− 1)

n− 2

=

[(
p

2

)
+ q

]
1

n− 3
+

(
n− p

2

)
1

n− 1
+

pn− p2 − q

n− 2
. �
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